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1. Introdugtion 

Complexity of many scattering problems in nuclear and parti­

cle physics often hinders us from obtaining exact solutions to 

them. At the same time, approximative solution is possible in eo­

me cases when the state Hilbert space ~ of the system can be 

expressed as an orthogonal sam ~,·~2 of subspaces having a de­

finite physical meaning. Familiar example is the optical model of 

neutron scattering on nuclei/1- 41, where the subepacee refer to 

direct and compound scattering of the neutron. 

We shall study a two-channel system described by a Hamilto­

nian H =Ho+H 1 +~V with P1Hi c H1P1 and PiHj =BjPi = 0 for 

if j , where Pi are projections on .Gt1 , i=0,1 ; for the 

sake of simplicity we shall use the symbol H
1 

for H
1 
r .71

1 
too. 

We denote V ij =Pi VP j , furtper 1 t is useful to introduce h 1 EO 

= H11 + J...V 1 1 and v = V- V 11 , then the considered Hamil toni an 

can be rewritten as 

( 1. 1) 

with v 11 = 0 • We addopt the following assumptions : 

(S) the operators H0 ,h1 are self-adjoint, reduced by Pi and 

their parts in ;rr1 , .;y0 , respectively, are zero, 

(B) the operator ~v is Hermitean, i.e.,bounded and self-adjoint. 

Further we shall assume H0 to be the free Hamiltonian of the 

first channel ( 1 = 0 ) , then the first-channel-part of the S-mat­

rix is 

The optical approximation consists of choosing a suitable 

vopt£ £(!1'0 ) ouch that 

t 
s t • a-lim sopt op t~oo 

iH0t -2iH tt iH0t 
e e op e 

l 

( t. 2) 

(1.3) 



with Hopt =H0 +Vopt, is in some sense near to 
follows, we shall be concerned mostly with the 
tical potential/Z/ : 

s00 • In what 
Feshbach-type op-

2 -1 vopt(E)=--Iv00 -.A lim v 01 <h1 -E-ie) v 10 (1.4) 
t•O+ 

Recently Davies has found/5/ a class of Hamiltonians (1.1) 
for which Sopt corresponding to the potential (1.4) approxima­
tes strongly s00 • His argument is based on Keto theory of 
smooth perturbations/6/. However the latter can be applied only 
if the spectrum of h

1 is continaous ; thus one has to exhibit 
conditions under which S is approximated weakly by s' refer­
ring to some h; with this property. The results of Ref.5 can 
be interpreted physically as follows : the optical approximation 
is justified by the existence of a short time scale (besides the 
standard one and a much longer one corresponding to half-life of 
the compound nucleus) which characterizes formation of the com­
pound nucleus. In addition, the eigenvalues of h

1 should be 
numerous and close together. 

However, in order to simplify the deductions, Davies assumes 
E =0 and v00 = 0 • Especially the last assumption is aerioasly 
limiting when realistic physical situations are considered. As 
an example, assume the simplest optical-model situation/2 , 7/ when 

( 1. 5) 

( 1 0 6) 

Let hN possess an eigenvector 
eigenvalue eo (ground state of 

u0 € L2(s3A) referring to the 
the target nucleus)_ and choose 

i.e. ( 1 0 7) 

then 

( 1o8) 

with 

( 1. 9) (VOOJI') (xn•"ti) = u0 ("ti) (u0 , V(xn' o )u0 ) 5 (u0 ,JI'(Xn' o) )N 

{.,.)N being the inner product in L2(R3A) ; thus v00 is 
non-zero for reasonable potentials V • 
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The aim of the present paper is to show that the results 

ot Davie& are esaentially preserved if one gives up the mentioned 

assumptions*). This assertion is formulated and proved in Seca.5-8: 

the method is based again on the smooth-perturbation theory, but 

technically is aore complicated. Before doing that, we diseuse 

briefly two related problems : in Sec.2 we show how the optical 

potential (t.4) can be derived in a time-dependent way, while 

Sec.4 is devoted to the approximation of h1 
by h; with con­

tinuous spectrum. These considerations yield antagonistic require­

mente on the initial wavepackets which will be mentioned in con­

cluding remarks. 

2. fhe optical potential 

Starting from the simplest case referring to {1.5)-(1.9), 

Feshbach derived the expression (1.4) by a formal time-indepe~ 

way12/. This procedure applies to more general situations too, 

when the selected subspace in the "target" state space is multi­

dimensional,etc./2,,,77. There are also other time-independent 

derivations of the optical potential/4/. 
In the present aection, we shall show how the optical poten­

tial (1.4) can be formally obtained within the time-dependent 

approach. We •hall start from the relations 

-i(A+B}t -1At t -i(A+B)a -iA(t-s) 
e = e -i / e B e de = 

0 
( 2. 1 ) 

-1At t -iA(t-s) -i(A+B)s 
"" e -1 / e B e de 

0 

which are.valid (rigoroQsly} for any self-adjoint A and Hermi­

tean B • We apply these relations repeatedly to expand s~0 and 

s;pt , further we pass to the limit t ~oo Comparing now the 

resulting expaneions of s00 and Sopt up to second-order teras 

in T and Vopt , respectively, we obtain the following two can­

didates to the role of the optical potential : 

*) As for the assumption E = 0 , it can be always fu.lfilled 

by redefinition H -+ H .. = H - E ; however, we let mostly 

E to be non-zero. 
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2 
.. 1H

0
t -1h1t v<+ l = ...\voo -1-A J e vat • v 10 dt (2,2a) opt 

0 
2 

~ -1h t 1H0t v<-l =~v00 -i..A J VOl • 1 
v10 • dt (2.2b) opt 

0 

Up to now we have followed Davies/51 ; he rightly points out that 
besides the ambigQ!ty in choosing the right one, the potentials 
(2.2) have a more serious defect that neither of them is dissipa­
tive : counterexamples can be found even for rank-one operators 
v01 • 

Nevertheless, (2.2) can suggest the correct choice in the 
following way : suppose that the initial state of the system (far 
t large negative) ie a wavepacket fx with narrow energy distri­
bution concentrated around the mean E • It lies entirely in ~O, 

1H0t 1Et and therefore one can replace e rE approximately by * fE 
obtaining in this way 

2 
vopt\'E = -"Voof& - 1 -" 

2 
= .AvoorE -u lim e..,.o+ 

2 
voorE -1-1 lim 

E-+0+ 

-1h1t 1Et 
VOl 8 v10 8 }I'E = 

-1(h1-E-1£) 
v01 ° v1o'fE 

Thus we have arrived just to ~eehbach energy-dependent optical 
potential (1.4), which can be easily seen to obey the dissipati­
vi ty condition. 

3. Approximation of h
1_ 

As is pointed out in the introduction, application of Kate 
theory in the following seCtions is conditioned among others by 
the fact that h 1 has a purely Cohtinuous spectr~. Usualy it 
is not so (cf., e.g., (1.8)), thus one has first to repl8ce h 1 by h; ·with this property, which is near to h 1 , say, 'in the 
operator norm. The question is, whether the related S-matrices 
are in some sense near on Jr0 . It can be answered positively if 
we restrict ourselves to a certain subset of states : let J! be 
a dense subspace in Jr0 endowed by a norm /./ such that 

! -1H t 
1/v e 0 fll 

R 
(1 +It I") dt ~ ly>l 

for some OC , 0 < rx. ~ 1 • The following assertion is valid 
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Proposition 1 : Aaawae (S),(B) and Hh1 -h;ll<£ , then 
for each 'f, 1 E ~ and t ;} 0 we have 

f('f,St~)- (j',StJI'lf <: 2 J.
2£"ij'li"!'i (3.2) 

(3.3) 

The proof is essentially the same as in Ref.5. The only diffe­
rence caused bJ non-zero v00 is the presence of terms linear 
in ~ in the expansion of (~,St~) ~nd <r,s~~) . However, the­
se terms do not depend on h 1 and h 1 so they cancel in subtrac­
tion. Derivation of (}.}) does not employ the assWD.ption v00 = 0. 

We see that S' approximates S on £ in the weak opera­
tor topology. Strong approximation is alsg possible but in finite 
tiae intervals onlJ ; no essentially stronger inequalities can 
be expected to hold as discussed in Ref.5 • 

4. Sgme notations 

v 10 = ctco , v01 = 0~0 1 , v00 z B*.A. , where .A,B,Oi £ <8CJy} , 

c1 z P0c 1P1 and the operators A,B,c0 coincide with 

their parte in Jr0 ; moreover, A =J 1v00t , B=.AW*, 

where W: Ran v00 ~Ran v00 is a partial isometry, 

t -ts0t t -tH0t 
l"c<•l • 1[-t,t] <•l Co • 'f \"B<•l • il[-t,t] (a) B • 'f 

and similarly 1'1(s) is defined for each recN'o J where 
;K is characteristic function of the set I , 

-ts0 t • -ts0t 
x 11 (t) • c0 o c0 EHtl , x 10<tl • c0 e B*9(t) 

-iH t -iH t 
"ot (t) • .l. 0 c~ (:l(t) "oo<tl • A. 0 B. S<tl and 

-iht t • 
& 11 (t) = 01 e 01 9Ct) where 9 is Heaviaide :!unction, 

1·1 , (.,.) Hilbert-space nora and the corresponding inner 
product in :(, «fo , 

1.12 , (.,.} Hilbert-space norm and the corresponding inner 
product in L2C&;~0 ) , 

l·lu operator nora in 6<~0 ) , 

1-lur operator norm in ~(L2 <R;;t0JJ 
If 11 • J lf(x) lu dx and fttl~ • eup eSB{ Jf(xJiu u R J for 

R 
a measurable operator-valued :t'wnction ~ R~~(~) , 
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A 
A ! ixy f(.) is Fourier transform of f : f(x) = e f'(y) dy 

F is the operator 

on L2(1l;:!'0 ) 

of 11left multiplication" by f : fl.-+ ec ~) 
, (F'f')(x) f{x)~(x) , and similarly for F 

clearly tt F Uuf' =If 1., 
F is convol~tion of F , i.e., the operator on L2 (R;~) defi­

ned .by (Fl')(x) = J f(y)'f(x-y) dy 
Ill 

5. The main result 

The central trick of Kato theory consists of factorizing 
the perturbation into product of a pair of operators whic~ are 
smooth w.r.t. the unperturbed Hamiltonian. In the considered 
case, we choose suitable factorization using notation from the 
previous section and assume the qu.a.ntitiee llx

13
11 1 , i,j=0,1, 

and Dz 11u1 to be finite. Since the operators c0 ,c1 are given 
• >* -1 up to a multiplicative constant, c1c0 = {~C 1 (oc c0 ) with a 

positive oc. , and similarly for ..\v , the last assumption can 
be in view of further purpose reformulated without loss of gene­
rality as f~llows*> 

(N) 
lxooll, = 1 max[lx1011' llxo111. nx,111t = 
Hznl1=l<"" 

With these prerequisites, we can formulate the above~mentioned 
assertion which shall be proved in the next three sections ! 

-1 Theorem: Assume (S),{B) and (N), then for l.ll < (2J;fu> , 
1o == max£ 1 , ~ } and an arbitrary "/' e: :Jt0 the estimate 

II s~0~- s~pt(E) ~II ~ (5.1) 
2 I -1 ""'{<><(E) +/2"( flE)+2.j'(E) >0'/'UJ(/2(1-21.>1,/fc;)l 

•> Instead of the normalization (N}, one can choose some other 
one. For instance, after fixing ,..\. by Ux00u 1 = 1 , one can 
choose c0 so that some of the·remaining nx1 ju 1 's would 
equal one. In such a case, however, the following considera­
tions would contain three parameters and the estimation would 
be much more complicated. 



holds where s~pt (E) refer to the optical potential (1.4) and 

"-(E) - A t I 
l/(z11- z11(E)l"f'c 2 

~(E) = tt(z11 - z11 (EJ lX11IIur 

J(E) ll(z11- z11(EJJX10/Iur 

6. The basic estimates 

Proposition 2 : It (N) is valid, then the vectors 

~i belong to L2 (R;~) and 

t 2 2 
l'f'KU 2 <=211~U K=C,A,B 

for each t > 0 and all if£ ~O 

.l:l:.2.2f : Consider first <p 6 we have 

2 j -iH s 2 
lr~l2 .c llc0 e 0 fl ds 

R 

(5.2e) 

(5.2b) 

(5.2c) 

t t 
'fc•'f•• 

( 6. 1 ) 

Ct) 

and according to Ref.6, the rhs is ~ ?:Jr 11c 0u~· 11fD2 ; thuS one 
0 

has to show that c0 is H0-smooth, 1!c0 1!H < oo Kato derived 
0 

six equivalent expressions of the norm \l.KH among them 
0 

Mc011~ = a3 = 2~ sup I ((R(z)-R(z))C~'f ,c~'fll 
0 Z,"f 

(Ref.6, Theorem 5.1), where R(z)={H-z)- 1 , z~C'fl. and 

'f S D(C~) , ll'fl • 1 Using 

R(z) -R(z) = 1 j exp(ij•-!1•1- iH0 e) ds 

R 

where z = f + i~ , ~ > 0 , together with simple estimates, we get 

2 J -iHo• 
2:i!UC0lH <= llc0 e c~llud• 

0 R 

(6.2) 

further the integrand in (6.?) is an even function of s eo C*) 

and (N) give (6.1). As for K =A,B , the partial isometry W is 

Hermitesn and commutes with A 

A*~ B*W so that 
because 

7 

is Hermitean, thus 



Qo -iH s 
" 2 J U e O AI dB 0 Q 

and similarly t 
for 'fa • • 

~: The inequality (6.1) differs trom the one used in Ref.5 by factor 2 on the rhs. It cannnot be avoided as shown by the 
following example : let Us= exp(-iH0s) be translations in L2 (R), 
(U8,)(x) = ~(x+s) and let C be a one-dimensional proJection 
containing unit vector ~O in its range. Then (6.1} corresponds to the inequality 

with 

= i'1 

K = 1 • Choosing 
, we get 

2 -1 
K~1-{3(1(.) 

,; K lift j /!'fo•Ua'fol/do 
I! 

-1 'f = 'f« = tJ< I' [O ,« 21 for and Jbo = 

so that K = i is not possible and X= 1 is saturated tor 
IX. ~ oo • Consequently, one must add the :tact or ./2 on apprOJ~ria-
te places, especially in Theorem 3.1 of Re:t.5. 

Proposition 3 : If {N} is valid, then the operators x
13 , 

Z11 and Z11 CE) are bounded 

n1 j'Qf" 1,j=0,1 

11 z11n Qf ,. t 
and 

IZ,1<E)6Qf"2. VE€1! 

n22t : Let Q8 toke f : Ill -ill<"(,) with /lfl/ 1 <oo and 
go: L2(11!;~) • It holds 

1/'ig II~ = fl j f<ylg<x-yl dd 2 
d% ,. 

li I! 

(6.3&) 

(6.3b) 

(6.3c) 

.; J dy 1/f(y)//Q J dz 1/f(z)l J dx Jg(x-Yll Jg(x-zll I! I! ul! 

so that HOlder inequality applied to the last integral gives 1/ig(~,; 1/:fl/~ 1/gl~ , i.e., 

11i11Qf.; 1/:r/1 1 <6.4> 
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which proves (6.3a,b). Further !IZ 11 (E}!!uf = li211 (E)IIu because 
Z11 (E) acts as a ~onstant operator" on L2 (R;~0 ) Consequently, 

llz 11 <El~uf"' 11z 11 11 1 , which proves (6.Jc). • 

7. Dyson expansions of t s00 and 

Using the notation introduced above, the optical potential 
(1.4) can be rewritten as follows 

( 7. 1 ) 

(one can perform the limit £ ~ 0+ because Hz,, n 1 L 00 ) 0 Both 
v and vopt(E) are bounded so s~0 an~ S~pt may be expressed 
via Dyson expansion*). Consider first s00 and rp, r ~ Jt'o : it 
holds 

We substitute v=v00 +v10 +v01 and use the factorization from 
Sec.4, then the last expression can be rewritten as follows 

where 

·~ = <'Pi·'fl > 
t 

82 = 
t ., 

( 7. 2) 

*) Cf.Ref.8 ; notice that in the following we deal with matrix 
elements of s~0 and S~pt , i.e., with "weak" solutions to 
the evolution equations only. Notice further that the use of 
DWeon expansion is not conditioned by hermiticity of the inter­
action. 
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etc. In order to illustrate the structure of a general t let • • • us exhibit the allowed pairings : 
containing z,, x11z11 • xo,z,, 'Z,,x,, z,,x,o 

x,, z,,x,, x,,z,, 
x,o z11x1o x,oxot x,oxoo (7.4) 

XOl x,oxo, iooXot xo,z,, 
Xoo xocfoo x,oxoo XooXoo XooXot 

We need to know the number nk of terms contained in s~ . Noti­
ce that each operator product in s: is due to (7.4) uniquely 
determined by positions of the operators z11 ; let c~-l 
denote in how many ways m operators z11 can be distributed 

m m-1 over k-1 places. According to (7.4), we have ck_1= ck_
3 + m-1 m (k-m) [ + ck_4 +... so that ck-l = m for 0 ~ ·~ k/2] , where (.J d.enotea entire part. Consequently, 

n = [k;f2l(k-m) (7.5) k m=O m 

Let us now pass to s;pt • Dyson expansion gives 

(7.6) 

where 

etc. In order to make comparison of the expansions (7.2) and (7.6) 
possible, one has to rearrange the latter w.r.t. the powers of 
-i~ • It may be done if the series converges absolutely. Apply­
ing Propositions 2,3 , we get 

lbil ~ />lllp~/12 11~111 2 • l->illy>~l1 2 11~611 2 llz 11 (E)IIur~ 2llfnlltfCI-11+27~2l, 
fb~J o> 21ifllll"tll( I-A/

2
+21->-1

31 + l>ft2) 
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BO 

and therefore the aeries converges absolutely· for 

i.e.~ 

I-" I < ~~ ( ~ - 1 ) 

1.-~)(1 + ;j.>,f) < 1' 
' 

(7.8) 

It is easy to see that after the rearrangement, (7.6) differs 

from (7.2) just by replacement of all Z11 by Z11 (E) • 

8. Comparison of the expansions 

Now we can complete the proof comparing term-by-term the 

expansions (7.2) ann (7.6). We denote 

(8,1) 

then Propositions 2,3 togethet with (5.2} give 

id~l ~llf6U2 <><(E),; j211fii«<El 

id;i,; hf~ll2 11x01 lluf"'<El + 11~~~ 2 1r~!R 2 t<El <0 /211f~t«(E) +/211~1t<Elj 
t, "" r:::o 1 t~~ ~--t 1 fd4 f,;;211fi!OC(E)+2;21fllt(E);2h~U+ <fc•<z 11 -z 11 (E))X11 Z11'j-c> + 

I t" ""' "" A t 
+ (~C'z11(E)X11(Z11-Z11(E))1c>l :> (A,2) 

~ /2n'f'11{(1 +! )oc(E) +~1~1(2J'(E) +~f(E))} • 

etc. In order to estimate general d~ , let us rewrite it as 

where d~(m) contains terms with just m operators Z11 or 
• t m 
z 11 (E) • The numb~r of terms in dk(m) is mck-l = 
= m (k;m) because similarly as above one must add and subtract 

(m-1)c~_ 1 terms in order to single out the differences Z11 -

- Z11 {E): n 11 • They can be divided into three groupe containing 

terms in which n11 is followe4 by ~~ ,X11 and X10 ; numbers 

of their element.e are denoted c~-l (~) t c~-t (jl) and c~-t (J') t 

respectively. It holds 

c~-1 (~) = (k;~11) (8.3) 

II 



as is shown in Appendix, and therefore (6.1), (6.)) together with 
(5.2) imply 

/d~(m)J,; /2'1~tt-1{ (k;~j1)«(E) + 

+ /21/'f'l[<m-l)(k;~'jm)p<E) + m(k-!-m)r(E)JJ 
(8.4) 

In order to make use of these inequality, one hae to estimate 
[k/2) 

"k(i) = /;1 t-1 c~-1(1) ' i= "'• fl• J'· (8.5) 

Assume first ? ~ 1 • One obtains easily the relations 

nk(o.) = nk-1 («) + "k-2(o:) 

nk(jl) = nk-2(«) + nk-2<f> + "k-1(jl) 

nk(.l') = nk+1<fl) 

which imply by induction nk(o<) ,; 2k-' end nk(jl) = nk_ 1 (J'),; 
.=s; 2k-3 • On the other hand, if '2 ~ 1 , then 

and similarly for nk(f) ,nk{f) • Together we obtain 

(8.6) 

where ~0 =max {1,ZJ • The relatione (8.1)-(8.6) 
~ [k/2) 

l<~>·<s~0 -s' ,»,>1.; Z /J./k 'I. /dk'<•>i.; op r k=2 m=1 

imply 

i.e., the following inequality 

12 



t t I j(~,(Soo -soptl'fl ,;; 

~ .],2 U'f'll[o(,(E) •/211'!'/I(~(E) + 2J'(E)) 1 
for each pt :J(

0
, which is equivalent to {5.1). Finally, 

r:-' - 1 - 1 r.-:-:7' (2;10 ) < (27) (v1•4i -1 l so the condition (7.8) is fulfilled 

thus the proof is finished. 

9. Concluding remarks 

Comparing to the results of Ref.5, the estimate (5.2) con­

tains the term proportional to f{E) and the parameter ~O 

which are present due to non-zero v00 • The right-hand-sides of 

the two estimates depend on the coupling constant in a slightly 

different way because of different processes of estimation. What 

is more surprising, the substantially more complicated structure 

of Dyson expansions in the case of non-zero v00 {we have 
.. ) k-1 

.t&.-. nk{i ~ 2 terms in the k-th order of (8. 1), in con-
i= IX,/] •J' 1 trast to mere 2k (for even k only) if v00 = 0) reduces to 

the combinatorial factor only which in effect multiplies the 

coupling constant by two in ( 5. 1) • 

The physical interpretation mentioned in the introduction 

does not change with non-zero v
00 

• Assume for simplicity*) 

E = 0 , then the optical approximation can be intuitively expected 

from (5.1),(5.2) to be good if z 11 <.) is sharply peaked around 

zero (in a time scale appropriate for -y;~ (.) , x
11 

(.) and x
1 0

<. )) • 
This assertion can be formulated rigorously as a direct generali­

zation to Theorem 3.2 of Ref.5 • Let us notice that the appearan­

ce of three nat~ral time scales is proper not only to the optical 
• 

model : remeaber the well-known problem of deviations from the 

exponential decay law due to semiboundedness of the energy spect­

rum (cf. Refs.9,10 and references given in these papers). In the 

most models, there are two regions in which these deviations 

affect the decay law significantly : for times much large~ll-l3/ 
and much smalle~l4-lB/ than the mean life of the considered 

system. 

*) Cf. the footnote on page 3 • 
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The most problematic part of the discQSSed approximation 
lies in replacement of h 1 by h; with continuous spectrum•>. 
As is shown in Sec .. ), it needs the initial wavepackets 'Pta be eu.ch 
that t » /1 v exp ( -iH0t) !fU decreases sufficiently rapidly with 
It/ ; such a behaviour could be expected for ~ with slowly va­
rying energy density. On the other hand, considerations of Sec.2 
show that the use of the energy-dependent optical potential (1.4) 
can be justified if the energy density is sharply peaked. The 
arguments leading to this contradiction are, of course, only rough­ly qualitative ; a more careful analysis and model examples are 
needed in order to. decide whether and under which conditione the described scheme works. 

Let us finally mention, that though (1.4) is "the best" opti­cal potential in view of Sec.2, in practical calculations it is often replaced by some local one/1,4, 7/, i.e., by operator of 
multiplication by a complex function. Such potentials can be hand­led more easily because one can adapt for them methods elaborated 

t /19,Zl/ for real local paten 1al.s ; nevertheless, there is a lot of 
open problems related to them, especially in scattering theory. 
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Appendix 

Consider first c:_,<~) • In the corresponding terms, n11 must stand first from the right and its left neighbour is X11 or X01 due to (7.4). Thus we have k-3 places for arran­
ging of m-1 operators z11 (i.e., Z'11 or Z11 <E)), symbo­
lically 

m-1 ... 
1-;:'k-~3;- X D11 

which gives c~~ 1 (~) (k-m-1) m-l • As for c~-l (/J) , we 

*) The analogous problem concerns H0 the spectrum of which must 
be continuous too if v00 is non-zero. 



have the following diagrams 

n11x11 z11 x m-2 
k-5 

m-.t-2. xn11x11 z11 x • 
k-1-B 1 1 = 0' 1 ' ••• 'k-6 f 

m-2 Xn11 i 1 1z1 , k-5 

which give 
[1;1] 

2(k-m-2) + 
m-2 

k-6 
L 
1=0 

2: (k-1-m+s-3) (1+1-s) 
s=O m-s-2 s 

1. e., 
k-4 [r/2] L L (k-r-m+•-2) (r-s) 
r=O e=O m-s-2 s 

Analogously, the diagrams 

yield 

l=O,t, ... ,k-5 

k-3 [r/2] 
l. L ( k-r-m+s-2) (r-

8
s) = cmk+ 1 ( •) 

r=O s=O m-s-t r 

In view of the last relation, it is sufficient to evaluate for 

instance c~-t <f) . We change summation indices to p = r-s and 

s ; 1 t holds 0 .:f s ~ p -' s + k -2m- 1 ~ k- m.- 2 and p + s ~ 

"- k + 2s - 2m- 1 ~ k- 3 so*) 

m-1 s+k-2m-1 ( ) ( em <•l = Z 2:: k-m-2-p P) 
k-1 o s=O p=s m-1-s s 

m-1 ( ) L. k-m-1 , 
s=O m 

and therefore (8.3) is valid. 
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