

сообщвния OбъEAMHEHHOFO института
Ядерных исследований

дубна
5678
$|2-8|$
$23 / 4-81$
E2-81-608

P.Exner

COMPLEX-POTENTIAL DESCRIPTION OF THE DAMPED HARMONIC OSCILLATOR.
I. The Propagator

1. Introduction

There is a large number of problems ranging from elenentary particies to atatistical physics, in which the considered syatems mre diasipative (cf.,e.g. ; $1-5]$). The dynamics in such cases can be rarely described fully, including interaction with the heat reservoir (decay producte, compound nucieus channel, etc.), usually one is forced to exprese influence of these degrees of freedom by means of phenomenological Lagrangians or familtonians. They can be conntructed in different ways: as time-dependent, non-linear (e.g., $[3,6]$) or non-selfadjoint, in particular Hamiltonians with complex potentials are popalar in practical calculations in nuclear physics.

Recently we have shown how to incorporate description of a diasipative system S via a phenomenological non-selfadjoint Hamiltonian H into the standard quantum-theoretical franework[7]. If H is closed and in generates a continuous contractive eemigroup (auch operators we called pagudo-Haniltoniang), then by i nimal unitary dilation of this senigroup we obtain objects which are naturally interpretable as the state Hilbert bystem of a larger isolated sybten Σ containing 8 and the unitary evolution group of Σ. The well-known difficulty with epectrun of the corresponding total Hamiltonian (see $[4,8]$ and references therein) means that the semigroup evolution of S is necesaarily approximative [7], however, this epproximation is good enough for a lot of applicatione $[9,10]$.

In the present paper, we apply the pseudo-Haniltonian approach to the case of multidimensional barmonic oscillator with damping. There are, of course, many poseibilities how to choose H; some complex atructures have been already otudied [Tt]. We shall

[^0]use the most natural choice $H=-\frac{1}{2} \Delta+x \cdot(A-i W) x$, where A, T are strictly positive matrices (strict positivity of A is assumed for convenience, in fact, the proofs can be carried out for positive A as well). We assume neither a time-dependent frequendy [6], nor any driving force, stochastic or not $[6,12]$. On the other hand, we assume oscillators of an arbitrary dimension d; the generalization to the $d>1$ case $1 s$ nontrivial, because A, need not be simultaneously diagonalizable. This multidimensionality together with the special choice of H could be of some interest for the old problem of constructing a field theory with basic quanta metastable.

One has to check first that our H is a peado-Hamiltonian in the sense of the above definition. If the damping part could be regarded as a perturbation to the undamped oscillator, the Kato-Rellich type lemma would be applicable. In general, however, this 18 not so. Thus we use a trick based on a successive applicatron of the leman ; this trick night appear to be useful for some eelf-adjointnes: proofs too.

The main result of the paper is an explicit integral-operator expression of the evolution semigroup corresponding to H . After some preliminaries, we prove it in Secs.5,6. The method is based on Peyman-type path integrals in the sense of Nelson, ie., delined by Lie-Trotter formula $[13,14]$. The same result, however, 18 obtained with some other definitions of the path integral, for instance that one of Truman [15,16] or that using the "uniform" Trotter formula [17].

The obtained results will be discussed in the second part of this paper [18]. For the sake of simplicity, we shall limit ourselvest there essentially to the one-dimensional case. The discussion will concern the problems of non-damped and classical limits, further we shall find the point spectrum of H.

2. Some notation and conventions

$Q^{2}=\sum_{j=1}^{d} Q_{j}^{2} \quad$, where $\quad\left(Q_{j} \psi\right)(x)=x_{j} \psi(x)$,
$P^{2}=\sum_{j=1}^{d} P_{j}^{2}=-\Delta$, where $P_{j}=F_{d}^{-1} Q_{j} P_{d}$ and P_{d} is the d-dimen-
$v_{1}(x)=x \cdot A x, v_{2}(x)=x \cdot W x$, where A, \bar{x} are real positive dxd matrices (more exactly, positive symmetric operators on \mathbb{R}^{d}) and $V(x)=v_{1}(x)-1 v_{2}(x)=x \cdot B x$,
$\nabla_{1}:\left(V_{i} \psi\right)(x)=\nabla_{i}(x) \psi(x) \quad, \quad V=V_{1}-i V_{2}$,
$H_{1}=\frac{1}{2} P^{2}+V_{1}$,
$\mathrm{H}_{2}=\mathrm{H}_{1} \uparrow \varphi\left(\mathbb{R}^{\mathrm{d}}\right), \mathrm{H}_{3}=\mathrm{H}_{2}-i \mathrm{~V}_{2}=\mathrm{H} \upharpoonright \varphi\left(\mathrm{R}^{\mathrm{d}}\right)$,
$\mathrm{H}=\mathrm{H}_{1}-i \mathrm{~V}_{2}=\frac{1}{2} \mathrm{P}^{2}+\mathrm{V} \quad$,
$m(H) \quad$ is the set of all (finite) complex Borel measures on a real separable Hilbert apace \mathcal{H},
$\mathcal{F}(X) \quad$ is the set of functions $f: f(\gamma)=\int_{\gamma} \exp \left(1\left(\gamma, \gamma^{\prime}\right)\right) d \mu\left(\gamma^{\prime}\right)$, where $\mu \in \mathscr{M}(\mathscr{H})$ and (.,.) is the inner product of \mathscr{H}.
In what follows, square roots of complex numbers and matrices will appear frequently. It is useful to make an overal choice of the branch : we prefer to work with $\left(e^{i \varphi}\right)^{1 / 2}=\exp \left(\frac{1}{2} i \varphi\right)$, $0 \leqslant \varphi<$ $<2 \pi$. There is a particular case which should be mentioned : when complex frequencies are considered, it is more natural to have their real parts positive, at least from the viewpoint of non-damped Iimit. We shall use therefore $\Omega=-(2 B)^{1 / 2}$ with the square root understood in the above sense.

3. The pseudo-Hamiltonian property of H

As mentioned above, throughout this section we assume the matrices A, to be strictly positive (as operators on \mathbb{R}^{d}). The eigenvalues of A are $\alpha_{j}, j=1, \ldots, d$, so $\alpha \equiv \min _{1 \leqslant j \leqslant d} \alpha_{j}>0$.
The inequalities

$$
\alpha^{2}\left\|Q^{2} \psi\right\|^{2} \leqslant\left\|V_{i} \psi\right\|^{2}=\sum_{j, k=1}^{d} \alpha_{j} \alpha_{k}\left\|Q_{j} Q_{k} \psi\right\|^{2} \leqslant\|\Delta\|^{2}\left\|Q^{2} \psi\right\|^{2}
$$

show that $D\left(\nabla_{1}\right)=D\left(Q^{2}\right)$, analogously $D\left(\nabla_{2}\right)=D\left(Q^{2}\right)$, i.e.,

$$
\begin{equation*}
D(H)=D\left(H_{1}\right)=D\left(P^{2}\right) \cap D\left(Q^{2}\right) \tag{1}
\end{equation*}
$$

Proposition : : H, is self-adjoint.

Proof : We notice first that H_{2} is e.s.a. due to existence of a complete set of eigenvectors $C \mathcal{\rho}\left(\mathbb{R}^{d}\right)$. Both P^{2} and V_{1} are selfadjoint and therefore closed so that $H_{1} \subset \bar{H}_{2}$. In order to prove the opposite inclusion we shall verify that there is $b>0$ such that

$$
\begin{equation*}
\frac{1}{4}\left\|\mathrm{P}^{2} \psi\right\|^{2}+\left\|v_{1} \psi\right\|^{2} \leq\left\|\mathrm{H}_{2} \psi\right\|^{2}+\mathrm{b}\|\psi\|^{2} \quad, \psi \in \varphi\left(\mathbb{R}^{\mathrm{d}}\right) \quad . \tag{2}
\end{equation*}
$$

We have $\left(P_{i} \psi\right)(x)=-i \partial \psi(x) / \partial x_{1}$ for these ψ, i.e.,

$$
\begin{equation*}
\left(\left(P_{f} Q_{k}-Q_{k} P_{j}\right) \psi\right)(x)=-i \delta_{j k} \psi(x) \quad, \psi \in \varphi\left(\mathbb{R}^{d}\right) \tag{3}
\end{equation*}
$$

We choose a basis in R^{d} so that A is diagonal, then

$$
\left(\psi,\left(P^{2} V_{i}+V_{1} P^{2}\right) \psi\right) \geqslant \sum_{j=1}^{\mathrm{a}} \alpha_{j}\left(\psi,\left(P_{j}^{2} Q_{j}^{2}+Q_{j}^{2} P_{j}^{2}\right) \psi\right),
$$

because $\left(\psi, p_{j}^{2} Q_{k}^{2} \psi\right) \geqslant 0$ for $j \notin k$ due to the relations (3), which further imply

$$
\left(\psi,\left(P^{2} \nabla_{j}+\nabla_{i} P^{2}\right) \psi\right) \geqslant \frac{1}{2} \sum_{j=1}^{d} \alpha_{j}\left\|\left(P_{j}^{2} Q_{j}^{2}+Q_{j}^{2} P_{j}^{2}\right) \psi\right\|^{2}-\frac{3}{2}\|\psi\|^{2} \operatorname{rr} A
$$

Thus (2) holds if $b \geqslant \frac{3}{4} T r$ A. Assume now $\psi \in D\left(\bar{H}_{2}\right)$. If $\left\{\psi_{n}\right\}$ is a sequence $\subset \mathscr{P}\left(R^{d}\right), \psi_{n} \rightarrow \psi$, then $\left\{H_{2} \psi_{n}\right\}$ converges too, 1.e., $\left\|H_{2} \psi_{n}-H_{2} \psi_{m}\right\| \rightarrow 0$ with $n, m \rightarrow \infty$. The inequality (2) shows that also $\left\{\mathrm{P}^{2} \psi_{n}\right\}$ and $\left\{V_{1} \psi_{n}\right\}$ converge, however, both p^{2}, V_{1} are closed and $\mathscr{f}\left(R^{d}\right) \subset D\left(P^{2}\right) \cap D\left(V_{1}\right)$ so that $\psi \in D\left(P^{2}\right) \cap D\left(V_{1}\right)=D\left(H_{1}\right)$.

The paeudo-Hamiltonian property of H will be proved below by successive applications of the following perturbative lemma (cf. [7]; [14], sec. X. 8) :

Proposition 2 : Let G be a densely defined closable operator on Hilbert space \mathcal{H} such that \bar{G} is a pseudo-Hamilitonian.
Let further C be closed and accretive, $D(C) \supset D(G)$, and assume that there exist non-negative $a<1$, b such that
$\|C \psi\|^{2} \leqslant a^{2}\|G \psi\|^{2}+b^{2}\|\psi\|^{2} \quad, \quad \psi \in D(G) \quad$.
Then $D(\bar{G}) \subset D(C)$ and the operator $\bar{G}-i C$ defined on $D(\bar{G})$ is closed and belongs to the class of peeudo-Hamiltonians.

One must exhibit conditions under which (4) is fulfilled in the case under consideration :

Proposition $3:(a)$ Let $b^{2} \leqslant \frac{1}{2} \alpha\|W\|^{-1}$, then there is a positive c such that

$$
\begin{equation*}
\left\|b V_{2} \psi\right\|^{2} \leq \frac{1}{2}\left\|H_{1} \psi\right\|^{2}+c\|\psi\|^{2} \quad, \psi \in \varphi\left(\mathbb{R}^{d}\right) \tag{5a}
\end{equation*}
$$

(b) Let $a>0$ and $b^{2} \leqslant \frac{1}{2} a^{2}$, then there is a positive c such that

$$
\begin{equation*}
\left\|b V_{2} \psi\right\|^{2} \leqslant \frac{1}{2}\left\|\left(H_{4}-i a V_{2}\right) \psi\right\|^{2}+c\|\psi\|^{2}, \psi \in \mathcal{f}\left(\mathbb{R}^{d}\right) \tag{5b}
\end{equation*}
$$

Proof : We have to find c for which

$$
I \equiv\left(\psi,\left(\frac{1}{2}\left(H_{1}+i a V_{2}\right)\left(H_{1}-i a V_{2}\right)-b V_{2}^{2}+c\right) \psi\right)
$$

$1 s$ non-negative independently of $\psi \in \mathcal{P}\left(R^{d}\right)$. We choose again a basis in \mathbb{R}^{d} so that A is diagonal and denote by $W_{j k}$ the corresponding matrix elements of W. Expressing $\left(V_{2} \mathrm{P}^{2}-\mathrm{P}^{2} V_{2}\right) \psi$ and $\left(V_{1} P^{2}+P^{2} V_{1}\right) \psi$ from (3) and omitting the positive term $\frac{1}{8}\left(\psi, \mathrm{P}^{4} \psi\right)$, we obtain

$$
\begin{aligned}
& I \geqslant\left(\psi,\left[\frac{1}{8} \sum_{j=1}^{d} \alpha_{j}\left(P_{k} Q_{j}+Q_{j} P_{k}\right)^{2}-\frac{3}{8} \operatorname{Tr} A+\frac{1}{2}\left(\sum_{j=1}^{d} \alpha_{j} Q_{j}\right)^{2}+\right.\right. \\
& \left.\left.+\left(\frac{1}{2} a^{2}-b^{2}\right)\left(\sum_{j, k=1}^{d} W_{j k} Q_{j} Q_{k}\right)^{2}-\frac{a}{4} \sum_{j, k=1}^{d}{ }_{j k}\left(P_{k} Q_{j}+Q_{j} P_{k}\right)+c\right] \psi\right) .
\end{aligned}
$$

Assume first $a=0$ and $b^{2} \leqslant \frac{1}{2} \alpha\|W\|^{-1}$, then the last inequality yields

$$
I \geqslant\left(\psi,\left[c-\frac{3}{8} \operatorname{Tr} A+\left(\frac{1}{2} \alpha-b^{2}\|W\|\right) Q^{2}\right] \psi\right) \geqslant\left(c-\frac{3}{8} \operatorname{Tr} A\right)\|\psi\|^{2}
$$

so that (5a) holds if $c \geqslant \frac{3}{8}$ ir A. On the other hand, if $a^{2} \geqslant 2 b^{2}$, then

$$
\begin{aligned}
I \geqslant & \left(\psi,\left[\sum_{j, k=1}^{d}\left(8 \alpha_{j}\right)^{-1}\left(\alpha_{j}\left(P_{k} Q_{j}+Q_{j} P_{k}\right)-a \nabla_{j k}\right)^{2}-\right.\right. \\
& \left.\left.-\frac{1}{8} a^{2} \sum_{j, k=1}^{d} \alpha_{j}^{-2} w_{j k}^{2}+c-\frac{3}{8} \operatorname{Tr} A\right] \psi\right)
\end{aligned}
$$

and therefore (5b) holds if $c \geqslant \frac{3}{8} \operatorname{TrA}+\frac{1}{8} a^{2} \sum_{j, k=1}^{d} \alpha_{j}^{-2} w_{j k}^{2}$.

Combining now the above three auxiliary statemente, we can prove the main result of this section :

Theorem 1 : Let A, be strictiy positive so that (1) holds, then H is closed and belongs to the class of peeudo-Hamiltonians. Moreover, $\varphi\left(\mathbb{R}^{d}\right)$ is a core for H, i.e., $H=\bar{H}_{3}$.

Proof : (a) If $\alpha \geqslant 2 \mid W \|$, then there is $c>0$ such that (5a) with $b=1$ holds. The operator V_{2} is positive, and therefore accretive, $D\left(V_{2}\right) \supset D\left(H_{1}\right)$ and $H_{1}=\bar{H}_{2}$ is a pseudo-Hamiltonian due to Proposition 1. Applying then Proposition 2 to $G=H_{2}$, $\mathrm{C}=\mathrm{V}_{2}$ we see that for $\mathrm{H}=\mathrm{H}_{1}-i \mathrm{~V}_{2}$ the assertion is valid. (b) If $\alpha<2\| \|_{\|}$we choose k positive, $2 \| w k^{2} \leqslant \alpha$, and n natural so that

$$
x\left(1+2^{-1 / 2}\right)^{n-1}=1 .
$$

The same argument as above shows that the operator $H_{1}-1 k \nabla_{2}$ with the domain $D\left(K_{1}\right)$ is closed and belongs to the pseudo-familtonian class. Moreover, this operator equals $\overline{\mathrm{H}_{2}-1 k \nabla_{2}}$: obviously $\overline{H_{2}-1 K V_{2}} \subset H_{1}-i k V_{2}$; on the other hand, for on serbitrary $\varphi \in D\left(H_{1}\right)$ and a sequence $\left\{\varphi_{n}\right\} \subset \varphi\left(R^{d}\right), \varphi_{n} \rightarrow \varphi$, we have $\left(H_{2}-i k V_{2}\right) \varphi_{n}=$ $=H_{1} \varphi_{n}-1 k \nabla_{2} \varphi_{n}$ so that $\varphi \in D\left(\overline{H_{2}-1 k V_{2}}\right)$.
(c) The proof ia completed by induction : assume that the assertion holds for $H_{1 j}=\bar{H}_{2 j}$, where $H_{8 j}=H_{g}-1 k\left(1+2^{-1 / 2}\right)^{j-1} V_{2}$. The assurption of Proposition $3(b)$ is fulfilled for $a * 2^{1 / 2} b=$ $=k\left(1+2^{-1 / 2}\right)^{j-1}$, thus (5b) together with Proposition 2 imply that the assertion holds for

$$
H_{i j}-i k 2^{-1 / 2}\left(1+2^{-1 / 2}\right)^{j-1}=H_{1, j+1}
$$

as well. In the same way as above one proves $H_{1, j+1}=\bar{H}_{2, j+1}$. Since the assertion 1a valid for $H_{11}=\bar{H}_{21}$ due to (b), the same is true for $H_{1 j}$ corresponding to any natural j, in particular for $H_{1 n}=\tilde{H}_{2 n}$ which equala $H=\vec{H}_{3}$ in view of ($(\dot{*})$.

4. An auxiliary integral formula

In the next section, the following integral will be useful

$$
\begin{equation*}
I_{\mathbb{N}}(\mathbf{M},)=\int_{\mathbf{R}^{\mathbb{N}}} \exp \left\{\frac{i}{2} \xi \cdot \mathbf{M} \xi+1 \xi \cdot \eta\right\} \mathrm{d} \xi \tag{6}
\end{equation*}
$$

where M is a symmetric $N \times N$ matrix the imaginary part of which is assumed strictly positive, Im ξ. M $\}>0$ for each non-zero $\xi \in \mathbb{R}^{N}$, and η is a complex vector, $\eta=\eta^{(1)}+i \eta^{(2)}$ with $\eta^{(i)} \in \mathbb{R}^{N}$.

The quadratic form $\xi \longrightarrow \xi, M \xi_{m}$ can be "diagonalized", 1.e., there exists S such that $M=S^{T} S$, further M is regular due to the assumption so the same is true for S. Completing now to the full square in the exponent, one obtains

$$
\begin{align*}
& I_{N}(M, \eta)=\exp \left\{-\frac{1}{2} \eta \cdot M^{-1} \eta\right\} J_{N}(M, \eta) \tag{7}\\
& J_{N}(M, \eta)=\int_{R^{N}} \exp \left\{\frac{1}{2}\left[S\left(\xi+M^{-1} \eta\right)\right]^{2}\right\} d \xi \tag{8}
\end{align*}
$$

the last integral can be easily seen to exist due to the assumed strict positivity of $I m$. Notice that in the case of real M, η the integrals (6),(8) exist in the improper sense only, but the evaluation of $J_{N}(H, \eta)$ is not complicated : (a) translational invariance of $d \xi$ implies its independence. of η and (b) the substitution of $\xi^{\prime}=S \xi$ into $J_{N}(1,0)$ gives

$$
\begin{equation*}
J_{N}(M, \eta)=(2 \pi i)^{N / 2}(\operatorname{det} M)^{-1 / 2} \tag{9}
\end{equation*}
$$

None of these tricks is applicable in the case of complex M even if η is real. Hevertheless, the relation (9) remains valid as shown below :

Proposition 4 : If M is gymmetric with otrictly positive imeginary part, then the integral (6) is given by (7)-(9).

In order to evaluate the integral (8), let us first verify that the η-independence is preserved in the complex case :
Lempa 4.1 : $J_{N}(M, \eta)=J_{N}(M, 0)$ for each $\eta \in \boldsymbol{N}^{N}$.
Progi : We introduce the function $K: c^{N} \rightarrow c$ by

$$
\mathbf{K}(\xi)=J_{\mathbb{N}}(\mathbf{M}, \mathbf{M} \xi)-J_{\mathbf{N}}(M, 0)=\int_{\mathbb{R}^{N}} \exp \left\{\frac{1}{2}(S(\xi+\xi))^{2}\right\} d \xi-J_{\mathbf{N}}(\mathbf{M}, 0) .
$$

For each j, the function $h_{j}(0)=K\left(\xi_{1}, \ldots, \xi_{j-1}, *, \xi_{j+1}, \ldots, \xi_{N}\right)$
with $\oint_{1}, \ldots, \xi_{j-1} \cdot \oint_{j+1}, \ldots, \oint_{N}$ fixed is hoiomorphic in c,

$$
h_{j}^{\prime}\left(\xi_{j}\right)=1 \int_{\mathbb{R}^{\mathbb{N}}}(M(\xi+\xi))_{j} \exp \frac{1}{2}(S(\xi+\xi))^{2} d \xi \quad,
$$

and therefore K is holomorphic in \mathbb{C}^{N} due to the besic theorem of Hartogs ($[19]$, § 2.11.2). Translational invariance of the Lebesgue measure implies $K(\xi)=0$ for all $\xi \in \mathbb{R}^{\mathbb{N}}$, then $K(\xi)=0$ for each $\xi \in \mathbb{C}^{\mathbb{N}}$ too ([19], $\oint 2.11 .3$). Since M is regular due to the essumption, the assertion follows.

The rest of the proof consists of evaluating $\mathrm{J}_{\mathrm{N}}(\mathrm{M}, 0)=$ $=I_{N}(M, 0)$. To this purpose, some recursive relations for minors of x are useful. Let us denote
for $f=m, m+1, \ldots, N$, in particular, $\Delta_{m} \equiv \Delta(m, m)$ is the m-th principal minor of .

Lemmat 4.2: Let $\Delta_{m}, m=1, \ldots, N$, be non-zero and set $\Delta_{0}=1$,
then
$\mathbf{m}_{j, k+1}-\sum_{m=1}^{k} \frac{\Delta(m, j) \Delta(m, k+1)}{\Delta_{m-1} \Delta_{\text {l }}}=\frac{\Delta(k+1, j)}{\Delta_{k}}$
holds for $j=k+1, k+2, \ldots$, K .
Proof : Since \mathbf{x} is symmetric matrix of rank \mathbb{N}, it can be expressed as $K=B B^{T}$, where B is the following lower-triangular matrix (cp. [20], § It.4) :

$$
B_{j m}=\left(\Delta_{m-1} \Delta_{m}\right)^{-1 / 2} \Delta(m, j) \quad, \quad m=1, \ldots, N, j=m, m+1, \ldots, N .
$$

Substituting into the lhe of (11), we obtain

$$
\begin{gathered}
\mathbf{M}_{j, k+1}-\sum_{m=1}^{k} B_{j m} B_{k+1, m}=M_{j, k+1}-\sum_{m=1}^{k+1} B_{j m}\left(B^{T}\right)_{m, k+1}+ \\
+B_{j, k+1} B_{k+1, k+1}=\Delta(k+1, j) / \Delta_{k} .
\end{gathered}
$$

Now we are ready to prove that

$$
\begin{equation*}
I_{N}(M, 0)=\int_{\mathbb{R}^{N}} \exp \left\{\frac{1}{2} \sum_{j, l=i}^{N} M_{j \lambda} \xi_{j} \xi_{l}\right\} d \xi_{1} \ldots d \xi_{N} \tag{t}
\end{equation*}
$$

is expressed by（9）．This is true for $N=1$（cf．［21］，3．923）， i．e．，one has

$$
\begin{equation*}
\int_{\mathbb{R}} \exp \left\{\frac{1}{2} c \xi^{2}+i b \xi\right\} d \xi=\left(\frac{2 \pi i}{c}\right)^{-1 / 2} \exp \left(-\frac{i}{2 c} b^{2}\right) \tag{媇}
\end{equation*}
$$

for $\mathrm{Im} c>0$ ．If $\mathrm{N}>1$ ，we perform the integration in（ \mathbf{t} ）auc－ cessively using（tit）：we integrate first，say，over ξ_{1} ，then over ξ_{2} ，etc．Let us assume that the k－th integration gives

$$
\begin{aligned}
I_{N}(M, 0)= & (2 \pi i)^{k / 2}\left(\Delta_{k}\right)^{-1 / 2} \int_{N}^{N-k} d \xi_{k+1} \cdots d \xi_{N} \exp \left\{\frac{i}{2} \sum_{j, i=k+1}^{N} M_{j l} \xi_{j} \xi_{1}-\right. \\
& \left.-\frac{i}{2} \sum_{m=1}^{k}\left(\Delta_{m-1} \Delta_{m}\right)^{-1}\left(\sum_{j=k+1}^{N} \xi_{j} \Delta(m, j)\right)^{2}\right\} .
\end{aligned}
$$

Now one has to separate terms in the exponent containing the se－ cond，first and zero power of ξ_{k+1} ，and to integrate over it using（＊＊）；this leads to

$$
\begin{aligned}
I_{N}(M, 0) & =(2 \pi i)^{(k+1) / 2}\left[\Delta_{k}\left(M_{k+1, k+1}-\sum_{m=1}^{k} \frac{(\Delta(m, k+1))^{2}}{\Delta_{m-1} \Delta_{m}}\right)\right]^{-1 / 2} \cdot \\
& \cdot \int_{\mathbb{R}} \quad{ }^{N-k+1} d \xi_{k+2} \cdots d \xi_{N} \exp \left\{\frac{1}{2} \sum_{j, l=k+2}^{N} M_{j 1} \xi_{j} \xi_{1}-\frac{1}{2} \sum_{m=1}^{k}\left(\Delta_{m-1} \Delta_{m}\right)^{-1} \cdot\right. \\
& \left.\cdot\left(\sum_{j=k+2}^{N} \xi_{j} \Delta(m, j)\right)^{2}\right\} \exp \left\{-\frac{1}{2}\left(M_{k+1, k+1}-\sum_{m=1}^{N} \frac{(\Delta(m, k+1))^{2}}{\Delta_{m-1} \Delta_{m}}\right)^{-1}\right. \\
& \left.\cdot \sum_{j=k+2}^{N} \xi_{j}\left(M_{j, k+1}-\sum_{m=1}^{k} \frac{\Delta(m, j) \Delta(m, k+1)}{\Delta_{m-1} \Delta_{m}}\right)^{2}\right\}
\end{aligned}
$$

Since M is regular，its determinant is non－zero．Assume for a moment that the same is true for all principal minors，then the last expression simplifies by Lemma 4.2 and gives（站立）with k replaced by $k+1$ ．Consequently，if（苙立）holds for $k=0,1, \ldots$ \ldots, k_{0} ，it holds for $k=k_{0}+1$ as well．In particular，（ $\boldsymbol{m}_{\mathrm{k}}$ ）holds for $k=N-1$ ；performing the last integration in the same way as above we get（ 9 ）because $\Delta_{N}=\operatorname{det} M$ ．Finally if some of the
principal minors are zero, then we replace M by $M_{\varepsilon}=M+\varepsilon I$. The above considerations are applicable to all but finite number of ε 's , further $\lim _{\varepsilon \rightarrow 0} I_{N}\left(M_{\varepsilon}, \eta\right)=I_{N}(M, \eta)$ by the dominated convergence theorem, and therefore the assertion of Proposition 4 holds in this case too.

5. The propagator

The continuous contractive semigroup corresponding to our pseado-Hamiltonian H can be expressed explicitly. This is the content of the following theorem, which shall be proved in the next section :

Theorem 2 : Let A, W be strictiy positive and denote $\Omega=$ $=-(2 B)^{1 / 2}, B=A-i W$. Then for each $t \geqslant 0$, $\exp (-i H t)=V_{t}$, where $\left\{\nabla_{t}: t \geqslant 0\right\}$ is a contractive semigroup which acts on an arbitrary $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ according to the relations

$$
\begin{align*}
\left(V_{t} \varphi\right)(x)= & \int_{R^{d}} G_{t}(x, y) \varphi(y) d y, t>0, \tag{128}\\
G_{t}(x, y)= & (2 \pi i)^{-d / 2}\left(\operatorname{det}\left(\Omega^{-1} \sin \Omega t\right)\right)^{-1 / 2} \exp \left\{\frac{1}{2}[x \cdot(\Omega \operatorname{ctg} \Omega t) x+\right. \\
& +y \cdot(\Omega \operatorname{ctg} \Omega t) y]-i y \cdot(\Omega \operatorname{cosec} \Omega t) x\} . \tag{12b}
\end{align*}
$$

One has to verify first that (12) makes sense :
Lemma 5.1 : Let A be positive, strictiy positive, $t>0$,
then Ω is regular and the real quadratic forms
$x \mapsto-\operatorname{Im} x \cdot\left(\Omega^{-1} \operatorname{tg} \Omega t\right) x, \quad x \mapsto-\operatorname{Im} x \cdot(\Omega \operatorname{tg} \Omega t) x$ and
$x \mapsto \operatorname{Im} x \cdot(\Omega \operatorname{ctg} \Omega t) x$ are strictiy positive (positively definite in the algebraic terminology -cf. (20]).

Proof : Suppose first $d=1$. We have $3 \pi / 2 \leqslant \arg B<2 \pi$ due to the assumption so that $0<-\Omega_{2} \leqslant \Omega_{1}$ holds for $\Omega_{2}=\Omega_{1}+1 \Omega_{2}$. Then

$$
-\operatorname{Im} \Omega^{-1} \operatorname{tg} \Omega_{t}=C\left(\Omega_{2} \operatorname{tg} \Omega_{1} t \mathrm{ch}^{-2} \Omega_{2} t-\Omega_{1} \operatorname{th} \Omega_{2} t \cos ^{-2} \Omega_{1} t\right)
$$

where $c^{-1}=|\Omega|^{2}\left|1-i \operatorname{tg} \Omega_{1} t \operatorname{th} \Omega_{2} t\right|^{2}>0$. We abbreviate $\alpha_{1}=$ $=2 \Omega_{1} t, x_{2}=-2 \Omega_{2} t$: they are both positive, and therefore the
inequalities $\alpha_{1}^{-1} \sin \alpha_{1}<1<\alpha_{2}^{-1} \operatorname{sh} \alpha_{2}$ imply

$$
\begin{align*}
& -\operatorname{Im} \Omega^{-1} \operatorname{tg} \Omega t=C\left(4 t \cos 2\left(\frac{1}{2} \alpha_{1}\right) \operatorname{ch}^{2}\left(\frac{1}{2} \alpha_{2}\right)\right)^{-1}\left(\alpha_{1} \operatorname{sh} \alpha_{2}-\alpha_{2} \sin \alpha_{1}\right)>0, \tag{13a}\\
& \operatorname{Im} \Omega \operatorname{ctg} \Omega t=-\left|\Omega^{-1} \operatorname{tg} \Omega t\right|^{-2} \operatorname{In} \Omega^{-1} \operatorname{tg} \Omega t>0 . \tag{13b}
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
-\operatorname{Im} \Omega t g \Omega t>0 \tag{13c}
\end{equation*}
$$

Let further $d>1$. Regularity of Ω is obvious $:|\Omega x|^{2}=x \cdot \Omega^{T} \Omega x=$ $=2 x \cdot B x \neq 0$ for non-zero $x \in \mathbb{R}^{d}$, because Ω is symmetric (as a function of symmetric B) and is strictiy positive. A real quadratic form fs strictily positive, if all eigenvalues of its matrix are positive ($[20], \oint \times .5)$. They are equal to $-\mathrm{Im} \omega_{j}^{-1} \mathrm{tg} \omega_{j} t$ in the first case ($[20], \oint \forall .1$), where ω_{j} are eigenvalues of Ω. Further each eigenvalue $\beta_{j}=\frac{1}{2} \omega_{j}^{2}$ of B fulfils Im $\beta_{j}<0$, otherwise a nonzero $x_{j_{0}}$ would exist such that $x_{j_{0}} \cdot{ }^{*} x_{j_{0}}=$ $=-$ Im $\beta_{j_{0}}\left|x_{j_{0}}\right|^{2} \leqslant 0$ in contradiction with the assumption. Thus (13a) givea $-\mathrm{Im} \omega_{j}^{-1} \operatorname{tg} \omega_{j} t>0$ for all J, and analogousiy (13 b , c) apply to the other two forms.

Lequa 5.2 : Let A, \bar{N} be as in Lemma 5.1 , then $\operatorname{det}\left(\Omega^{-1} \sin \Omega t\right)$ and $\operatorname{det}(\cos \Omega t)$ are non-zero for each $t>0$.

Proof : It is sufficient to check that all eigenvalues of both the matrices are non-zero : they equal $\omega_{j}^{-t} \sin \omega_{j} t$ and $\cos \omega_{j} t$, $j=1, \ldots, d$, respectively. Further Im $\beta_{j}<0$ implies Im $\omega_{j} \neq 0$, but sin and cos have no zeros outaide the real axis.

Propolition 5 : Let A, be as in Lema 5.1 , let further V_{t} be given by (12) and $V_{0}=I$. Then $\left\{V_{t}: t \geqslant 0\right\}$ is a semigroup of bounded operators on $L^{2}\left(R^{d}\right)$.

Eroof : According to Lemman 5.1 there exist positive c_{1}, c_{2} (depending on t) such that

$$
\begin{equation*}
\left|G_{t}(x, y)\right| \leqslant c_{1} \exp \left(-c_{2}\left(x^{2}+y^{2}\right)\right) \tag{14}
\end{equation*}
$$

This inequality together with Pubini theorem implies

$$
\begin{aligned}
\left\|\nabla_{t} \varphi\right\|^{2} & \leqslant c_{1}^{2} \int_{\mathbb{R}}|\varphi(y)||\varphi(z)| \exp \left(-c_{2}\left(2 x^{2}+y^{2}+z^{2}\right)\right) d x d y d z= \\
& =c_{1}^{2}\left(\pi / 2 c_{2}\right)^{d / 2}\left(\int_{\mathbb{R}^{d}}|\varphi(y)| \exp \left(-c_{2} y^{2}\right) d y\right)^{2}
\end{aligned}
$$

so that the Schwarz inequality givea

$$
\begin{equation*}
\left\|\nabla_{t} \varphi\right\| \leqslant c_{1}\left(\pi / 2 c_{2}\right)^{d / 2}\|\varphi\| \tag{15}
\end{equation*}
$$

for each $\varphi \in L^{2}\left(R^{d}\right)$. As for the semigroup property, in view of $V_{0}=I$ and of (14) it is supficient to verify

$$
\begin{equation*}
G_{t_{1}+t_{2}}(x, z)=\int_{\mathbb{R}^{d}} G_{t_{2}}(x, y) G_{t_{1}}(y, z) d y \tag{16}
\end{equation*}
$$

for all $t_{1}, t_{2}>0$. The rhs of this relation equals $(2 \pi i)^{-d}\left(\operatorname{det}\left(\Omega^{-1} \sin \Omega t_{1}\right) \operatorname{det}\left(\Omega^{-1} \sin \Omega t_{2}\right)\right)^{-1 / 2} \exp \left\{\frac{1}{2}\left[x .\left(\Omega \operatorname{ctg} \Omega t_{2}\right) x+\right.\right.$ $\left.\left.+z \cdot\left(\Omega \operatorname{ctg} \Omega t_{1}\right) z\right]\right\} . I_{d}\left(\Omega\left(\operatorname{ctg} \Omega t_{1}+\operatorname{ctg} \Omega t_{2}\right),-\Omega\left(\left(\operatorname{cosec} \Omega t_{2}\right) x+\left(\operatorname{cosec} \Omega t_{1}\right) z\right)\right)$.

Applying Proposition 4 to the last integral and using det $M_{1} M_{2}=$ $=\operatorname{det} M_{1}$ det M_{2}, symmetry of the matrices involved and the matrix functional calculus rules($[20], \hat{\jmath} V .5$), we get (16).

Before proceeding further, we shall deduce a useful equivalent expression for V_{t} :

Proposition 6 : Let A, W be as in Lemma 5.1, then for all $t>0$ and $\varphi \in \mathrm{L}^{2}\left(\mathbb{R}^{\mathrm{d}}\right)$
$\left(V_{t} \varphi\right)(x)=\int_{\mathbb{R}^{d}} P_{t}(x, y)\left(F_{d} \varphi\right)(y) d y$,
$F_{t}(x, y)=(2 \pi)^{-d / 2}(\operatorname{det}(\cos \Omega t))^{-1 / 2} \exp \left\{-\frac{1}{2}[x \cdot(\Omega t g \Omega t) x+\right.$

$$
\begin{equation*}
\left.\left.+y \cdot\left(\Omega^{-1} \operatorname{tg} \Omega t\right) y\right]+i y \cdot(\sec \Omega t) x\right\}, \tag{17b}
\end{equation*}
$$

where F_{d} is the Fourier-Plancherel operator.
ㄹoof : Let first $\varphi \in \mathcal{F}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right), \varphi(x)=\int_{\mathbb{R}^{d}} e^{i x \cdot y} d \nu(y)$ with $\nu \in M\left(\mathrm{R}^{\mathrm{d}}\right)$, then (17a) can be rewritten as

$$
\begin{equation*}
\left(V_{t} \varphi\right)(x)=(2 \pi)^{d / 2} \int_{\mathbb{R}^{d}} F_{t}(x, y) d \nu(y) \tag{18}
\end{equation*}
$$

In order to prove this, we use (14) together with boundedness of $\varphi,|\varphi(x)| \leqslant|\nu|\left(\mathbb{R}^{d}\right)$. Then Fubini theorem applied to (12) gives (18) with

$$
\begin{gathered}
F_{t}(x, y)=(2 \pi)^{-d / 2} \int_{R^{d}} G_{t}(x, z) e^{1 y \cdot z} d z= \\
=\left(4 \pi^{2} 1\right)^{-d / 2}\left(\operatorname{det}\left(\Omega^{-1} \sin \Omega t\right)\right)^{-1 / 2} \exp \left\{\frac{1}{2} x \cdot(\Omega \operatorname{ctg} \Omega t) x\right\} . \\
\cdot I_{d}(\Omega \operatorname{ctg} \Omega t,-(\Omega \operatorname{cosec} \Omega t) x) .
\end{gathered}
$$

Using now Proposition 4, symmetry of the matrices involved and the matrix functional-calculus rules, we get (17b).

Let us assume further an arbitrary $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$, and construct the following sequence :

$$
\begin{aligned}
& \varphi_{n}: \varphi_{n}(x)=(2 \pi)^{-d / 2} \int_{R^{d}} e^{i x \cdot y} \hat{\varphi}_{n}(y) d y, \\
& \hat{\varphi}_{n}(y)=\left\{\begin{array}{lll}
\left(F_{d} \varphi\right)(y) & \ldots & |y| \leqslant n \\
n & \ldots \ldots & \text { and }\left|\left(F_{d} \varphi\right)(y)\right| \leqslant n \\
0 & \ldots \ldots & |y| \leqslant n
\end{array} \text { and }\left|\left(P_{d} \varphi\right)(y)\right|>n\right.
\end{aligned},
$$

Clearly $F_{d} \varphi_{n}=\hat{\varphi}_{n}$ and $\hat{\varphi}_{n} \in L\left(\mathbb{R}^{d}\right)$ so the assertion is valid for φ_{n}. The sequence $\left\{\hat{\varphi}_{n}\right\}$ converges pointwise to $F_{d} \varphi$, forther $\left|\hat{\hat{\varphi}}_{n}(y)\right| \leqslant\left|\left(F_{d} \varphi\right)(y)\right|$ and $F_{t}(x,.) \in L^{2}\left(R^{d}\right)$ so that

$$
\lim _{n \rightarrow \infty}\left(V_{t} \varphi_{n}\right)(x)=\int_{R^{d}} F_{t}(x, y)\left(F_{d} \varphi\right)(y) d y
$$

One verifies easily that $\hat{\varphi}_{n} \rightarrow F_{d} \varphi$ in the L^{2}-norm too. Since F_{d} is unitary and V_{t} is bounded due to (15), we obtain $V_{t} \varphi_{n} \rightarrow V_{t} \varphi$; then there exists a subsequence $\left\{V_{t} \varphi_{n_{k}}\right\}$ which converges to $V_{t} \varphi$ pointwise and the assertion follows from (${ }^{(1)}$).

In order to prove Theorem 2 in a straightforward way, one has to check first that the semigroup $\left\{v_{t}: t \geqslant 0\right\}$ is strongly continuous, or equivalently

$$
\begin{equation*}
\lim _{t \rightarrow 0+}\left(\psi, V_{t} \varphi\right)=(\psi, \varphi) \tag{19}
\end{equation*}
$$

for all $\psi, \varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ ([22], Th.IX.1.1). Further the generator of $\left\{V_{t}: t \geqslant 0\right\}$ must be calculated and shown to coincide with H. According to Proposition 6, (i9) is valid for $\psi, \varphi \in L^{2}\left(\mathbb{R}^{d}\right) \cap L\left(\mathbb{R}^{d}\right)$. Using further the matrix functional-calculus rules together with the relation

$$
\frac{\mathrm{d}}{\mathrm{dt}} \operatorname{det}(g(\Omega t))=\operatorname{det}(g(\Omega t)) \operatorname{Tr}\left(\Omega g^{\prime}(\Omega t)(g(\Omega t))^{-1}\right),
$$

one can verify that for $\varphi \in \mathcal{F}\left(R^{d}\right), \psi: \psi(x, t)=\left(V_{t} \varphi\right)(x)$ solves in $\mathbb{R}^{d} \times(0, \infty)$ the Schrodinger equation with the potential $\forall(x)=$ $=\frac{1}{2} x \cdot \Omega^{2} x$ and initial data φ.

The remaining part of such a proof, however, seems to be much more complicated. Instead of attempting it, we shall use the way which is opposite in some sense : to express exp(-iHt) by LieTrotter formula. This is the content of the next section.

6. exp(-iHt) by Lie-Trotter formula

We shall assume again both A, , to be atrictly positive, $t>0$, and abbreviate $S_{n}^{t}=\exp \left(-i H_{0} t\right) \exp (-i V t)$, where $H_{0}=\frac{1}{2} p^{2}$ is the free Hamiltonian. Since $1 H=i H_{0}+i V$ generates a continuous contractive semigroup due to Theorem i, LienTrotter formala for semigroup asserts

$$
\begin{equation*}
\underset{n \rightarrow \infty}{s-\lim _{n}} S_{n}^{t}=\exp (-i H t) \tag{20}
\end{equation*}
$$

(cf.[23] or [14], Th. X. 51 ; in fact we need only the special case of Ln-formula considered by Nelson[13]). Our goal is to prove that the lhs of (20) coincides with V_{t}.

Let $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$, then using the propagator corresponding to H_{0}, one can express

$$
\begin{align*}
\left(S_{n}^{t} \varphi\right)(x)= & (2 \pi i \delta)^{-n d / 2} \int_{R^{n}} \exp \left\{\frac{1}{2 \delta} \sum_{k=0}^{n-1}\left(\gamma_{k+1}-\gamma_{k}\right)^{2}-\right. \tag{21}\\
& \left.-1 \delta \sum_{k=0}^{n-1} \gamma_{k} \cdot B \gamma_{k}\right\} \varphi\left(\gamma_{0}\right) d \gamma_{0} \ldots d \gamma_{n-1}
\end{align*}
$$

([14], Secs.IX.7, X.11), where $\gamma_{n}=x$ and $\delta=t / n$. Modulus of the integrand is majorized by

$$
\left|\varphi\left(y_{0}\right)\right| \exp \left\{-\delta \sum_{k=0}^{n-1} y_{k} \cdot w_{k}\right\},
$$

thus the integral exists whenever $\varphi($.$) is bounded and the in-$ tegrations may be interchanged arbitrarily. In order to make use of Proposition 4, suppoee $\varphi \in \mathcal{F}^{\prime}\left(\mathbb{R}^{d}\right), \varphi(x)=\int_{R^{d}} e^{i x \cdot x} d \nu(y)$. Substituting then $y_{k}=\alpha_{k} \delta^{1 / 2}, k=0,1, \ldots \ldots \mathcal{R}^{d}, \ldots$, and raarranging the integral, we obtain

$$
\left(S_{n}^{t} p\right)(x)=(2 \pi i)^{-n d / 2} \int_{R^{d}} d \nu(y) \exp \left(\frac{1}{2} \delta x^{2}\right) I_{n d}\left(M_{n}, \eta\right), \quad \text { (22a) }
$$

where $\eta=\left(y \delta^{1 / 2}, 0, \ldots, 0,-x \delta^{1 / 2}\right)$ and $M_{n}=M_{n}(\delta)$ ia the nd x nd matrix
which obviously fulfils the asumptions of Proposition 4 . Further one has to calculate dat M_{n} and M_{n}^{-1} (or at least its cornex blocks). It can be accomplished, since the blocks in H_{n} commate mutually and thus can be handled ad numbers :

Lema 6.1: Let $m=\left(m_{1 j}\right)$ be a $n \times n$ matrix and $M=\left(M_{1 j}\right)$ be a nd \times nd matrix which consists of $d \times d$ blocks $M_{1 j}, 1, j=$ $=1,2, \ldots, n$. Let us denote $d(m)=D\left(m_{1}, m_{12}, \ldots, m_{n n}\right):=$ $=\operatorname{det} m$. If $\left[M_{i j}, M_{k l}\right]=0, i, j, k, 1=1, \ldots, n$, then
$\operatorname{det} M=\operatorname{det}(\operatorname{di}(M))$,
where $d(M)$ is the "block determinant" of $M, i . e .$, the $d \times d$ matrix $\mathscr{D}\left(M_{1}, M_{12}, \ldots, M_{n n}\right)$. Moreover, if M is regu2er, then
$\left(x^{-1}\right)_{1 j}=(-1)^{i+j}(d(M))^{-1} M\left[\begin{array}{l}1, \ldots, j-1, j+1, \ldots, n \\ 1, \ldots, i-1,1+1, \ldots, n\end{array}\right]$,
where M[...] is the respective "block minor" of m, 1.e., $a\left(\tilde{M}_{1 j}\right)$ with $\tilde{M}_{i j}$ obtained from M by dropping the $j-t h$ "block row" and the i-th "block column".

Proof: For $n=2$ see [20], $\oint I T .5$, in particular (23b) follows
from Frobenius formula. The determinant (23a) can be evaluated using the block variant of Gauss algoritm :

$$
\operatorname{det} M=\operatorname{det} \tilde{\mathbf{M}}, \quad \tilde{\mathbf{M}}=M_{11} M_{22}^{(1)} \mathbf{M}_{33}^{(2)} \ldots M_{n \mathbf{n}}^{(n-1)},
$$

where $u_{i j}^{(k)}=M_{i j}^{(k-1)}-M_{i k}^{(k-1)}\left(M_{k k}^{(k-1)}\right)^{-1} w_{k j}^{(k-1)}, i, j=k+1, \ldots, n$, $k=1,2, \ldots, n-1$. Since all the blocks commute, we see that \tilde{M} is the same polynomial function of variables $M_{i j}$ as $d(m)$ of $m_{i j}$, i. e., that $\tilde{\mathbf{Y}}=\mathrm{d}(\mathbb{M})$. Notice that this is true even if some $M_{\text {kk }}^{(k-1)}$ is singular (by the ε-trick : cf. proof of Proposition 4). Further (23b) is equivalent to the relation

$$
\sum_{j=1}^{n}(-1)^{i+j} \mathbf{v}\left[\begin{array}{l}
1, \ldots, j-1, j+1, \ldots, n \\
1, \ldots, i-1, i+1, \ldots, n
\end{array}\right] u_{j k}=\delta_{1 k} d(m)
$$

which follows similarly from the anelogous equality for the matrix m.

Using this lemas, the needed blocks of M_{n}^{-1} are easily calculated, giving thus

$$
\begin{align*}
& \left(S_{n}^{t} \varphi\right)(x)=\left(\operatorname{det}\left[d\left(\mu_{n}\right)\right]\right)^{-1 / 2} \int_{\mathbb{R}} d \mathcal{N}(y) \exp \left\{-\frac{1}{2 \delta} x \cdot d\left(K_{n}\right)^{-1}\left[d\left(M_{n-1}\right)-\right.\right. \\
& \left.\left.-d\left(M_{n}\right)\right] x-\frac{1 \delta}{2} y \cdot d\left({M_{n}}_{n}\right)^{-1} d\left(K_{n-1}\right) y+1 y \cdot d\left(K_{n}\right)^{-1} x\right\}, \tag{24}
\end{align*}
$$

where $K_{n-1}=K_{n-1}(\delta)$ is the abbreviation for the lower-right ($n-1$) $d \times(n-1) d$ submatrix of M_{n}. The "block determinants" under consideration obey the following relations

$$
\begin{align*}
& d\left(M_{n}\right)=\left(I-\delta^{2} \Omega^{2}\right) d\left(K_{n-1}\right)-d\left(K_{n-2}\right) \tag{25a}\\
& d\left(K_{n-1}\right)=\left(2 I-\delta^{2} \Omega^{2}\right) d\left(K_{n-2}\right)-d\left(K_{n-3}\right) \tag{25b}
\end{align*}
$$

One can verify directly that the recursive relation (25b) is solved by

$$
\begin{equation*}
d\left(k_{n-1}\right)=\sum_{j=0}^{\infty}(-1)^{j}\binom{n+j}{2 j+1}(\delta \Omega)^{2 j} ; \tag{26}
\end{equation*}
$$

substituting it into (25a), we get

$$
\begin{equation*}
d\left(u_{n}\right)=\sum_{j=0}^{\infty}(-1)^{j}\binom{n+j}{2 j}(\delta \Omega)^{2 j} \tag{27}
\end{equation*}
$$

Let us turn now to the limits. Assume first $\delta\left(\mathrm{K}_{\mathrm{n}-1}(\delta)\right)$ with $\delta=t / n$: this sum converges (because it is finite), however, one must verify that it converges uniformly with respect to n. It holds

$$
\frac{t}{n} d\left(k_{n-1}\left(\frac{t}{n}\right)\right)=\Omega^{-1} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)!} c_{n j}(\Omega t)^{2 j+1},
$$

where $c_{n j}=\prod_{k=1}^{j}\left(1-k_{n}^{2} n^{-2}\right)$ so that $0 \leqslant c_{n j} \leqslant 1$ for all n, j, and therefore the convergence is undform. Thus we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{t}{n} a\left(K_{n-1}\left(\frac{t}{n}\right)\right)=\Omega^{-1} \sin \Omega t ; \tag{28}
\end{equation*}
$$

similarly one obtains

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(M_{n}\left(\frac{t}{n}\right)\right)=\cos \Omega t, \tag{29}
\end{equation*}
$$

$$
\lim _{n \rightarrow \infty} \frac{n}{t}\left[d\left(M_{n-1}\left(\frac{t}{n}\right)\right)-d\left(M_{n}\left(\frac{t}{n}\right)\right)\right]=\Omega \sin \Omega t \text {. }
$$ tional-calculus rules give

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(S_{n}^{t} \varphi\right)(x)=\left(V_{t} \varphi\right)(x) \tag{31}
\end{equation*}
$$

for $\varphi \in \mathcal{F}\left(\mathbb{R}^{\mathrm{d}}\right) \cap \mathrm{L}^{2}\left(\mathbb{R}^{\mathrm{d}}\right)$. On the other hand, $\lim _{n \rightarrow \infty} \mathrm{~s}_{\mathrm{n}}^{\mathrm{t}} \varphi=\exp (-\mathrm{iH} t) \varphi$ for these φ due to (20) so that there exiats a subsequence $\left\{\mathrm{s}_{\mathrm{n}_{\mathrm{k}}}^{\mathrm{t}} \varphi\right\}$ which converges to $\exp (-\mathrm{H} \mathrm{H})$ pointwise a.e. in \mathbb{R}^{d}. Consequently, we have

$$
\begin{equation*}
\nabla_{t} \varphi=\exp (-i H t) \varphi \tag{32}
\end{equation*}
$$

for all $\varphi \in \mathcal{F}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right)$. This set is, however, dense in $L^{2}\left(\mathbf{R}^{d}\right)$ (containing, e.g., $\varphi\left(\mathbb{R}^{\mathrm{d}}\right)$) and the operators $\mathrm{V}_{\mathrm{t}}, \exp (-i \mathrm{H} t)$ are bounded due to Proposition 5 and Theorem 1, reapectively, thus (32) holds for each $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ too and the proof of Theorem 2 is finished.

Acknowledgement

It is a pleasure to thank Dr.G.I.Kolerov which convinced me of effectivity of path-integral methods. I am further grateful to Drs.J.Blank, L.A.Dadaghev, E.-M.Ilgenfritz and Prof.O.G.Smolianov for useful discussions and valuable comments.

References

Feynman,R.P. and Vernon,Jr.,F.L., Ann. Phys.1963, v.24, pp.118-173.
W1111ams,D.N., Commun. Math. Phys.1971, v.21, pp.314-333. Hasse,R.F., J. Math. Phys.1975, v.16, pp.2005-2011. Davies, E.B. Quantum Theory of Open Systems. Academic Press: New York, London 1975.
Yasue, K., Ann. Phys.1978, v.114, pp.479-496.
Khandekar, D.C. and Lawande,S.V., J.Math. Phys.1979, v.20, pp.1870-1877.
Blank, J., Exner, P. and Havlixek, M., Czech.J. Phys. 1979, v.B29, pp.1325-1341.
Exner, P., Commun.Math. Phys.1975, v.50, pp.1-10.
Dolejs1, J. and Exner,P., Czech.J.Phys.1977, v.B27, pp.855-862.
Exner, P., Rep. Math. Phys. 1980, v.17, pp. 价-197.
Dekker, H., Phys.Lett.1980, v.80A, pp.369-371.
Brinati,J.R. and Mizrahi,S.S., J.Math. Phys. 1980, v.21, pp.2154-2158.
Nelson, E., J.Math. Phys.1964, マ.5, pp.332-343.
Reed, M. and Simon, B. Methods of Modern Mathematical Phyaics, II. Pourier Anslysis.Self-Adjointness. Academic Press : New York, London 1975.
Truman., A., J. Math. Phys.1977, v.18, pp.1499-1509.
Exner, P. and Kolerov, G.I., Phys. Lett. 1981, v.83A, pp.203-206.
Exner, P. and Kolerov,G.I., JINR E2-81-186, Dubna 1981.
Exner,P., JINR E2-81-609, Dubna 1981.
Shabat, B. V. Introduction to Complex Analyeis (in Russian).
Nauka : Moscow 1969.
Gantmacher,F.R. Theory of Matrices (in Russian). Nauka: Moscow 1966.
Gradehtein, I.S. and Ryzhik, I.M. Tables of Integrals, Sums,
Series and Products. Nauka : Moscow 1971.
Yosida,K. Punctional Analyais. Springer-Verlag: Berlin, Heidelberg, New York 1965.
Trotter,H., Proc.Am.Math.Soc. 1959, V.10, pp. 545-551.

> Received by Publishing Department on September 221981.

[^0]:

