


t. Intyeducgtion

Complexity of many scattering problems in nuclear and parti-
¢le physice often hinders us from obtaining exact golutions to
them. At the same time, approximstive sclution is possible in so-
me ceses when the state Hilbert space & of the system can be
expressed as an orthogonal eum 3[10&1‘2 of subspaces having & de-
finite physical mesning. Femilier example is the optical model of
neutron scattering on nuclei/""/, where the subspaces refer to
direct and compound scettering of the neutron.

We shall study e two-channel system described by a Hemilto-
nian H=Ho+}i1+-\v with Piﬁic: Hipi and Piﬂ =H P1=0 for
i# 3 , where P, ure projections on 3?1 , i=0,1 3 for the
sake of simplicity we shall use the symbol H, for BT ?f‘i too.
We denote 7_1 =P1VPJ , further it is useful to introduce h1 =
= E” +.Av” and v =\n'-V‘1 , then the considered Hamiltonian
cen be rewritten &s

H=H1+h1+.w (1.1)

with 11 =0 . We addopt the following essumptions :

{S) the cperators Ho ,h1 are self-adjoint, reduced by Pi and
their parts in ar, » Jfo , Tegpectively, are zero,

(B) the operator JAv 1s Hermitean, i.e.,bounded end zelf-sdjoint.

Further we shall assume Ho toc be the free Hamiltonien of the
first chennel (1=0 ), then the first-channel-part of the S-mat-
rix is '

iH t -24Ht 1H.t
300"'11"530 y Sgo=Ege Ve e ©

o Sa0 = By o (1.2)

The optical approximation conaists of choosing & suitable

vo;}te ﬁ(#{o) such that

4 % it -21H°ptt iHot

= Q
sopt‘;_l,ig Sopt 7 Sept = © e e * (1.3}



with Hopt =H0 +Vopt »ie in some sense near to SOD . In what
follows, we ghall be concerned mostly with the Feshbach-type op-
tical potential/z/ :

vopt(E) = AVpg - J\2 alfg* Voqfhy -E-ig) ‘v‘o . (1.4)

Recently Davies has found/s/ a8 class of Hamiltoniems (1.1)
for which Sopt corresponding to the potential (!.4) approxima-
tes strongly SOO + Hie ergument is based on Kato theory of
smooth perturbations + However the latter can be applied only
if the spectrum of h1 ig continuous ; thus one hes to exhibit
conditions under whick S is approximated weakly by S~ refer-
ring to some h; with this property. The results of Ref.5 can
be interpreted physically as follows : the optical approximation
1s justified by the existence of & short time scale (besides the
stendard ome and & much longer one coriesponding to half-life of
the compound nucleus) which characterizes formation of the com-
pound nucleus. In addition, the eigenvalues of h, should be
numerons and close together,

However, in order to g8implify the deductions, Devies assumes
E=0 and v00==0 - Especially the lest essumption is seriously

limiting when realistic physical situations are conside;ed./ﬂs
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én example, assume the simplest optical-model situation when
= 128%) @ 12®) (1.5)
H=- Ap + hN + AV(xn.xN) . (1.6)

Let hN Possess an eigenvector s LECRBA) referring to the
eigenvalue ao {ground state of the target nucleus) and choose

Hy = LP®%) @ {ugly, . . d.e. Fo =18, 0.7
then 1

B (eny +25)By +{-a, + )P, “;,%éo iy (1.8)
with

(VooyO(xn.xH) =uo(xn}(uo,V(xn,-)uO)N(uo.y(xn,.))N s (1.9

(.,.)N being the inner product in L2(R3A) 3 thus Voo 18
non-zero for reasonable potentials V¥ .



The eim of the present paper ie to show that the resulte
of Davies are espentially preserved i1f one gives up the mentioned
aaaumptiona*). Thie aesertion is formuleted =mnd proved in Sece.5-8:
the method 1a besed again on the améoth—pertnrbation theory, but
technically is more complicated. Before dolng that, we discuse
briefly two related problems : in Sec.2 we show how the optical
potential (1.4) cen be derived in & time~dependent way, while
Sec.4 4s devoted to the approximation of hy ¥y h; with con-
tinuous spectrum. These considerations yield antagonistic reguire-
mente on the imitial wavepackets which will be mentioned in con-
cluding remarks.

2. The optical potential

Starting from the eimplest case referring to (1.5)=-(%.97,
Feshbach derived the expreseion (1.4) by 8 formal time-Iindependent
way/z . This procedure apyrlies to more general situations too,
when the selected subspace in the "target” stete epace is multi-
dimensional, etc. 2y347 . There are also other time-independent
derivations of the optical potential 4 .

In the present section, we shall show how the optical poten-
tial (1.4) can be formelly cbtained within the time-dependent
approach. We shall start from the relations

“L(A+B}t -1 t ~1A(t-
. 4 by e At_i f R i(A+B)gBe 1A( s)cl

]
(2.1}

t

- -1A{t- -1 {(A+B)s

1At f . {(t-8) ( )
[y}

which sre valid (rigorously} for any self-sdjoint A and Hermi-
tean B . We apply these relations repeatedly to expand SOO and
sgpt,' further we pass to the limit t >0 . Comparing now the
resulting expansions of SOO and Sopt up to second-order terms
in v and vopt , respectively, we obtain the following two can~

didates to the role of the optical potential !

%) As for the assumption E=0 , it cen be always fulfilled
by redefinition H-» E'= B -E ; however, we let moetly
E 1o be non-zero.



® 1H_ t =-1ih,%
(+) 2 0 ]
vopt =Aavh 1A of e Yo1 ®© Vo 4% (2.2a}
° -1h.t iH.t
-} _ 2 1 0
Vopt = .Avoo—i.n 6/ Yo1 © Vip © dt . (2.2b)

Up to now we have followed Davies/S/ + he rightly points out that
besides the embiguity in choosing the right one, the potentials
(2.2) have & more serious defect that nelther of them is dissipa-
tive ! counterexamples can be found even for rank-one operators
Yor -
Nevertheless, (2.2) can suggest the correct choice in the

following way : suppoee thet the inttial etate of the system {for
t large negative) is a wavepacket f with nerrow energy distri-

bution concentrated around the mean E . It lies entirely in o, ,
iH.t iEt
‘and therefore ome can replace e 0 ?E approximately by @ Fh

obtaining in this way
rd ~ih,t ikt

VoptPe = 4 Vo0fg =147 ofdt Yoy © vio® fg =
2 -1(h,~E-1g)
= ¥oofp ~14 #38. f‘“ Yor © "10fe =

2 -
YoofE -14° lim vm(h1 -E ~ig)

s Yiofg

Thus we have mrrived just to Peshbach energy-dependent optical
potential (1.4); which can be easily seen to cbey the dissipati-
vity condition.

3. Approximation of h,

As is pointed out in the introduction, application of Kato
theory in the following sections is conditioned among others by
the fact that h has a purely eontinuous gpectrum. Usualy it
iz not so (cf., e.g., (1.8)), thus one has first to replace k,
by h "with this property, which ie near to h y BAY, in the
operator norm. The question is, whether the related S-matrices
are in some Bense near on 3? . It cen be answered positively if
we restrict ourselves to a certain subset of states : let &£ be
a dense subspace in &6 endowed by & norm |.] such that

it
{l‘lve TPl ety e lpl L, peg (3:1)

for some o , 0< ®g ), The following assertion is valig :



o ion ! : Assume (S),(B) and ﬂh1-h; <& , then
for each p,}pex and t20 we have

- 2~
- < .
(4,8, %) (sa,sﬂp)l <2 aglpllyl (3.2)
ﬂstp-sépﬂszas"‘(hﬁt“)lpi . (3.3)
The proof is esaentially the asme as in Ref.5 ., The only diffe-
rence caunsed by non-gero Y50 is the presence of terms linesr
in A in the expansion of (p,sty) and (}c.st"(,) . However, the-
se terms do not depend on 1'11 and h; Bo they cancel in subtrac-
tion. Derivation of (3.3) does not employ the assumption Yoo = 0.
We gee that &  approximetes S on & in the weak opers-
tor topology. Strong approximetion is mlso poesible but in finite

time intervals only ; no essentially stronger inequalities can
be expected to hold as discussed in Ref.5 .

4. Somg notations
*
Y0 = oY CO y Yoy = 000‘ ' Yoo = BA, where A.B.cieﬁc,}{) R
01 SPOCIP‘ and the operators A,B,co coincide with
their parts in 2’0 { moreover, A =/ V50l » B=AW',

where ¥ ! Ren Y00 - Ren Yoo is a partis]l isometry,
t ~1Hqt t _ ) -1H0t
Pala} = 7[—t,t](” Gy e 2 Pppia) = 7‘[-t.t]"’) Be ¥
and sinmilarly Pt(s) is defined for each f!e 3’0 , where
*x ia characteristic function of the aet K,

-1H %

xq(8) = €y e ot CoB(t) , xt) =Cye O BE(t)
-1H,t

X () = 2o Hot cy B(t) , xp(t) =he O B*H(t) amd

-ih,t
n”(t) =C, e ! G?Q(t) , where B 1is Heaviside function,

I.§ » (.,.)} Hilbert-space norm and the corresponding inner
product in &, dy

1. ’2 y Coydd Hilbert-space norm and the corresponding inner
product in La(n;xo) N

1.1, opsrator morm in £(¥,)
1.1, ocperator norm in 6(1:2(&;3?0))
1, = { ﬂr(x)ludx snd If|_= eup ess{lf(x)lu ! xe R}

& messurable operator-valued function f : R-» ﬁ(%) '



~ i
£{.) is Fourier transform of :_?(x) = f e xyr(y)dw Ly
. ®’ :

F is the operator of "left multiplication” by f : R'*’ﬂ(&b)
on Lz(R;Zb) y (FYd(x) = £{x)y(x) , end similarly for ¥ ;
clearly WFj , =4ff,

F  is eonvolution of F , i.e., the opera%or on Lz(ﬁ;ab) defi-
ned by (fif)(x} = i![ Ty dypdx-y) ay .

5. The main result

The central trick of Kato theory consiste of factorizing
the perturbation into product of a peir of operators which are
smooth w.r,t. the unperturbed Hamiltonian. In the considered
case, we choose suitable factorization using notation from the
previous section and assume the quantities Hxi ”1 s 1,J=20,1,
and "211”1 to be finite. Sinece the operators 00,01 are given

up to a multiplicative constant, c{co = {xc,)*(m'jco) with =
pesitive « , and similarly for av y the last assumption can
be in view of fﬁrther purpose reformulated without loss of gene~
rality as followe®’ '

Ixpoly =1 maxflx o) s Wzt Ixy by b =1,
M2y =g <= .

(N}
With these prerequisites, we can formulate the above-mentioned
asgertion which shall be proved in the next three ssctions :

-1
Theorem ! Assume {S),(B) end (N), then for lal < (ZJﬁg) ’
7p = mex {1 »7} and an arbitrary Y€ XN, the estimate

t . at
Psgob = Sgpe B VI < (5.1)

€ A {x(E) + V2 A(E) +2 J(B) )lh,a‘ﬁ}(fz"u-2!.:\1\1'{0‘))—1

*) Insteed of the normalization (N), one can choose some other
on¢. For instance, after fixing 4 by ﬂxooht= 1, one can
choose C, 8o that some of the remaining lix, u]'s would
equel one. In such a case, however, the following considera-
tions would contein three parameters snd the estimation would
be much more complicated.



holde where S:pt(E) refer to the optiesl potential (1.4) and

~ A %

w(E) = (2., - 2,, (B0, (5.2e)
BB = MZ,, -2, (EDX My - (5.2b)
FEY = By -2y il - (5.2¢)

6. The basic estimates

Proposition 2 ¢ If (N} is valld, then the vectors Pé 'Fi y
?; belong to LZ(R;JB) and

2 2
loil, < 2lp)° , ®=c,A,B C (6. 1)
for each t>0 and sll peéfo .

Exroof : Consider first Pé', we have

-iH.s 2
ty2 0
tpdy, sl{uco e Opl1° ae 3

and according to Ref.6, the rhs is8 <£ ZJTHCONS'H?HZ ; thus one
o]

hes to show that C, is H -smooth, HCOHH < 60 . Fato derived

v
six equivalent expressions of the norm H.NH , among them
o]

2 _ R R(Z % *
HCOHHO_— 8y = 5o :?$ [ ((R(z)} R(Z))COY"COV)I
(Ref.6, Theorem 5.1), where R{z)} =(H -2, gc € R s&nd
y e D(Cy) » hyd =1 . Using

R(z) -R(Z} = 1 [ exp(ifs-7lsi-1Hge)ds
R

where 2= f +12 , 7 >0 , together with eimple estimates, we get

-iH.8
~ 2 Q" Ar .
2alicgt2 < [lcye il e (6.2)
Q R )
further the integrand inm (6.2) is &n even function of & 80 (x)
and (N) give (6.1). Ae for K =4,B , the partial isometry W is
Eermitean and commutes with A because Y00 is Hermitean, thus

Af- B*W 8o that



iH_ .8

0 £, a8 < 2 Ix

oo
- _ -
2””"0 < zafue ooy

and similarly for p; . B

Bemark : The fnequality (6.1) differs from the one uged in Ref.5
by factor 2 on the rhe. It cannnot be avoided as shown by the
following exaample : let U, = exp(-iHye) be tramslations in L2(R),
(UsP)(x) = P(x+s) and let C be a one-dimensiopal projection
containing unit vector yb in 1ts range, Then (6,1) corresponds
to the inequality

[.nfl(%,tls’a)lzdu £ K lz:flzﬁf ]('!,Uo.Usyo)]ds

witk K =1 . Choosing § = ;ommf'y([o'“z] for «z! and y,=

= Fﬁ y We get ‘
2 -
E21-{3a)

20 that K =1 1s not possible and K=1 1s satursted for
& —+o00 . Consequently, orie must add the fsctor 7 on appropria-

te places, especislly in Theorem 3.1 of Ref.5 .

Propgsition 3 : 1f (N) is valid, then the operators X

(Y ~ ij !

Zy, end ZTI(E) are bounded @

“iijlluf 3 y 1,J=0, * (6.3a)
12,0, < 9 (6.3b)

and

1z, e . <7 , VEer . : (6.3c) ;'

Proof ! Let us take f : R —»6(%) with lff!11<ao and
gELZ(B;%) . It holds

1Fe 3 = [1) trrecx-y) ay |2 ax <
B R
< {dy Beeyn, dez Hf(z)!luﬂ{dx le(x-y)l leg(x-2)§

80 that HSlder inequslity applied to the last integral gives
a1l < 1012 a2 | 1.e.,

¥l < b2ty (6.4)



which proves {6.3a,b). Further |2 11 (B e = iz 1(E)II because
11(E) acts as a "constant operator“ on LE(R} Ab) . Conseguently,

HZ,i(E)Nuf flzy fl; » which proves (6.3c). »

£
7. Dyson expaneions of 8,, =2nd Sopt

Using the notation introduced above, the optical potential
(1.4) can be rewritten as follows

2 +
opt(E) = AB*A —1 c0 1B Gy (7.1
(one can perform the limit £->0+ because !fz”u‘ <oz }. Both
v and Vo t(E) are bounded so SOO and 5 opt may be expressed
via Dyson expanﬂiont). Consider first 500 and {0, ? 6‘%6 :
holds

) % B a 1H. 8
(Ps55o¥ = (1)) + lé.‘(-i«\)k_{ 5 [ ds,, oo e s lpe Oy

—t -t
-i(H,+h, )} {(2,-2,) ~iH,8
e 0 ! zv...ve y;) .

We pubstitute v =vb0-fvio +vOt and use the factorization from
Sec.4, then the last expresalion can be rewritten ss follows

(@Sgep = (Pay) + Z, -10¥a} (1.2)
where
s} = {pEy?
e = <S"B’Xoo‘h> + <pgrZypg> o
“; = <‘P1§"fooioolf’: >+ <9”1§'f01%‘115"g>* <Wg'511i10?:> g (7.3)
sy = <P3rXooRookoos > * FbrTao¥orZy1¥e> + <P§’i01a1 Eyoha> +

t oo o ot to oo ot
+ Yer2y 1 X okooba > + Yooy XiZyke > o

k) Cf.Ref.B8 ; notice that in the following we deal with matrix
elements of Sgo and S: t t.e., with "weak" asolutions to
the evolution equations only. Wotice further that the uee of
Dyeon expansion is not conditioned by hermiticlty of the inter—
action.



etc. In order to illustrste the structure of a generel si s let
ue exhibit the allowed psirings :

X - [V N A N Ay v A
comtaining Lyy f Xy Zyy s XoiZyy 3 ZyyXyy s 2%,

i Ay A Fard r

ETERNETET SR P ITE

A -~ A . A a3 g e

ro P InXo 3 KRy » XyoXg o (7.4)

g Ao -~ e fad e s

o1 * Xio¥or » Xookor 3 KpyZyg s

~ ] ~ ~ Ay . A T -~ Pl

%00 * *ocfoo * Zic¥oo 3 XooXop + Fookor -
We need to know the number n, of terms contained in st . Roti-
ce that each operator product in s; is due to (7.4) uniquely
determined by rositions of the operstors 51‘ y let c§”1
derote in how many waye m operators E}1 can be distributed
over k-1 vplaces. Accerding to (7.4), we have o = o2l o

m=1 m k=1 k-3

* Qg gte-. 80 that op = kl'nm) for Osms(k/2] , where
[.] denotes entire part. Coensequently,

[k/2]
k-m
n = 2 . (7.5}
x m=0 ( o )
Let us now pess to Sgpt + Dyson expaneion gives
t S Lt
4 .8 ) = ( ] } + 3 b y (7-6)
Eroopt¥ Py £ 'k
where
t . t % 2 t > t
b;-‘“<ﬁw%>*(4*)<?w%1me>’
L ‘2 t > ot c0 3 t > 2 t
by = (~ia) <}°B'Xoo'h>* (~12) <)0B,x01z”{E)}l«C>+ (7.7}

. 3 t » A, t P | + A ~ ) 1t
v g 2y (BIX gy > + (=i CPorZy (BIXy 20, (B>

etc. In order to make comparison of the expansions (7.2) ané (7.6)
possible, one has to rearrenge the latter w.r.t. the powers of
-ix . It may be done if the series converges absclutely. Apply-
ing Propositions 2,3 , we get

11 € Takp ki, nyby, + RV P RN AN ST 2IEHIEICIAT 2 43,

by | < ZUGIIGIC AP+ 2 148y wha®

R T T L

10
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k

L]
= t k
z ibk|s2ﬂplli|w1£_1ul ST SR

and therefore the series converges sbsolutely for [at(1+7da < t,
i.e.,

1
LAl < E%('JT:Z? -1y . (7.8)

It is easy to see that after the rearrangement, (7.€) differs
from {(7.2) just by replacement of all 51‘ by 211(E) .

8. Comparispn cof the expsnsions

Now we can complete the proof comparing term~by-term the
expansions (7.2) and (7.6). We denote

% {8.1)

t - S R -
(po (550~ Sope)p) = Z (=10 dy

then Propositions 2,3 togethet with (5.2} give

lag 1 <1pgl, 2(8) & [ZhghuE)
tad ] < Kep 0T, by g0k ® + AP holyeh, p8) € VZIpMee) « Rt g}
lafl < Z gl E) + 2/ hplgeed ST + [ <pg, (2, -2 BN peo ]
s Kpd 2 )X, ((F, -2, BNy T € (8.2)
€ Zhel {1+ 9)0(E) +[ZIpr2p(E) + 7 AEN | >

etc. In order to estimate general dﬁ , let us rewrite it as
[k/2]
d; = Z dlt:(m) '
n=1
ﬁhere d;(m) containe terms with just m operstors 511 or
Z,,(E) . The number of terms in d;(m) is mc’ﬁ_1 =
= m(k;m) because similarly as above one must sdd and subtract

(m-!)ci‘_1 terme in order to single out the differences 511-

- ﬁ,i(E} 2 D,y - They can be divided into three groups containing

terma in which D11 ig followed by yé ,i11 and E?O ; numbers
I m m

of their elements are denoted ck_1(m), ck_1(ﬁ) and ck_lgy) '

respectively. I% holds

S - () L e pealT) e

11



as ia shown in Appendix, end therefore (6.1}, (6.3) together with
(5.2) imply

Jafm)} < Sty ‘{ (“ 2 ) 4
s ./“npu[(m-i)(";_;‘“)p(m s a1 pm]) LY

In order to make use of theee inequality, one has to estimate
[k/2] e
n (1) = n% (AR CO RN RN N (8.5)

Assume first ? £ 1 . One obtains easily the relations

B} = ny L (a) + ny_ola)
ne(f) = ny (@) + m ,(8) + n, {8
nk(a") = nk+1(1‘3) ]

which imply by induction n{e) g 2*3 ana n Bl=n_ (1) <
< 22 | on the other hena, if 721, then

it

1 [x/2]
n, (a) =2fk/2} T Z (khm-) <J“)k =3

m=1?

and similarly for nk(ﬂ) 'nk‘f) - Together we obtain

ny (@) < 7"(@)" k-3
ne(p) < 95 ()" 23, (8.6)
n(4) < 95 (Jz_)k 2*-2

where Yo = max {1,?} + The relations (8.1)~(8.6) imply
® gk/z)
tps (S50 -85 ] < Z M lafm)l <

m—1

< ‘E"‘F"éz M {0, () ou(E) +J5'1W1‘%J‘ n (1) 1(B) } <

< D M 1ar? 120 (2|u\t\/2_0)1 {®) + EIIAE + 29§,

i.e., the following inequality

12



t t ’
(p, (5% -8b y)g
|4+ 4500 ~Sops ¥ (8.7)

<22 lhpll{““m *ﬁ'ﬂw(p(m +23«(E))} (ﬁ(i—EFJ!/TO))-

for each pe ab , which is equivalent to {5.1). Finally,

(zf'ro)'1 < (27)"(\/“41 ~1) 8o the condition (7.8) is fulfilled ;
thus the proof is flnished.

9. Congluding remarks

Comparing to the results of Ref.5, the estimate (5.2) con~
tains the term proportional to y(E) and the'parameter ?O
which are present due to nqn—zero Yoo * The right-hand-sides of
the two estimates depend on the coupling constent in a slightly
different way because of different processes of estimation. What
is more surprising, the substentially more complicated structure
of Dyson expansions in the case of non-zero Va0 {we have

2 n (1) g 2% terms in the k-th order of (8.1), in con~-

i= &,
tra;f’to mere -%k (for even k only) if v00==0 } reduces to
the combinatorial factor only which in effect multiplies the
coupling constant by two in (5.1).

The physical interpretation mentioned in the introduction
does not change with non-zerc Yoo * Assume for simplicity
E=0 , then the optical appraximation can be intuitively expected
from {5.1),(5.2) to be good if 1=z,,(. ) 13 sharply peaked around
zero (in a time scale appropriate for wc( )y x1‘( ) end x10(.)).
This assertion can be formulated rigorcusly as a direct generall-
zation to Theorem 3.2 of Ref.5 . Lat us notice that the appearan-
ce of three natural time scales is proper not on}y to the optical
model *: remember the well-known problem of devietions from the
exponential decay law due to semiboundedness of the energy spect~
ram {(e¢f. Refs.9,10 and references given in these papers). In the
most models, there are two reglons in which these deviations
affect the decay law significsntly : for times much larger/11—13/
and much smaller/14_18/ than the mean life of the considered
system, '

&} Cf. the footnote on pege 3 .

13



The most problematic vart of the discussed approximation
lies in replacement of h1 by h; wilth continuous spectrum‘).

48 15 shown in Sec.3, it needs the initial wavepackets Y to be such
that te v exp(-iH,t)yll decreases sufficiently repidly with

[$!1 3 such a behaviour could be expected for P with slowly va-
rying energy density. On the other hand, considerations of Sec.?
show that the use of the energy~dependent optical potential (1.4)
can be justified if the energy density is sharply peaked. The
arguments leading to this contrsdiction are, of course, only rough-
1y qualitetive ; a more careful analysis and model examples are
needed in order to.decide whether and urider which conditions the
described scheme works.

Let ue finelly ﬁenticn. that though (1.4) is "the best" opti-
cel potential in view of Sec.2, in practical calculations it is
often replaced by some local one/” o7 y» i.e., by operator of
multiplication by a complex function. Such potentials can be hend-
led more easily because one can adapt for them methods elaborated
for real local potentisls 19, $ nevertheless, there is a 1ot of
open problems related to them, especianlly in scattering theory.
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Append

Consider first c2_1(m) - In the corresponding terms, D
must stand firet from the right and its left neighbour isg

211 or ib‘ due to (7.4). Thus we have k-3 places for arran-
Ead ~

ging of m-1 operators z,, (i.e., z11 or Zli(E) } » symbo-

lically

11

o1 _ (ke

which gives qﬁr,(%) = O3 ”_11) . As for cz-!(ﬁ) , wWe

%) The snalogous problem concerns .HO the spectrum of which must
be continuous too if Yoo is non-zero.

14



have the following diagrams

Dy1%y4%1, X *_5 '

m-5-2 & ~ 8 - ~
h—;—I—E——nXDI‘X11Z11 X—-E~—4 y 1z=0,1,...,k=6 ,
m=-2 >
w5 20115118
which give [1+1]
m - K-m=2 kwl-m+s=-3 1+ 1ws
ck—1{ﬁ) B 2( m-2 ) * 7‘ ( m-g-2 ) ( B )
i.e.,
- 2
B (ﬁ) - k-4 [x/ J(k-r—m+s—2) (r-s)
k-t o 550 =82

Analogously, the diagrams

> % m—l
DpiXyo =
m-s-t % > & 8 _
%15 iD ‘X.EOX—-'—T—| y 1=20,1,¢..,k5
m-1 g
k-4 1{DHXH)
yield
k-3 [r/2]
m k-r-m+s—2 -5 m+1
B (g = () e
k-1 = L ;25 m-g- A

In view of the last relation, it is sufficient to evaluate for
instgnce cﬁ_,(y) . We change summation indices to p=r-g and
s ; it holds 0 £ s pgs+k-2m=-1% k-m~«2 and p+g £
€ k+25-2m-1%<k-3 sof

E~1 s+k—2m— m-1
m —m—2—p P k-m—-1
ck—1(?) Z, L m-1-8 )( ) =0( n )
and therefore (8.3} is valid.
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