


1. ugtio

There is a large number of probleme ranging from elementary
particles to statietical phyeicse, in which the considered systems
are disslipative (cf.,e.g.,[1-5]). The dynamics in such casea can
‘be rarely described fully, inecluding interaction with the heat
reservoir (decay products, compound nucleus channel,etc.),usually
one is forced to express influence of these degrees of freedom by
means of phenomenological Lagrangiana or Hamlltonians. They can
be constructed in different ways ! ae time-depfendent, non-linear
(e.g.,[3,6]) or non-selfsdjoint, in particular Hamiltoniane with
complex potentials are popular in practical calculations in nuc—
lear physics.

Recently we haeve shown how to incorporate description of a
dispipative system S5 via & phencmenclogical non-selfadjoint
Hemiltonien H into the stsndard quantum-theoretical framework [T],
If H is closed and iH generatee & continuous contractive semi-
group (such operators we called pssudo-Hamiltonians), then by mi-
nimel unitary dilation of thie semigroup we obtain objects which
are naturally interpretable as the state Hilbert system of & lar-
ger isoleted system X contasining 8 and the unitery evolution
group of Z . The well-known difficulty with epectrum of the cor-
responding total Hemiltonian (see [4,8] and references therein)
means that the semigroup evolution of 3 18 necessarily approxi-
mative [7], however, this approximation is good enough for a lot
of applications [9,10].

In the present paper, we apply the pseudo-Hamiltonian appro-
ach to the case of muitidimensional harmonic oscillator with dam-
ping. There are, of course, many possibilities how to choose H ;
some complex structures have been already studied h1]. ¥We shall
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use the most natural choice H = - %1\ + X.(A-iW}x , where A,¥
are strictly positive metrices (otrict poeitivity of A ie assu-
med for convenience, in fact, the proofs cen be carried out for
poaitive A as well). We assume neither & time-dependent frequen-
ey [6] , nor any driving force, stochastic or not [6,12]. On the
other hand, we assume oscilletors of an arbitrary dimension 4
the generalization to the 4 >1 case is non-trivial, because A,
¥ need not be simultaneously diagonalizable. This multidimensio-
nality together with the special cholce of H could be of some
interest for the old problem of comstructing a field theory with
basic quanta metastable.

One has to check first that our H 4is & pseudo-Hamiltonian
in the sense of the above definition. If the damping part could
be regarded es a perturbation to the undamped ogcillator, the
Eato-Rellich type lemma would be applicable. In general, however,
this iz not so. Thus we use a irick based on s successive applica-
ticn of the lemma ; thie trick might appear to be useful for some
self-adjolntness proofs too.

‘The main reeult of the paper is an explicit integral-operator
expression of the evolution semigroup corresponding to H . After
some prelimineries, we prove it in Sece.5,6. The method is based
on Feynman-type path integrals in the sense of Nelson, i.e., defi-
ned by Lie~Trotter fornula.ﬁ}.14]. The same result, however,
ie obtained with some other definitions of the path integral, for
instance that ome of Truman f15,16] or that using the "uniform"
Trotter formula [17].

The obtained results will be discussed in the second part of
this paper [18]. Por the sake of simplicity, we shell limit curpel-
ves there eassentially to the ome-dimensionel case. The diacussion
will concern the probleme of non-damped &nd classical limits,
further we shall find the point spectrum of H .

2. Some tatjon and conventio:

d
2 _ 2 =
Q" = 55% Qj » where (Qayﬂ(x) xdy(X) v
d
2 2 -1
PT = jét Pj = -A , where Pj =Eh Qird and rd is the d-dimen-

siopal Fourler-Plancherel operstor,



vl(x) = X, Ax , vz(x) = x.¥x , where A ,W are real positive

dxd matrices (more exactly, positive symmetric
operators on rd }and v(x) =v1(x)-1v2(x) zx.Bx ,

Vi P el = v (xp(x) , V=v,-1v,

o
"

%1’2-4-‘(T s
d a
2 = BV P&, By = E, -1V, = B ARY

=-]
n

= =1 p2
H=H,-1Y, = 5 P7+V ,

iy ie the set of all (finite) complex Borel measures on a
real separable Hilbert space & ,

F) is the set of functione £ I t(y) = feip(i(;‘,j"))d(tc(f') ’
where 4&(¥) end (.,.) is the 1ﬂnef-producf of # .,

In what follows, sguare roots of complex numters and matrices

will 'sppear fi-equently. It ie useful to make an overal choice of
the branch : we prefer to work with (eip)' Z-pr(%ip) s O
< 27 . There is a particular case which should be mentioned :
when complex frequencies are considered, it ie more natural to
have their real parte poeitive, &t least from the viewpolint of
non-demped limit. We phall use therefore J) = --(2].’»)‘I 2 with the
square root understood kin ‘the. ebove pense. ;

3. The peeudo-Hamiltonian property of H

Ae mentioned above, throughout thie eection we assume the
matrices A,¥ <to be strictly positive (as operators on l!d ).
The eigenvalues of A are otj r 3= le.d , B0 X = min tx;’>0.
The inequalities 1€3<a

a
a?1®y1? < v yyt? = j§1«,aklojakwl"’s 1817 1 Q%2
show that 1(V,) = D(q%) , amalogously nV,) = DY) , t.e.,

D(H) = D(H) = PPN D(e?) . ‘ (1)

Eroposition 1 ¢ H' ie self-adjoint.



Proof : We notice first that H2 is e.s.a. due to existence of &
complete Bet of eigenvectors Cf’(ltd) . Both P2 and '\n’I ere self-
adjoint and therefore closed so that H‘C ?I_Z . In order to prove
the opposite inclusion we shall verify that there is b>0 such
that

1 %P vy iPs myP oyl L yegrt) . (2)
¥e have (Pi'q))(x) = —i«?'lf(x)/axi for these Y , i.e.,

(B = QPIP(x) = =1 &y Ux) , peseh) . (3

a

We chooese & basis in R 80 that A ie disgonsal, then

d
2 2 2,2 , 5252
(W POV, + ¥ P)p) 2 jz_t a4y (PR + QPP

becauge (Y,qui‘y;)z 0 for j 4 k due to the relations (3), which
further imply

d
2 2 1 2.2 .22 2
(P BV + V PO)Y) 2 3 j2=I.'06;,ﬂ(1>3qj+n:,1’j)\ullz—%val Tra .

Thue (2) holds if bz 7 Tr A . Assume now e D(E,) . It {y }
is a sequence Cy(ﬂd) , ’gbn-r‘sv y» then iH2‘f’n} converges too, i.e.,
‘ﬂna%‘ﬂz‘f’n" 0 with n,m—>c . The inequality (2) shows that

slso {Pz‘gvn} and {V‘Wn} converge, however, both PE,V1 are

closed snd Y®&Y) < DFXIND(V,) 8o that YeD(RZ)ND(V,) = D(H,).

The pseudo-Hamiltonian property of H will be proved below
by successive applications of the following perturbative lemme
(ef.[7]3 [14], sec.X.8) :

Froposition 2 : Let G bte a deneely defined clossble operstor
on 8 Hilbert space & such that G is a peeudo-Eamiltonian,
Tet further € be closed &nd accretive, D(C) = D(&) , and
agsume that there exist non-negative &8<1 , b puch that

eyl < a®lap+v2ly1®  , yen@ . 4)

Then D(G)C D(C) &nd the operator G-1C defined om D(3)
is closed and belongs to the claes of pseudo-Hamjiltonians.



One must exhibit conditione under which (4) is fulfilled in
the case under consideration :
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=1
Proposition ! {(g) Let b <% 1‘Pcll'lvﬂ , then there is a positive
2

¢ such that

fovypi < & [nyiZretpl® , veye® . (58)
(b) Let a>0 and bzs 12 az » then there is & positive ¢
such that

hov,pl® < 12 ffCH, -1av2w||2+c|!w2 ’ 'y;ef(ﬁd) . (5v)

Proof : We heve %o find c¢ for which
I= (y, () (H,+1aY,) (H,~1aV,) ~bVS +c)y)

is non-negative independently of Ve f(R ) . We choose again &
bagia in E-l go that A is diagonsel and denote by W k the
corresponding matrix elements of W . Expressing (Vv PZ-P2V )qlu
ana (V,P?4+p°v,)} from (3) and omitting the positive fera

%(’,V.P ¥} , we obtain

1z [ Zujtrkqjmjk)-irm“—(zaaqi)

3=
d 2 d
1 2
+ Gy )(J,Zf=1'3kqiqk) -2 j’%,";k“’k" QP ’*“]W .

-1
Assume first a=0 and bzs %Nﬂwu , then the laat inegquality
yields '

2
1> W, [o -gn-Au-%oc-b?uwu)asz) > (c- 27ra) Iyt
go that (58) holds if o ;gn-n . On the other hand, if a%3 2v2
then
1y ] 2 (o ) e, (PLQ QP ) - W, )2
AR L DT L R A L L)

_1.2 -2,2 _3 ]
12 & 2
and therefore (5b) holds if c¢ 2 2Tra + a2 J W . m
8 a8 k=1 bl ik



Combining now the above three auxiliary statemente, we can
prove the maln result of this section @

Theorem 1 : Let A,¥ be sirictly positive so that (1) holds,
then H is closed and belongs to the class of pseudo-Hamil-
tonisns. Moreover, Y(&Y) 1s a core for W, .'n..e.,li---iﬂl"3 .

Proof : (a) If & > 21W{ , ther there is c¢»>0 such that (5a)

with b=1 holds. The operator V2 is positive, and therefore

accretive, DWZ) hor} D(H1) and H, =Ha is a pseudo-Hamiltonian
due to Propeosition 1, Applying then Proposition 2 to G=H

('}="'2 we Bee that for I«iz}l:1 -1V2 the agsertion is valid.

(b} If & < 24¥)) we choose X positive, 2”!‘1!1:2:5.« , 8nd 1

natural so that

2 ¥

- n-=1
k(1427 Ly (1)
The same srgument as above shows that the operator H'.' -ikV2 with
the domaim D(H1) ts ¢losed and belomgs to the psaudo-Hemil tonian
class, Moreover, this operator equals H2-1k72 t obvioualy
1!2—1lrv2 < H‘-—ikva 3 on the other hand, for en arbitrary pe D(H1)
and a segquence {Fn }c_}"(ﬁd) s P , we have (Hz-ikve)y)n =
= H,Pn-ikvzfn so0 that PeD(HZ-IE'?z) .

(e} The proof la completed by induction : assume th?t the psser-~
= - -1/2,3=1
tion holdls for H1j=HZJ s where Haj‘He 1k(142 ) ¥V, « The

1
asgumption of Proposition 3(b) is fulfllled for a=2 /21: =

= k(142" 2)‘1—‘, thus (5b} together with Proposition 2 imply
that the assertion holds for

-1/2 -1/2);-1

H13—1k2 (142 =H.|.;1+.|

a8 wall. In the seame way as above one proves H| a1 =H_2 J41 0

a— r ]
Since the assertion 18 valid for H” =H2‘ due to {b), the asame
ie true for B corresponding to sny natural j , in particular

-1

for B1n=32n which equalas H = H—3 in view of (Xx). ]

4. auxiliery ipt al formula

In the.rext section, the following integrel will be useful



Ig, ) = {N exp{ % f.uf + 15.7}d§ . (6)

where M is a symmetric EKx N matrix the imaginary part of which

ie assumed strictly positive, Im g.ng > 0 for each non-zere

ge Rn »2nd 7 18 & complex vector, 7 = 7(1)+.£1(2) with ?(ik ﬁn.
The guadratic form st.HfT can be "diagonalized", i.e.,

there exists S such that M = 5°S , further M is regular due

to the assumption eo the same is true for S . Completing now to

the full square in the exponent, one chtains

IH(M,?) = exp{—'% ?.l-'zj JE(M’E) - (7
IgiM,g) =‘fn exp{%[s(§+u""z)]2} a (8)
R

the last integral can be essily seen to exist due to the aesumed
strict positivity of Im M , Wotice that in the case of real K ,
7 the integrals (6},(8) exist in the improper senee only, but
the evaluation of JN(H,Q) is not complicated : (2} translatiomal
invariance of dj‘ implies its independence. of Vi and (b) the
substitution of §° =Sf inte JL(M,0) gives

/ -1/2

(M) = (21'1)“ Z(Qet ll_) . ©{9)

None of these tricks is applicable in the case of complex M even
it 2 is real. Nevertheless, the relation (%) remsine velid as
shown below @ :

Eroposition 4 ¢ If ¥ ie symmetric with etrictly positive ime-
ginary part, then the integrel {(6) is given by (7)-(3).

In order to evaluate the integral (8}, let us first verify
that the 7—-independence is preserved in the complex case :

Lempan 4.1 @ JN(II,Q) = JN(H,O) for each 7€ e“ .

EBrogf : We introduce the function K 3 c“—s- € by
2
E(§) = ayO4MuQ) - 3p(,0) = [ exp{ F(S(G+E)) fag - a0 .
B

For esch J , the function hJ(.) = K(§1""’%-1""33+1""'§x’



with gt""'f;j-vgjn’“"gx fixed is holomorphic in ¢ ,
B¢ =1 [ g0, exp S5G4507 a
J XJ -EN g '{ 3 2 f '

and therefore Kis holomorphic in HJN due to the basic theorenm
of Hartogs ([19], § 2.11.2). Tranelational invariance of the Lebes-
gue measure implies K(g) =0 for all 5‘6 RH , then K(S) =Q for
each (€ ¥ too ¢ [19], § 2.11.3). Since M is regular due to the
essumption, the assertion follows. B

The rest of the proof comsists of evaluating JN(M,0)=
= IN(M,O) . Te this purpose, some recursive relations for minors
of M are useful. Let us denotes

Myy My, %yn \

Alm,j) = det
' Mper,1 ¥poy,2 o= Mm-l.m/‘

sz ceses ]lJm

(1)

ll._]1
for j=m,m+t,...,N , in particular, -A- £ A{m,m) is the m-th
prineipal minor of M .

Lemme 4.2 © Let Ap »®=1,...,§ , be non-zero snd set Ao--‘l N

then
E Alm,J)almk+1)  Alk+1,1)
X - = ()
3,E4 mél Byt Dy Ak

holds for J=Ik+1,k+2,...,N .

Prpoof : Since ¥ 1is symmetric metrix of renk N , it can be ex-
pregsed as K:BBT y where B 1is the following lower-triangular
matrix (cf. [20],§ I1.4) ¢

t/

3= 80 P Am) L met,. K, JEmmel,... N,

im

Substituting into the lhs of (11), we obtaln

k k+1 T
By ~ m§133m3k+1,m =My - éIBJm(B dmxer *
* By ke tBua ey = AL/, -



Now we are ready to prove that

i
1,00,0) = /. exp | 321:=1M11§j§1§ ag,...4fy )
B £
is expressed by (9). This is true for N=1 ({(ef. [21], 3.923),
i.e., one has
-1/2 »
fexpf— ef +ib§§d§ (2'?1) expi- -51-5 b ) (&)

for Imc>0 . If N>1 , we perform the integration in (&} suc-
cessively using (&&) ! we integrate first, say, over f“, ‘then
aver .fg , etc. Let us assume that the k-th integration gives

k/2 -1/2 i
IN(M,O) = {2xi) (Ak) le;_kdfkﬂ"'dfll exp{g = Jlgjfl

k N 2
"%né"mmJ%)q(.Z SJA(m,j)) } .

=k

(ke )

Kow one has to ceparate terms in the exponent containing the se-
cond, first and zerc power of ‘fk+1 , and to integrate over it
using (&%} ; this leads to

(k+1}/2[

o172
Ax(” (A(m,k-»‘l))z)} /
K+ 1,01 ‘

1g(H,0) = (27i) ApBn

k
X
m=1
N
2.

-1
L. Enfihoe m;mm-t‘“m .

S 1
. d veed expd =
E{I‘i-k—I ferz - -n {2 ;

( N Alm, J)) }ex{ 1(M _ E(A(m.k”))z)_‘
Jk+2§3 P 2\ ke 1, k1 m=1 Bn_18p ’

£ j( _k A(m,j)ﬂ(m.kﬂ))z}
’ jk+2 Wihket o2 Bpady

Since M is regular, its determinant is non-zero. Assume for a
moment that the same is true for all prinecipal miners, then the
last expression simpiifies by Lemma 4.2.and glves (&hk) with k
replaced by k+1 . Consequently, if (k&) holds for k=0,1,...
..,ko , it holds for k=k0+1 as well. In particulaer, (kik} holds
for k=NK-=1 ; performing the last integration in the same wey as
gbove we get (9) because A =det M . Finally if some of the



principal minors are zero, then we replace N by ME =M+gI . The

above considerstions are applicable to all but finite number of

£'s , further 1im I (M ,%Z) =TI (M,?) by the dominated convergen-
_ iyp FUE ]

ce theorem, and therefore the assertion of Proposition 4 holds in
this case too.

5. The propagator

The continuous contractive semigroup corresponding to our
peeado-Homiltonian H can be expressed explicitly. Thie is the

eontent of the following theorem, which shall be proved in the
next section :

Theorem 2 : Let A,W be strictly positive and denote £l =
= —28)"/2 | B=A-1W . Then for each %320 , exp(-1Ht) = V
where {Vt :t20f is & contractive senigroup which acts
on an arbitrary pe Lz(ﬁd) sccording to the relations

+ f

(V) (x) =fdet(x,y)p(y)ay , t>0 (128)

/

- - ~1/2
Gt(x,y) = {(2ni) 4 2(det(ﬂ 1E:in.fl‘t:)) / exp{%[x.(ﬂctg.ﬂt)x +

(12v)
+ y. (2 ctgﬂt}y] -iy. (0 cosecﬂt)x} .

One has to verify first that (12) mekes sense :

Lemme 5.1 : Let A be poettive, W satrictly positive, t>0 N
then &7 4s regular and the real gquadratic forms
x> —Inm x.(.fl"tgﬂt)x sy X -Imx.(0 teflt)x and
x> In x. (L) ctgfit)x are strictly positive (positively de-
finite in the algebraic terminology -cf. fzol.

Froof : Suppose first d =1 . We have 3%/2 £ argB < 27 due to
the assumption sc that O© <-{, £ 0, holds for . =4, +§, . Then

~Im .ﬂ—‘tg.nt = C(.I?2 tg .Q,‘t ch-zﬂzt - .I),l th.ﬂat coauz.ﬂ‘t)

1

- 2
where ¢! = (02 [1-1 tgd,t thflztl >0 . We abbreviate %y =
=28,%, %, = -2.!}.21: * they are both positive, end therefore the

[XH



'sin % < 1<

inequalities « 2

sh oy imply

-1
~t
-Im 2 tg.ﬂt = C(4t 0032(%%)(:112( -1-2052)) {0 sher, - &, sine, 1>,

{13a}

ImfQctg Nt = -] 0 tg 0tl P m T g0t > 0 . (13b)
Similarly, we obtain

~Imf}tgflt > 0 . {13c}

Let further d>! . Regularity of J2 ie obviouse : mxiz- N0 x=
= 2x.Bx # 0 for non-zero Xe g? , because £ is symmetric (as
& function of symmetric B ) end W is strictly positive. A real
quadratic form is strictly positive, if all eigenvalues of 1ts
matrix are positive ([20],§ X.5). They are equel to -Imw, tgau t
in the first case ([20],§ V.1), where ¢, are eigenvalues of f) .
Further each eigenvelue PJ=%M2 of B fulfils Im ﬂ3< Q.
otherwise a nonzero 130 would exist such that x.‘i .I'xjo=

x =Im I?,J ]x S. 0 in contradiction with the aasunpt.ion. Thus
(t3a) gives -Im ‘0.'1 tg ""jt >0 for ell 3} , and analogously {(13b,
c) apply to the other two forms. B

Iemme 5.2 ¢ Let A,¥ be as in Lemma 5.1, then det(0 'sinnt)
and det(cosJlt) are non-zero for each t>0 .

Proof : It is eufficient to check that all eigenvalues of both
the matrices are non-zerc ! they equel cu"sin w,t and cos o.t ,
J=1,...,4 , respectively. Further Imﬁj‘ 0O implies 1Im wj # o,
but ein and coe have no zeroe outeide the reel axis. [ |

Propopition 5 ¢ Let A,¥ be @s in Lemma 5.1, let further vt
be given by (12) and V,=1I . Then {Vt :t20} i & semi-
group of bounded operators on LZ(Rd) .

Pxroof : According to Lemma 5.1 there exist positive c¢,,c, (de-
prendirg on t ) such that

feyix, M € e e!p(-cz(xzﬂz)) - (14)

This inequelity together with Fubinli theorem lmpiles

11



H‘Ttlfﬂz\ 2 f f‘ﬁ(y)Hr(z) exp(-c, (2x2+y +z2))dxdydz =

a/2 2
2y 2c,) (,/;1 lpa] exp(-czyz)dy)
R /
so that the Schwarz inequality gives
a/2
‘i|vtpﬂscl(x/2c2) M}M[ (15)

for each ?oe L‘?(Rd) - As for the semigroup property, in view of
VO= I and of (14) it is sufficient to verify

G, +:t {x,28} = f Gy (_x..v)G (y,z)__dy (16)
for’ all .1:1.1: >0 . The rhs of this relation equals

-d . _ -1/2 . - -
(271} (det(f 'sin Nt, )det(.ﬂflsin ft,0) exp{%_[x.(.ﬁctg Nt 0x +
+ z, (.Qctg.Qt1 )z]}. Id(.ﬂ(ctg.ﬂi:‘ + ctg.ﬂtz} ,—_Q((cosec.!ltz)x f(cosec.ﬂt,)z)).

Applying Proposition 4 to the iast integral and using det M 2=
= det H det M2 » symmetry of the matrices involved and the mtrix
-runctional calculus rules({20], € v.5), we get (16). u

Before proceeding further, we ahall deduce & useful equiva-
lent expression for V :

Proposition 6 : Let A,% be @8 in Lemma 5.1, then for all t>0
and pe L (El )

(Vﬂo)(x) = E{d Ft""y)wd?"” dy {17a}

-4/2

Ft(x.y) = (21 (det(coBJ?t))-1/2exp{--%[x.(ﬂtgﬂt)x +

1 {(17b}
+ ¥ tgﬂt)y_] + iy.(sec ﬂt)x} . ’

where Fd is the Fourier-Plancherel operstor.
Proof : Let first ix.y
ot first e FeHn 12w p(x) = . ® awy) with

M—:m(R } » then (17a) can be rewritten as

12



(Vepi(x) = (2 %/2 fd F (x,¥) dv(y) . (18)

R
In order to prove this, we use {14) together with boundedncss of
£ o i?(x)i % Wi(ﬂd) . Ther Fubini theorem applied to (12) gives

{18) with
a/2 + iy.z

Ft(x.y) = (2n) 'd Gt(x,z) e dz =

"

R
-d/2 - -1/2 %
= (4ﬂ21) / (det (g 1sin.ﬂ_t)) exp{% x.(ﬂctgﬁt)x}.

. Id(ﬂ_ctgﬂt , ~(Jlcosee {14)x)

Using now Proposition 4, symmetry of the matrices involved and
the matrix functional-calculus rules, we get (17b).

Let us assume further an arbitrary P £ Lz(Rd), and conatruct
the following sequence !

. _-a/2 J‘ ix.y -
n b Palx) = (21 a e Puly) dy
[0

(Pged(y) <. 1¥) & n and |(de)(y)}g n o,
?;n(y)z B oeee.. |¥lgn oand BN R,

o ceveass [¥l>m .

Clearly Fd?n = @n and p &€ L(ﬁ } so the sssertion is wvalid
for . The Beguence {f } converges pointwise to FGP , furt-
her ifﬂ(y)l £ I(Fd?)(y)l end F, (x,. e L2(RY) =0 tnat

n-eo

n (V) (x) = [ BT 8y ()
R

One verifies easlly that ﬁn'* Fdf in the Lz—norm too. Since Fd
is unitary and V iz bounded due to (15}, we obtain Vtyh-a-vtp H
then there exiats a subsequence {V P which converges to tP
pointwise and the assertion follows 57 from (2).

In order to prove Theorem.2 in a stralghtforward way, one
has to check first that the semigroup {Vt rt20 f is stromgly
continucus, or equivalently

lim {%,V = } (19}
t_,‘oﬂ’f'tf’ Yoy



for 8ll ¥,lpe L (H ) ([22], Th.IX.%.1). Further the generator of
{V ! +20] must be calculated and shown to coincide with H .

According to Proposition 6, (19) is valid for Yrpe Lz(ﬁd)(ﬁL(md).

Using further the matrix functional-caleulus zules together with
the relation

. -1
£ det(g(2t) = det(g@t)) Trle WH)(g@t) )

one can verify that for 0 €,?(R Y s Yt wlx,t)= p)(x) solves
in B x (0,00) the Schrddinger equation with the potentisl w{x)=
=1 x.0%x and initial deta P .

The remsining part of such a proof, however, seems to be much
more complicated. Instead of attempting it, we shall use the way
which is opposite in some sense ! to express exp(-iHt) by Lie-
Trotter formula. This is the content of the next section.

6., exp{-iHt) by lie-Trotter formula

We shall assume sgain both A,%¥ to be strictly poeitive,
t>0 , and abbreviate Sfl = exp(-iHOt)exp(-i‘\rt) y where Ho=%
is the free Hamiltpnian. Since 1H =1H0 +1iV generates a continu-
cus contractive semigroup due to Theorem ', Iie-Trotter formuls
for semigroup aeserts

s-1lim st = exp(-iKt) (20)
n>ve

(ef.[23] or [14], Th.X.51 ; in fact we need only the special case
of LT-formula considered by Nelson[13]). Our goal is to prove that
the 1hs of (20} coincides with L

Let FJE Lz(Rd) , then ueing the propagator corresponding
to HO s+ ONe can express

d
(559 (x) = (2p1dy "2 f exp{‘l':; Ztgk*, gk -
(2t)

-1 g;io J'k‘BJ'k}P(J‘o} dfge gy

({14], Secs.IX.7, X.11), where j =x and d =t/n . Modulus of
the integrand is majorized by

14



n=1
hptro?l GIP['*J é;b B Ve } ’

thus the integral exists whenever (-} is bounded and the in-

tegrations may be interchanged arbitrarily. In orger to make use
Xx.

of Proposition 4 , suppoee ?e.?'(ﬁd) ’ io(x) = fde xdo(y) .

Substituting then Jo = & SV2  x-0,1,.....8.  ,n-1 , and resr-
ranging the integral, we obtain

-nd /2 ‘
stpr ) = () / J oW exp(38x7) L, ,9) , (222)
R
where 7 = (yJVZ,O,...,O,-ch‘/z) and anln((f) is the nd xnd
matrix

1-24%8 -1 0 0 unnn . 0
-1 21-2d°B -1 0 veeees O
¥ = 0 -1 21-28%B -1 ...... 0 (221}
0 0 0 0 .... 21-24°B

which obviously fulfils the ssumptions of Proposition 4 . Further
one has to calculate det “n and 1;1 (or at leasgt its corner
blocks). It can be accomplished, since the blocke in nn commute
mutually and thus can be handled ad numbers :

lemsa 6,1 : Let m=(m;,) be s nxn meirix and H=(Mij) be
a ndxnd matrix which consiste of dxd blocks li 21,3 =
= 1,2,...,0 . Let us denote d(m) =2)(m”,m12....,=mi P =
= detm . If [“13'"k1] =0, i,},k,1=1,...,n , then

det M = det(d(M})) , (23a}

where d(M) is the "block determinant” of M , i.e.,the
dxd matrix 3“:#*"12"""‘1—111’ . ¥oreover, if M is regu-
lar, then

{(23v)

) 1,-.,3-1,j+1...,n} '

= (- 143 -
( 1) (d(H)) l[1.‘.,1_1,1+1,_.,n

1]
where Il[...] is the respective' *block minor" of M , l.e.,
d(ﬁij) with i, obtelnea from W by dropping ths j-tn
"plock row" and the i~th "block column®.

Ixgof : For n=2 see [20] ,§II.5. in particular (23b) follows

15



from Frobenius formula., The determinant {2%a) can be evaluated
using the block variant of Gauss algoritm :
(2}

L ~ ~ (1) (n=1)
det M = det ¥ M= M11M22 M33 ...Hnn .

where w{}) = u{§~ w0 @l Ty g
k=1,2,...,0-1 , Since 211 the blocke commute, we see that N 1is
the same po%ynomial function of variablee Mij as d{m)} of mij'
i.e.,that K=d4(M) . Notice that this is true even if some

Iéi'I) is singular (by the £-trick : cf, proof of Proposition 4 ).
Further {23b) is equivalent to the relation

n 14§ 1,..,3=1,3+1,..,n
j% (=1} l[T,..,i-—-l,iH,..,nJ My = ‘511: a(M)

which followe similarly from the analogous equality for the mat-

rix m. - |

Using this lemms, the needed blocks of H;1 are eagslily cal-
culated, giving thus

=-1/2 -1
(SEp)(x) = (aev[ac)]) /éd«y) axp{—iiz-x.d(ﬁn) [ace, -

1 (24}

-am)]x - % y.a00) a(k, )y + ily.d(lﬂn)-“x } ,

where K .= n_1(5) is the abbreviation for the lower-right
(n=1)d x (n=-1)d submatrix of ln . The "block determinants" under
consideration obey the following relations

A = (1-80dak,_ ) —ak, ) (258)
HE, 4) = 2D-F02)E ) -dE, ) . (25b)

One can verify directly that the recursive relation (25b) is sol-
ved by

oy § [ n+1\,. 2y
W) = Z =) (o5d) do® (26)
substituting it into (25a), we get
. ‘
J (n+j 2]
d(M_) = (-1) (@) . (27
¥y jzb (2J )

l6



Let a6 turn now to the limits. Assume first gd(Kn“](ﬁ)) with

g = t/n : this sum converges (because jt is finite), however, one
must verify that it converges uniformly with respect to n . It
holds

t t. . o1 7 _(=1)d 23+
X ak, G = 2 %0 2177 Ong (28 ,
where Cyy :kst (1 ~k%n~?) g0 that OSanSI for sll n,j , and
therefore the convergence is uniform. Thus we have
4 t ~1
lim < ¢ =) = 7 sinflt (28)
nweo B Kn-l n 4
giwilarly one obtains
1lim d(Mn(g)) =z cos dlt , (29)
nroo .
1n 2 [aoe_,$n-aogEn] = Rem s . (30)
n-+so £ -1"n n

These relations together with (24),(17b),(18) and the matrix func-
tional-calculus rules give

t
1im (8.} {x) = {V, e} (T} {31}
i Caf +f

d 2. .d . t, _
for re.}"(ﬂ yNL°(&%) . On the other hend, lim 5 ¢ -exp(-—th),a

n-rec n

for these P due to (20) so that there exiets = subseguence
{S;lf} which converges to exp(-1Ht) pointwise 8.e. in ﬁd .

Coneequently, we have
Vip = exp(~iHt) ¥ | (32}

for all p e ?(Rd)ﬂLg(Rd) . This set is, however, dense in 12(&%)
{containing, e.g.» f(Rd) ) and the operators V., exp(-1Ht) sare
bounded due to Proposition 5 and Theorem 1, respectively, thus
{32) holds for each ¥ ELz(md) to0 and the proof of Theorem 2

is finished.
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