

сообщения объединенного института ядерных исследовании
 дубна

$$
5482 / 2-81
$$

$9 / 84-81$
E2-81-605

P.Exner, I.Úlehla

ON THE OPTICAL APPROXIMATION

IN TWO-CHANNEL SYSTEMS

1. Introduction

Complexity of many scattering problems in nuclear and particle physics often hinders us from obtaining exact solutions to them. At the same time, approximative solution is possible in some cases when the state Hilbert space \mathscr{H} of the syatem can be expressed as an orthogonal sum $\mathscr{H}_{1} \mathscr{H}_{2}$ of subspaces having a definite physical meaning. Pamiliar example is the optical model of neutron scattering on nuclei/1-4/, where the subspaces refer to direct and compound scattering of the neutron.

We shall study a two-channel system described by a Hamiltonian $H=H_{0}+H_{i}+\lambda V$ with $P_{i} H_{i} \subset H_{i} P_{i}$ and $P_{1} H_{j}=H_{j} P_{i}=0$ for $1 \neq j$, where P_{i} are projections on $\mathscr{H}_{1}, i=0,1$; for the sake of simplicity we shall use the symbol H_{i} for $H_{i} \uparrow H_{1}$ too. We denote $V_{i j}=P_{1} \forall P_{j}$, further it is useful to introduce $h_{1}=$ $=H_{11}+\lambda V_{11}$ and $V=V-V_{11}$, then the considered Hamiltonian can be rewritten as

$$
\begin{equation*}
H=H_{1}+h_{q}+\lambda v \tag{1.1}
\end{equation*}
$$

with $\nabla_{11}=0$. We addopt the following assumptions :
(S) the operators $H_{0}, h_{\text {, }}$ are self-adfoint, reduced by P_{i} and their parts in $\tilde{H}_{1}, \mathscr{H}_{0}$, respectively, are zero,
(B) the operator iv 18 Hermitean, i.e., bounded and self-adjoint.

Further we shall assume H_{0} to be the free Hamiltonian of the first channel $(1=0)$, then the firat-channel-part of the S-matrix 18

$$
\begin{equation*}
s_{00}=\underset{t \rightarrow \infty}{ } S_{00}^{t-11}, s_{00}^{t}=P_{0} e^{1 H_{0} t} e^{-21 H t} e^{1 H_{0} t} P_{0} \tag{1.2}
\end{equation*}
$$

The optical epproximation consiats of choosing a suitable $\nabla_{\text {opt }} \in B\left(H_{0}\right)$ euch that

$$
\begin{equation*}
s_{o p t}=\underset{t \rightarrow \infty}{ } s_{o p t}^{t}, s_{o p t}^{t}=e^{i H_{0} t} e^{-21 H_{o p t}^{t}} e^{i H_{o} t} \tag{1.3}
\end{equation*}
$$

with $H_{o p t}=H_{0}+V_{\text {opt }}$, is in some sense near to S_{00}. In what follows, we shall be concerned mostly with the Feshbach-type optical potential/2/:

$$
\begin{equation*}
v_{0 p t}(\varepsilon)=\lambda v_{00}-\lambda^{2} \lim _{\varepsilon \rightarrow 0+} v_{01}\left(h_{1}-E-i \varepsilon\right)^{-1} v_{10} \tag{1.4}
\end{equation*}
$$

Recently Davies has found $/ 5 /$ a class of Hamiltonians (1.1) for which $S_{\text {opt }}$ corresponding to the potential (1.4) approximates strongly S_{00}. His argument is based on Kato theory of smooth perturbations $/ 6 /$. However the latter can be applied only if the spectrum of h_{1} is continuous; thus one has to exhibit conditions under which S is approximated weakly by S - referring to some h_{1}^{\prime} with this property. The results of Ref. 5 can be interpreted physically as follows : the optical approximation is justified by the existence of a short time scale (besides the standard one and a much longer one corresponding to half-1ife of the compound nucleus) which characterizes formation of the compound nucleus. In addition, the eigenvaluea of n, should be numerous and close together.

However, in order to simplify the deductions, Davies assumes $\mathrm{E}=0$ and $\mathrm{v}_{00}=0$. Especially the last assumption is seriously limiting when realistic physical situations are considered. As an example, assume the simplest optical-model aituation $/ 2,7 /$ when

$$
\begin{align*}
& \mathscr{H}=L^{2}\left(\mathbb{R}^{3}\right) \otimes L^{2}\left(\mathbb{R}^{3 A}\right), \tag{1.5}\\
& H=-\Delta_{n}+h_{N}+\operatorname{AV}\left(x_{n}, x_{N}\right) \tag{1.6}
\end{align*}
$$

Let h_{N} possess an eigenvector $u_{0} \in L^{2}\left(\mathbb{R}^{3 A}\right)$ referring to the eigenvalue ε_{0} (ground state of the target nucleus) and choose

$$
\begin{equation*}
\mathscr{H}_{0}=L^{2}\left(\mathbb{R}^{3}\right) \otimes\left\{u_{0}\right\}_{1 i n}, \text { i.e. } P_{0}=I_{n} \otimes P_{u_{0}} \tag{1.7}
\end{equation*}
$$

then

$$
\begin{equation*}
H=\left(-\Delta_{n}+\varepsilon_{0}\right) P_{0}+\left(-\Delta_{n}+n_{N}\right) P_{1}+\lambda \sum_{i, j=0}^{1} v_{i j} \tag{1.8}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(v_{00} \psi\right)\left(x_{n}, x_{N}\right)=u_{0}\left(x_{N}\right)\left(u_{0}, v\left(x_{n}, .\right) u_{0}\right)_{N}\left(u_{0}, \psi\left(x_{n}, .\right)\right)_{N} \tag{1.9}
\end{equation*}
$$

$(.,).)_{N}$ being the inner product in $L^{2}\left(R^{3 A}\right) ;$ thus V_{00} is
non-zero for reasonable potentials V.

The aim of the present paper is to show that the results of Davies are essentially preserved if one givea up the mentioned assumptions ${ }^{\text {t }}$. This assertion is formalated and proved in Secs.5-8: the method 1 a based again on the smooth-perturbation theory, but technically is more complicated. Before doing that, we discuse briefly two related problems : in Sec. 2 we show how the optical potential (1.4) can be derived in a tine-dependent way, while Sec. 4 is deyoted to the approximation of h_{1} by h_{i} with continuous epectrum. These considerations yield antagonistic requirements on the initial wavepackets which will be mentioned in concluding remarks.

2. The optical potential

Starting from the simpleat case referring to (1.5)-(i.9), Feshbach derived the expression (1.4) by a formal time-independent way $/ 2 /$. This procedure applies to more general situations too, When the selected subspace in the "target" state space is multidimensional, etc. $/ 2,3,7 /$. There are also other time-independent derivations of the optical potential/4/.

In the present section, we shall show how the optical potential (i.4) can be formally obtained within the time-dependent approach. We shall start from the relations

$$
\begin{align*}
& e^{-i(A+B) t}=e^{-i A t}-i \int_{0}^{t} e^{-1(A+B) A} B e^{-1 A(t-B)} d s= \tag{2.1}\\
& \quad=e^{-1 A t}-1 \int_{0}^{t} e^{-i A(t-a)} B e^{-1(A+B) A} d s,
\end{align*}
$$

which are.valid (rigorously) for any self-adjoint A and Hermitean B. We apply these relations repeatediy to expand S_{00}^{t} and $S_{o p t}^{t}$. fuxther we pass to the limit $t \rightarrow \infty$. Comparing now the resulting expansions of S_{00} and $S_{\text {opt }}$ up to second-order terme in v and didates to the role of the optical potential :
t) As for the assumption $E=0$, it can be always fulfilled by redefinition $H \rightarrow H^{\prime}=H-B$; however, we let moatly E to be non-zero.

$$
\begin{align*}
& v_{0 p t}^{(+)}=\lambda v_{00}-1 \lambda^{2} \int_{0}^{\infty} e^{i H_{0} t} v_{01} e^{-1 h_{i} t} v_{10} d t \tag{2.2a}\\
& v_{0 p t}^{(-)}=\lambda v_{00}-1 \lambda^{2} \int_{0}^{\infty} v_{01} e^{-1 h_{1} t} v_{10} e^{i H_{0} t} d t \tag{2.2b}
\end{align*}
$$

Up to now we have followed Davies/5/; he rightiy points out that besides the ambiguity in choosing the right one, the potentials (2.2) have a more serious defect that neither of them is dissipative : counterexamples can be found even for rank-one operators \mathbf{v}_{01} -

Nevertheless, (2.2) can suggest the correct choice in the following way : suppose that the inftial state of the system (for t large negative) is a wavepacket φ_{E} with narrow energy distribution concentrated around the mean E. It lies entirely in \mathscr{H}_{0}, and therefore one can replace $e^{1 H_{O}} \varphi_{E}$ approximately by $e^{i B t} \varphi_{E}$ obtaining in this way

$$
\begin{aligned}
& v_{0 p t} \varphi_{E}=\Lambda v_{00} \varphi_{E}-i \lambda^{2} \int_{0}^{\infty} d t v_{01} e^{-i h_{1} t} v_{10} e^{i E t} \varphi_{E}= \\
& =\lambda \nabla_{00 \varphi_{E}}-1 \lambda^{2} \lim _{\varepsilon \rightarrow 0+} \int_{0}^{\infty} d t v_{01} e^{-1\left(h_{1}-E-1 \varepsilon\right)} v_{10} \varphi_{E}= \\
& =v_{00 \varphi_{E}}-1 \lambda^{2} \lim _{\varepsilon \rightarrow 0+} v_{01}\left(h_{1}-E-i \varepsilon\right)^{-1} v_{10} \varphi_{E} \text {. }
\end{aligned}
$$

Thus we have arrived just to Peahbach energy-dependent optical potential (1.4), which can be easily seen to obey the dissipativity condition.

3. Approximation of h_{1}

As is pointed out in the introduction, application of Kato theory in the following sections is conditioned among others by the fact that h, has a purely continuous spectrum. Usualy it 18 not so (cf.; e.g., (1.8)), thus one has first to replace h_{1} by h_{i} with this property, which is near to h, , say, in the operator norm. The question ia, whether the related S-matrices are in some sense near on \mathscr{H}_{0}. It can be answered poaitively if we restrict ourselves to a certain subset of states : let \mathcal{L} be a dense subspace in \mathscr{H}_{0} endowed by a norm 1.1 such that

$$
\begin{equation*}
\int_{R}\left\|v e^{-1 H_{0} t} \varphi\right\|\left(1+|t|^{\alpha}\right) d t \leqslant|\varphi| \quad, \varphi \in \mathscr{L} \tag{3:1}
\end{equation*}
$$

for some $\alpha, 0<\alpha \leqslant 1$. The following assertion is valid:

Proposition i : Assume (S), (B) and $\left\|n_{1}-n_{i}\right\|<\varepsilon$, then for each $\varphi, \psi \in \mathscr{L}$ and $t \geqslant 0$ we have

$$
\begin{align*}
& \left|\left(\varphi, s_{t} \psi\right)-\left(\varphi, s_{t}^{\prime} \psi\right)\right| \leqslant 2 \lambda^{2} \varepsilon^{\alpha}|\varphi||\psi| \tag{3.2}\\
& \left\|s_{t} \varphi-s_{t}^{\prime} \varphi\right\| \leqslant 2 \lambda \varepsilon^{\alpha}\left(1+t^{\alpha}\right)|p| \tag{3.3}
\end{align*}
$$

The proof is essentially the same as in Ref.5. The only differrance caused by non-zero v_{00} is the presence of terms linear in A in the expansion of $\left(\varphi, S_{t} \psi\right)$ and $\left(\varphi, S_{t}^{\prime} \psi\right)$. However, these terms do not depend on h_{1} and h_{1} so they cancel in subtracdion. Derivation of (3.3) does not employ the assumption $v_{00}=0$.

We see that S^{\prime} approximates S on \mathscr{L} in the weak overstor topology. Strong approximation is also possible but in finite time intervals only ; no essentially stronger inequalities can be expected to hold as discussed in Ref. 5 .

4. Some notations

$v_{10}=C_{1}^{*} C_{0}, v_{01}=C_{0}^{*} C_{1}, v_{00}=B_{A}^{*}$, where $A, B, C_{i} \in \mathbb{B}(\mathcal{A})$, $C_{1}=P_{0} C_{1} P_{1}$ and the operators A, B, C_{0} coincide with their parts in \mathscr{X}_{0}; moreover, $A=\sqrt{\left|\nabla_{00}\right|}, B=A \#^{*}$, where $\quad \overline{\operatorname{Ran} V_{00}} \rightarrow \overline{\operatorname{Ran}{ }^{\mathrm{V}} \mathrm{OO}}$ is a partial isometry,
$\varphi_{C}^{t}(s)=\chi_{[-t, t]}(s) c_{0} e^{-i H_{0} t} \varphi, \varphi_{B}^{t}(s)=\chi_{[-t, t]}(s) \cdot B e^{-1 H_{0} t} \varphi$ and similarly $\varphi_{A}^{t}(e)$ is defined for each $\varphi \in \mathscr{H}_{0}$, where X_{M} is characteristic function of the get M,
$x_{11}(t)=C_{0} e^{-1 H_{0}{ }^{t} C_{0}^{*} \theta(t)}, x_{10}(t)=C_{0} e^{-1 H_{0} t_{B^{*}} \theta(t)}$,
$x_{01}(t)=\Delta e^{-i H_{0} t} C_{0}^{*} \theta(t) \quad, \quad x_{00}(t)=\Delta e^{-i H_{0} t} B^{*} \theta(t) \quad$ and $\varepsilon_{11}(t)=c_{1} e^{-i h, t} c_{1}^{*} \theta(t)$, where θ is Heaviside function,
\|.\| , (.,.) Hilbert-space norm and the corresponding inner product in $\%$, 前

1. $l_{2},\langle.,$.$\rangle Hilbert-space norm and the corresponding inner$ product in $L^{2}\left(R ; \delta_{0}\right)$,
2. In operator norm in $6\left(\%_{0}\right)$,
1.Iuf operator norm in $B\left(L^{2}\left(\mathbb{R} ; \mathscr{H}_{0}\right)\right)$
$\|f\|_{1}=\int_{\mathbb{R}}\|f(x)\|_{u} d x$ and $\|f\|_{\infty}=\sup \operatorname{ess}\left\{\|f(x)\|_{\mathbf{u}}: x \in \mathbb{R}\right\}$ for,
$\hat{f}($.$) \quad is Fourier transform of f: \hat{f}(x)=\int_{\mathbb{R}} e^{i x y} f(y) d y \ldots$, F is the operator of "left multiplication" by $f: \mathbb{R} \rightarrow \mathcal{B}\left(\%_{0}\right)$ on $I^{2}\left(R ; H_{0}\right),(F \psi)(x)=f(x) \psi(x)$, and similarly for \hat{F}; clearly $\|F\|_{u f}=\|f\|_{\infty}$,
\tilde{F} is convolution of F, i.e., the operator on $I^{2}\left(\mathbb{R} ; H_{0}\right)$ defined by $(\tilde{F} \psi)(x)=\int_{\mathbb{R}} f(y) \psi(x-y) d y$.

5. The main result

The central trick of Keto theory consists of factorizing the perturbation into product of a pair of operators which are smooth w.r.t. the unperturbed Hamiltonian. In the considered case, we choose suitable factorization using notation from the previous section and assume the quantities $\left\|x_{i j}\right\|, i, j=0,1$, and $\left\|z_{1}\right\|^{\|}$, to be finite. Since the operators C_{0}, c_{1} are given up to a multiplicative constant, $C_{1}^{*} C_{0}=\left(\alpha C_{1}\right)^{*}\left(\alpha^{-1} C_{0}\right)$ with a positive α, and similarly for λv, the last assumption can be in view of further purpose reformulated without loss of genereality as follows ${ }^{\text {t }}$)

$$
\begin{align*}
& \left\|x_{00}\right\|_{1}=1, \quad \max \left\{\mid x_{10}\left\|_{1},\right\| x_{0}\left\|_{1},\right\| x_{1} \|_{1}\right\}=1, \tag{N}\\
& \left\|z_{1}\right\|_{1}=\eta<\infty \quad .
\end{align*}
$$

With these prerequisites, we can formulate the above-mentioned assertion which shall be proved in the next three sections :

Theorem : Assume (S), (B) and (N), then for $|\lambda|<(2 \sqrt{\eta 0})^{-1}$, $\eta_{0}=\max \{1, \eta\}$ and an arbitrary $\psi \in \mathscr{H}_{0}$ the estimate

$$
\begin{align*}
\| s_{00}^{t} \psi & -s_{o p t}^{t}(E) \psi \| \leqslant \tag{5.1}\\
\leqslant & \lambda^{2}\{\alpha(E)+\sqrt{2}(\beta(E)+2 \mu(E))\|\psi\|\}(\sqrt{2}(1-2|\lambda| \sqrt{\eta 0}))^{-1}
\end{align*}
$$

[^0]holds where $S_{\text {opt }}^{t}(E)$ refer to the optical potential (1.4) and
\[

$$
\begin{equation*}
\alpha(E)=\left\|\left(\tilde{z}_{11}-\hat{z}_{11}(E)\right) \psi_{C}^{t}\right\|_{2}, \tag{5.28}
\end{equation*}
$$

\]

$\beta(E)=\left\|\left(\tilde{z}_{11}-\hat{z}_{11}(E)\right) \tilde{x}_{1,}\right\|_{\text {up }}$,
$f(E)=\left\|\left(\tilde{z}_{11}-\hat{z}_{11}(E)\right) \tilde{x}_{10}\right\|_{u f}$.

6. The basic estimates

Proposition 2 : If (N) is valid, then the vectors $\varphi_{C}^{t}, \varphi_{A}^{t}$, $\varphi_{\mathrm{B}}^{\mathrm{t}}$ belong to $L^{2}\left(\mathbb{R} ; \mathcal{H}_{0}\right)$ and

$$
\begin{equation*}
\left\|\varphi_{K}^{t}\right\|_{2}^{2} \leqslant 2\|\varphi\|^{2} \quad, \quad K=C, A, B \tag{6.1}
\end{equation*}
$$

$$
\text { for each } t>0 \text { and all } \varphi \in H_{0} \text {. }
$$

Proof : Consider first φ_{C}^{t}, we have

$$
\begin{equation*}
\left\|\varphi_{C}^{t}\right\|_{2}^{2} \leqslant \int_{R}\left\|c_{0} e^{-i H_{0}} \varphi \varphi\right\|^{2} d B \tag{k}
\end{equation*}
$$

and according to Ref. 6 , the rho is $\leqslant 2 \pi\left\|C_{0}\right\|_{H_{0}}^{2}\|\varphi\|^{2}$; thus one has to show that C_{0} is H_{0}-smooth, $\left\|C_{0}\right\|_{H_{0}}<\infty$. Keto derived six equivalent expressions of the norm $\|\cdot\|_{H_{0}}$, among them

$$
\left\|C_{0}\right\|_{H_{0}}^{2}=a_{3}=\frac{1}{2 \pi} \sup _{z, \psi}\left|\left((R(z)-R(\bar{z})) C_{0}^{*} \psi, C_{O}^{*} \psi\right)\right|
$$

(Ref.6, Theorem 5.1), where $R(z)=(H-z)^{-1}, z \in C \backslash R$ and $\psi \in D\left(C_{0}^{*}\right),\|\psi\|=1$. Using

$$
R(z)-R(\bar{z})=1 \int_{\mathbf{R}} \exp \left(1 \xi s-\eta|s|-1 H_{0} s\right) d s,
$$

where $z=\xi+i \eta$, $\eta>0$, together with simple estimates, we get

$$
\begin{equation*}
2 \pi\left\|c_{0}\right\|_{H_{0}}^{2} \leqslant \int_{R}\left\|c_{0} e^{-i H_{0} s} c_{0}^{*}\right\|_{u}^{d s} \tag{6.2}
\end{equation*}
$$

further the integrand in (6.2) is an even function of s so (\mathbf{t}) and (N) give (6.1). As for $K=A, B$, the partial isometry w is Hermitian and commutes with A because ∇_{00} is Hermitean, thus $A^{*}=B^{*} W$ so that

$$
2 \hat{\mathfrak{h}}\|A\|_{H_{0}}^{2} \leq 2 \int_{0}^{\infty}\left\|A e^{-i H_{0} s} A_{A^{*}}^{*}\right\|_{u B} \leq 2\left\|x_{00}\right\|_{1} \text {, }
$$

and similarly for φ_{B}^{t}.
Remark : The inequality (6.1) differs from the one used in Ref. 5 by factor 2 on the che. It cannot be avoided as shown by the following example : let $\mathrm{U}_{8}=\exp \left(-\mathrm{iH}_{0} \mathrm{~s}\right)$ be translations in $L^{2}(R)$, $\left(U_{s} \varphi\right)(x)=p(x+s)$ and let C be a one-dimensional projection containing unit vector ψ_{0} in its range. Then (6.1) corresponds to the inequality

$$
\int_{\mathbb{R}}\left|\left(\psi_{0}, v_{s} \varphi\right)\right|^{2} d s \leqslant K \|\left.\varphi\right|^{2} \int_{\mathbb{R}}\left|\left(\psi_{0}, v_{s} \psi_{0}\right)\right| d a
$$

with $\mathrm{x}=1$. Choosing $\varphi=\varphi_{\alpha}=\alpha^{-1} X_{\left[0, \alpha^{2}\right]}$ for $\alpha \geqslant 1$ and $\psi_{0}=$
$=\varphi_{1}$, we get $x \geqslant 1-\left(3 \alpha^{2}\right)^{-1}$
so that $K=\frac{1}{2}$ is not possible and $K=1$ is saturated for $\alpha \rightarrow \infty$. Consequently, one must add the factor $\sqrt{2}$ on appropriate places, especially in Theorem 3.1 of Ref.5.

$$
\begin{align*}
& \text { Proposition } 2: \text { If }(N) \text { is valid, then the operators } \tilde{x}_{i j}, \\
& \tilde{z}_{11} \text { and } \hat{z}_{11}(E) \text { are bounded : } \\
& \left\|\tilde{x}_{i j}\right\|_{u f} \leqslant i, i, j=0,1, \tag{6.3a}\\
& \left\|\tilde{z}_{11}\right\|_{u f} \leqslant \eta \tag{6.3b}\\
& \text { and } \\
& \left\|\hat{z}_{11}(E)\right\|_{u f} \leqslant \eta \quad, \forall E \in R . \tag{6.3c}
\end{align*}
$$

Proof : Let us take $f:\left(\mathbb{R} \rightarrow B(\%)\right.$ with $\|f\|_{1}<\infty \quad$ and $g \in L^{2}\left(\mathbb{R} ; f_{0}\right)$. It holds

$$
\begin{aligned}
\left\|\tilde{r}_{G}\right\|_{2}^{2} & =\iint_{\mathbb{R}} f(y) g(x-y) d y \|^{2} d x \leq \\
& \leqslant \int_{\mathbb{R}} d y\|f(y)\|_{u} \int_{\mathbb{R}} d z\|f(z)\|_{u} \int_{\mathbb{R}} d x\|g(x-y)\|\|(x-z)\|
\end{aligned}
$$

so that Holder inequality applied to the last integral gives $\|\tilde{Y} g\|_{2}^{2} \leqslant\|f\|_{1}^{2}\|g\|_{2}^{2}, i . e .$,

$$
\begin{equation*}
\|\tilde{P}\|_{u f} \leqslant\|f\|_{1}, \tag{6.4}
\end{equation*}
$$

which proves ($6.3 a, b)$. Further $\left\|\hat{z}_{11}(E)\right\|_{u f}=\left\|\hat{z}_{11}(E)\right\|_{u}$ because $\hat{z}_{11}(E)$ acts as a "constant operator" on $L^{2}\left(\mathbb{R} ; H_{0}\right)$. Consequently, $\left\|\hat{z}_{11}(E)\right\|_{u p} \leqslant\left\|z_{1},\right\|_{i}$, which proves (6.3c).
7. Dyson expansions of S_{00}^{t} and $S_{o p t}^{t}$

Using the notation introduced above, the optical potential (1.4) can be rewritten as follows

$$
\begin{equation*}
\nabla_{o p t}(E)=\lambda B^{*} A-i u^{2} c_{0} \hat{z}_{11}(E) C_{0}^{*} \tag{7.1}
\end{equation*}
$$

(one can perform the limit $\varepsilon \rightarrow 0^{+}$because $\left\|_{z_{1}}\right\|_{1}<\infty$). Both v and $V_{o p t}(E)$ are bounded so $S_{O O}^{t}$ and $S_{o p t}^{t}$ may be expressed via Dyson expansion ${ }^{(t)}$. Consider first S_{00}^{t} and $\varphi, \psi \in \mathscr{H}_{0}:$ it holde

$$
\begin{aligned}
\left(\varphi, s_{00}^{t} \psi\right)= & (\varphi, \psi)+\sum_{k=1}^{\infty}(-i \lambda)^{k} \int_{-t}^{t} d s_{1} \int_{-t}^{s} d s_{2} \ldots \int_{-t}^{s_{k-1}} d s_{k}\left(\varphi, e^{i H_{0} s} v^{s}\right. \\
& \left.e^{-i\left(H_{0}+h_{1}\right)\left(s_{1}-s_{2}\right)} \nabla \ldots v e^{-i H_{0} s_{k}} \psi\right)
\end{aligned}
$$

We substitute $v=v_{00}+v_{10}+v_{01}$ and use the factorization from Sec.4, then the last expression can be rewritten as follows

$$
\begin{equation*}
\left(\varphi, s_{0 O}^{t} \psi\right)=(\varphi, \psi)+\sum_{k=1}^{\infty}(-i \lambda)^{k} s_{k}^{t}, \tag{7.2}
\end{equation*}
$$

where

$$
\begin{align*}
s_{1}^{t}= & \left\langle\varphi_{B}^{t}, \psi_{A}^{t}\right\rangle, \\
s_{2}^{t}= & \left\langle\varphi_{B}^{t}, \tilde{x}_{00} \psi_{A}^{t}\right\rangle+\left\langle\varphi_{C}^{t}, \tilde{z}_{11} \psi_{C}^{t}\right\rangle, \\
s_{3}^{t}= & \left\langle\varphi_{B}^{t}, \tilde{x}_{00} \tilde{x}_{00} \psi_{A}^{t}\right\rangle+\left\langle\varphi_{B}^{t}, \tilde{x}_{01} \tilde{z}_{1,} \psi_{C}^{t}\right\rangle+\left\langle\varphi_{C}^{t}, \tilde{z}_{1} \tilde{x}_{10} \psi_{A}^{t}\right\rangle, \tag{7.3}\\
\mathbf{s}_{4}^{t}= & \left\langle\varphi_{B}^{t}, \tilde{x}_{00} \tilde{x}_{00} \tilde{x}_{00} \psi_{A}^{t}\right\rangle+\left\langle\varphi_{B}^{t}, \tilde{x}_{00} \tilde{x}_{01} \tilde{z}_{11} \psi_{C}^{t}\right\rangle+\left\langle\varphi_{B}^{t}, \tilde{x}_{01} \tilde{z}_{1,} \tilde{x}_{10} \psi_{A}^{t}\right\rangle+ \\
& +\left\langle\varphi_{C}^{t}, \tilde{z}_{11} \tilde{x}_{10} \tilde{x}_{00} \psi_{A}^{t}\right\rangle+\left\langle\varphi_{C}^{t}, \tilde{z}_{11} \tilde{x}_{11} \widetilde{z}_{11} \psi_{C}^{t}\right\rangle,
\end{align*}
$$

*) Cf.Ref. 8 ; notice that in the following we deal with matrix elements of s_{00}^{t} and $s_{o p t}^{t}$, i.e., with "weak" solutions to the evolution equations only. Notice further that the use of Dyeon expansion is not conditioned by hermiticity of the interaction.
etc. In order to illustrete the structure of a general s_{k}^{t}, let us exhibit the allowed pairings :
containing $\tilde{z}_{11}: \tilde{X}_{11} \tilde{z}_{11}, \tilde{X}_{01} \tilde{z}_{11} ; \tilde{z}_{11} \tilde{X}_{11}, \tilde{z}_{11} \tilde{x}_{10}$,

$$
\tilde{X}_{11}: \tilde{z}_{11} \tilde{X}_{11} ; \tilde{x}_{11} \tilde{z}_{11}
$$

$$
\begin{equation*}
\tilde{x}_{10}: \tilde{z}_{11} \tilde{x}_{10} ; \tilde{x}_{10} \tilde{x}_{01}, \tilde{x}_{10} \tilde{x}_{00} \tag{7.4}
\end{equation*}
$$

$$
\tilde{x}_{01}: \tilde{x}_{10} \tilde{x}_{01}, \tilde{x}_{00} \tilde{X}_{01} ; \tilde{x}_{01} \tilde{z}_{11}
$$

$$
\tilde{x}_{00}=\tilde{x}_{00} \tilde{X}_{00}, \tilde{X}_{10} \tilde{X}_{00} ; \tilde{X}_{00} \tilde{X}_{00}, \tilde{X}_{00} \tilde{X}_{01}
$$

We need to know the number n_{k} of terms contained in $s_{k} t_{k}$. Notice that each operator product in s_{k}^{t} is due to (7.4) uniquely determined by positions of the operators $\tilde{\mathcal{Z}}_{11}$; let c_{k-1}^{m} denote in how many ways m operators \tilde{Z}_{11} can be distributed over $k-1$ places. According to (7.4), we have $c_{k-1}^{m}=c_{k-3}^{m-1}$ $+c_{k-1}^{m-1}+\ldots$ so that $c_{k-1}^{m}=\binom{k-m}{m}$ for $0 \leqslant$ 且 $\leqslant[k / 2]$, where [.] denotes entire part. Consequently,

$$
\begin{equation*}
n_{k}=\sum_{m=0}^{[k / 2]}\binom{k-m}{m} \tag{7.5}
\end{equation*}
$$

Let us now pess to $S_{\text {opt }}^{t}$. Dyson expansion gives

$$
\begin{equation*}
\left(\varphi, s_{o p t}^{t} \psi\right)=(\varphi, \psi)+\sum_{k=1}^{\infty} b_{k}^{t} \tag{7.6}
\end{equation*}
$$

where
$b_{1}^{t}=-i \lambda\left\langle\varphi_{B}^{t}, \psi_{A}^{t}\right\rangle+(-i \Lambda)^{2}\left\langle\varphi_{C}^{t}, \hat{z}_{1},(E) \psi_{C}^{t}\right\rangle$,
$b_{2}^{t}=(-i s)^{2}\left\langle\varphi_{B}^{t}, \tilde{X}_{O O} \psi_{A}^{t}\right\rangle+(-i \lambda)^{3}\left\langle\varphi_{B}^{t}, \tilde{X}_{0}, \hat{z}_{1},(E) \psi_{C}^{t}\right\rangle+$
$+(-i)^{3}\left\langle\psi_{C}^{t}, \hat{z}_{11}(E) \tilde{X}_{10} \psi_{A}^{t}\right\rangle+(-i \lambda)^{4}\left\langle\varphi_{C}^{t}, \hat{z}_{11}(E) \tilde{X}_{1,} \hat{z}_{11}(E) \psi_{C}^{t}\right\rangle$,
etc. In order to make comparison of the expansions (7.2) and (7.6) possible, one has to rearrange the latter w.r.t. the powers of -i.ג . It may be done if the series converges absolutely. Applying Propositions 2,3 , we get
$\left|b_{1}^{t}\right| \leqslant\|\lambda\| \varphi_{B}^{t}\left\|_{2}\right\| \psi_{A}^{t}\left\|_{2}+|\lambda|^{2}\right\| \varphi_{C}^{t}\left\|_{2}\right\| \psi_{C}^{t}\left\|_{2}\right\| \hat{z}_{1}(E)\left\|_{u f} \leqslant 2\right\| \varphi\|\psi\|\left(|\lambda|+2 \eta \lambda^{2}\right)$, $\left|b_{2}^{t}\right| \leq 2\|\psi\| H \psi \|\left(|\lambda|^{2}+2|\lambda|^{3} \eta+|\lambda|^{4} \eta^{2}\right)$,
$\left|b_{k}^{t}\right| \leqslant 2\|\varphi\| H \psi\|\lambda\|^{k} \sum_{s=0}^{k}\binom{k}{s}(\eta|\lambda|)^{s}$
so

$$
\sum_{k=1}^{\infty}\left|b_{k}^{t}\right| \leqslant 2\|\varphi\| \| \psi \psi \sum_{k=1}^{\infty}|\mu|^{k}\left(1+\eta|\lambda|^{k}\right),
$$

and therefore the series converges absolutely for $|\lambda|\left(1+\frac{y}{\mid}|\mathcal{A}|\right)<1$, i.e.,

$$
\begin{equation*}
|\lambda|<\frac{1}{2 \eta}(\sqrt{1+4 \eta}-1) \tag{7.8}
\end{equation*}
$$

It is easy to see that after the rearrangement, (7.6) differs from (7.2) just by replacement of ail \tilde{z}_{11} by $\hat{z}_{11}(E)$.

8. Comparison of the expansions

Now we can complete the proof comparing term-by-term the expansions (7.2) and (7.6). We denote

$$
\begin{equation*}
\left(\varphi,\left(S_{00}^{t}-S_{o p t}^{t}\right) \psi\right)=\sum_{k=2}^{\infty}(-i s)^{k} d_{k}^{t}, \tag{8.1}
\end{equation*}
$$

then Propositions 2,3 together with (5.2) give

$$
\begin{align*}
& \left|d_{2}^{t}\right| \leqslant\left\|\varphi_{c}^{t}\right\|_{2} \alpha(E) \leqslant \sqrt{2}\|\varphi\| \alpha(E) \quad, \\
& \left|d_{3}^{t}\right| \leqslant\left\|\varphi_{B}^{t}\right\|_{2}\left\|\tilde{\mathrm{x}}_{01}\right\|_{u f} \alpha(E)+\left\|\varphi_{C}^{t}\right\|_{2}\left\|\psi_{A}^{t} \eta_{2} \gamma(E) \leqslant \sqrt{2}\right\| \varphi \|\{\alpha(E)+\sqrt{2}\|\psi\| \gamma(E)\}, \\
& \left|d_{4}^{t}\right| \leqslant \sqrt{2}\|\varphi\| \alpha(E)+2 \sqrt{2}\|\varphi\| \gamma(E) \sqrt{2}\|\psi\|+\left|\left\langle\varphi_{C}^{t},\left(\tilde{z}_{11}-\hat{z}_{11}(E)\right) \tilde{\mathrm{x}}_{1}, \tilde{z}_{11} \psi_{C}^{t}\right\rangle\right|+ \\
& +\left|\left\langle\varphi_{C}^{t}, \hat{z}_{11}(E) \tilde{x}_{1,}\left(\tilde{z}_{1,-}-\hat{z}_{1,}(E)\right) \psi_{C}^{t}\right\rangle\right| \leqslant \tag{8.2}\\
& \leqslant \sqrt{2}\|\varphi\|\{(1+\eta) \alpha(E)+\sqrt{2}\|\psi\|(2 \gamma(E)+\eta \beta(E))\},
\end{align*}
$$

etc. In order to estimate general d_{k}^{t}, let us rewrite it as

$$
d_{k}^{t}=\sum_{m=1}^{[k / 2]} d_{k}^{t}(m)
$$

where $d_{k}^{t}(m)$ contains terms with just m operators \tilde{Z}_{11} or $\hat{z}_{1,}(E)$. The number of terms in $d_{k}^{t}(m)$ is $\mathrm{mc}_{k-1}^{\mathrm{m}}=$ $=m\binom{k-m}{m}$ because similarly as above one must add and subtract ($m-1$) c_{k-1}^{m} terms in order to single out the differences \tilde{z}_{11} -$-\hat{z}_{11}(E) \equiv D_{11}$. They can be divided into three groups containing terms in which D_{11} is followed by $\psi_{C}^{t}, \tilde{X}_{m} 1$ and \tilde{X}_{10}; numbers of their elements are denoted $\varepsilon_{k-1}^{I M}(\alpha), c_{k-1}^{m}(\beta)$ and $c_{k-1}^{m}(j)$, respectively. It holds

$$
\begin{equation*}
c_{k-1}^{m}(\alpha)=\binom{k-m-1}{m-1} \quad, \quad c_{k-1}^{m}(\beta)=c_{k}^{m+1}(\gamma)=m\binom{k-m-1}{m} \tag{8.3}
\end{equation*}
$$

as is show in Appendix, and therefore (6.1), (6.3) together with (5.2) imply

$$
\begin{align*}
\left|d_{k}^{t}(m)\right| \leqslant & \sqrt{2}\|\varphi\| \eta^{m-1}\left\{\binom{k-m-1}{m-1} \alpha(E)+\right. \\
& \left.+\sqrt{2}\|\psi\|\left[(m-1)\binom{k-1-m}{m-1} \beta(E)+m\binom{k-1-m}{m} \gamma(E)\right]\right\} \tag{8.4}
\end{align*}
$$

In order to make use of these inequality, one has to estimate

$$
n_{k}(1)=\sum_{n=1}^{[k / 2]} \eta^{m-1} c_{k-1}^{m}(i) \quad, i=\alpha, \beta, \gamma .
$$

Assume first $\eta \leqslant 1$. One obtains easily the relations

$$
\begin{aligned}
& n_{k}(\alpha)=n_{k-1}(\alpha)+n_{k-2}(\alpha) \\
& n_{k}(\beta)=n_{k-2}(\alpha)+n_{k-2}(\beta)+n_{k-1}(\beta) \\
& n_{k}(\gamma)=n_{k+1}(\beta)
\end{aligned}
$$

which imply by induction $n_{k}(\alpha) \leqslant 2^{k-3}$ and $n_{k}(\beta)=n_{k-1}(\gamma) \leqslant$
$\leqslant 2^{k-3}$. On the other hand, if $\eta \geqslant 1$, then

$$
n_{k}(\alpha)=\eta^{[k / 2]-1} \sum_{m=1}^{[k / 2]}\binom{k-m-1}{m-1} \leqslant \eta^{-1}(\sqrt{\eta})^{k} 2^{k-3},
$$

and similarly for $n_{k s}(\beta), n_{k}(y)$. Together we obtain

$$
\begin{align*}
& n_{k}(\alpha) \leqslant \eta_{0}^{-1}(\sqrt{20})^{k} 2^{k-3} \\
& n_{k}(\beta) \leqslant 20^{-1}(\sqrt{20})^{k} 2^{k-3} \tag{8.6}\\
& n_{k}(\gamma) \leqslant 20^{-1}\left(\sqrt{20^{k}}\right)^{k} 2^{k-2}
\end{align*}
$$

where $\eta_{0}=\max \{1, \eta\}$. The relations (8.1)-(8.6) imply

$$
\begin{aligned}
& \left|\left(\varphi,\left(s_{o O}^{t}-s_{o p t}^{t}\right) \psi\right)\right| \leqslant \sum_{k=2}^{\infty}|\mu|^{k} \sum_{m=1}^{[k / 2]}\left|d_{k}^{t}(m)\right| \leqslant \\
& \leqslant \sqrt{2}\|\varphi\| \sum_{k=2}^{\infty}|\mu|^{k}\left\{n_{k}(\alpha) \alpha(E)+\sqrt{2} \| \psi \mid \sum_{1=\beta, \gamma} n_{k}(1) 1(E)\right\} \leqslant \\
& \leqslant(\sqrt{2})^{-1}\|\varphi\||\alpha|^{2} \sum_{i=0}^{\infty}\left(2|\alpha| \sqrt{\eta_{0}}\right)^{1}\{\alpha(E)+\sqrt{2}\|\psi\|(\beta(E)+2 \gamma(E))\},
\end{aligned}
$$

i.e., the following inequality

$$
\begin{align*}
& \left|\left(\varphi,\left(s_{o 0}^{t}-s_{o p t}^{t}\right) \psi\right)\right| \leqslant \\
& \quad \leqslant \lambda^{2}\|\varphi\|\{\alpha(E)+\sqrt{2}\|\psi\|(\beta(E)+2 \gamma(E))\}\left(\sqrt{2}\left(1-2|\wedge| \sqrt{\eta_{0}}\right)\right)^{-1} \tag{8.7}
\end{align*}
$$

for each $\varphi \in \mathscr{H}_{0}$, which is equivalent to (5.1). Pinally, $(2 \sqrt{20})^{-1}<(2 \eta)^{-1}(\sqrt{1+4 \eta}-1)$ so the condition (7.8) is fulfilled ; thus the proof is finished.

9. Concluding remarks

Comparing to the results of Ref.5, the estimate (5.2) contains the term proportional to $\gamma(E)$ and the parameter ξ_{0} which are present due to non-zero v_{00}. The right-hand-sides of the two estimates depend on the coupling constant in a slightly different way because of different processes of estimation. What is more surprising, the substantially more complicated structure of Dyson expansions in the case of non-zero v_{00} (we have $\sum_{i=\alpha, \beta, \gamma} n_{k}(i) \leqslant 2^{k-1}$ terms in the $k-t h$ order of (8.1), in contrast to mere $\frac{1}{2} k$ (for even k only) if $v_{00}=0$) reduces to the combinatorial factor only which in effect multiplies the coupling constant by two in (5.1).

The physical interpretation mentioned in the introduction does not change with non-zero v_{00}. Assume for simplicity ${ }^{\boldsymbol{\#}}$) $E=0$, then the optical approximation can be intuitively expected from (5.1),(5.2) to be good if $z_{11}($.$) is sharply peaked around$ zero (in a time scale appropriate for $\psi_{\mathrm{C}}^{\mathrm{t}}(),. \mathrm{x}_{11}($.$) and \mathrm{x}_{10}($.$)).$ This assertion can be formulated rigorously as a direct generallzation to Theorem 3.2 of Ref.5. Let us notice that the appearance of three natural time scales is proper not only to the optical model : remember the well-known problem of deviations from the exponential decay law due to semiboundedness of the energy spectrum (cf. Refs.9,10 and references given in these papers). In the most models, there are two regions in which these deviations affect the decay law significantly : for times much larger $11-13 /$ and much smaller ${ }^{14-18 /}$ than the mean life of the considered system.

[^1]The most problematic part of the discussed approximation lies in replacement of h_{1}, by h_{1}^{\prime} with continuous spectrum ${ }^{(1)}$. As is shown in Sec.3, it needs the initial wavepackets φ to be such that $t \mapsto\left\|V \exp \left(-i H_{0} t\right) \varphi\right\|$ decreases sufficiently rapidiy with $|t|$; such a behaviour could be expected for φ with slowly varying energy density. On the other hand, considerations of Sec. 2 show that the use of the energy-dependent optical potential (1.4) can be justified if the energy denaity is sharply peaked. The arguments leading to this contradiction are, of course, only roughly qualitative; a more careful analysis and model examples are needed in order to decide whether and under which conditions the described scheme works.

Let us finally mention, that though (1.4) is "the best" optical potential in view of Sec.2, in practical calculations it is often replaced by some local one $/ 1,4,7 /$, i.e., by operator of multiplication by a complex function. Such potentials can be handled more easily because one can adapt for them methods elaborated for real local potentials $/ 19,20 /$; nevertheless, there is a lot of open problems related to them, especially in scattering theory.

Acknowledzement

The authors are grateful to Drs.J. Blank and M. Havifcek for useful discussions.

Appendix

Consider first $c_{k-1}^{m}(\alpha)$. In the corresponding terms, D_{11} must stand first from the right and its left neighbour is \tilde{X}_{11} or \tilde{X}_{01} due to (7.4). Thus we have $k-3$ places for arran-

$$
\frac{m-1}{x-3} \tilde{x} D_{11},
$$

which gives $c_{k-1}^{m}(\alpha)=c_{k-3}^{m-1}=\binom{k-m-1}{m-1}$. As for $c_{k-1}^{m}(\beta)$, we
*) The analogous problem concerns H_{0} the spectrum of which must be continuous too if v_{00} is non-zero.
have the following diagrams

$$
\begin{aligned}
& D_{11} \tilde{X}_{11} z_{11} \tilde{x}-\frac{m-2}{k-5}, \\
& \frac{m-5-2}{k-1-6} \tilde{X}_{D_{11}} \tilde{X}_{11} z_{11} \tilde{X}-\frac{s}{1}+1=0,1, \ldots, k-6, \\
& \frac{m-2}{k-5} \tilde{x}_{1,} \tilde{x}_{11} z_{11},
\end{aligned}
$$

which give

$$
c_{k-1}^{m}(\beta)=2\binom{k-m-2}{m-2}+\sum_{k=0}^{k-6} \sum_{s=0}^{[}\left(\begin{array}{c}
\left.\frac{j+1}{2}\right] \\
m-1-m+s-3 \\
m-2
\end{array}\right)\binom{1+1-s}{s},
$$

i.e.,

$$
c_{k-1}^{m}(\beta)=\sum_{r=0}^{k-4} \sum_{s=0}^{[r / 2]}\binom{k-r-m+s-2}{m-s-2}\binom{r-s}{s}
$$

Analogously, the diagrams

$$
\begin{aligned}
& \mathrm{D}_{1}, \tilde{X}_{10} \tilde{x}-\frac{m-1}{\mathrm{k}-4}, \\
& \frac{m-3-1}{k-1-5} \tilde{\mathbf{X}}_{1} \mathrm{D}_{1} \tilde{\mathrm{X}}_{10} \tilde{\mathrm{X}}-\frac{\mathbf{S}}{1}, \quad 1=0,1, \ldots, k-5 \\
& 1-\frac{m-1}{k-4} \tilde{X} D_{1} \tilde{X}_{10}
\end{aligned}
$$

yield

$$
c_{k-1}^{m}(\gamma)=\sum_{r=0}^{k-3} \sum_{s=0}^{[r / 2]}\binom{k-r-m+s-2}{m-s-1}\binom{r-s}{s}=c_{k}^{m+1}(\beta)
$$

In view of the last relation, it is sufficient to evaluate for instance $c_{k-1}^{\mathrm{m}}(\gamma)$. We change summation indices to $p=r-s$ and s; it holds $0 \leqslant s \leqslant p \leqslant s+k-2 m-1 \leqslant k-m-2$ and $p+s \leqslant$ $\leqslant k+2 s-2 m-1 \leqslant k-3$ so

$$
c_{k-1}^{m}(\gamma)=\sum_{s=0}^{m-1} \sum_{p=s}^{s+k-2 m-1}\binom{k-m-2-p}{m-1-s}\binom{p}{s}=\sum_{s=0}^{m-1}\binom{k-m-1}{m}
$$

and therefore (8.3) is valid.

References

1 Peshbach,H., Porter,C.E. and Weisskopf, V.F., Phys.Rev.1954, v.96, pp.448-464.

2 Feshbach,H., Ann. Phys.1958, v.5, pp.357-390.
i) Cf. 4.2.5.39 in Ref. 21 ; one has to correct an evident
typographical error in this formula.

3 Feshbach, H., Ann. Phys.1962, v.19, pp.287-313.
4 Ưlehla, I., Gomoltak,L. and Pluhar, Z.: Optical Model of the Atomic Nucleus, Czech.Acad.Sci.Publ., Prague 1964. Davies, E.B., Ann. Inst.H.Poincaré 1978, v.A29, pp.395-413. Kato,T., Math.Annalen 1966, v.162, pp.258-279. Taylor,J.R.: Scattering Theory - The Quantum Theory of Nonrelativistic Collisions, Wiley, New York 1972 ; § 19.4. Reed, M. and Simon, B.: Methods of Kodern Mathematical Physics, II. Fourier Analysis. Self-Adjointness, Academic fress, New York 1975 ; sec. X. 11 .
Fonda, L., Ghirardi,G.C. and Rimini,A., Rep.Progr. Phye.1978, v.41, pp.587-631.

Exner, P., Rep. Nath. Fhys.1980, $\vee .17$, pp.87-97.
Khalfin, L.A., JETP 1957, v.33, pp.1371-1382.
Mathews, P.T. and Salam, A., Phys.Rev. 1958, v. 115 , pp.1079-1084.
Hohler,G., Zs.Phys.1958, v.152, pp.542-565.
Beskow, A. and Nilsson,J., Arkiv for Fysik 1967, v. 34, pp.561-569.
HavliCek,M. and Exner,P., Czech.J.Phys.1973, v.B23, pp.594-600.
Degasperis,A., Fonda,L. and Ghirardi,G.C., N.Cim. 1974 , v.21A, pp.471-484.

Kisra, B. and Sinha,K., Helv.Phys.Acta 1977, v.50, pp.99-104. Misra,B. and Sudershan, E.C.G., J.Math.Phys.1977, v.18, pp.756-763.
Blank, J., Exner, P. and Havliとek, M., Czech.J. Phys.1979, v.B29, pp.1325-1341.
 Prudnikov, A.P., Brychkov,Yu.A. and Marichev, O.I.: Integrals and Series, Nauka, Moscow 1981.

[^2]
[^0]: *) Instead of the normalization (N), one can choose some other one. For instance, after fixing i by $\left\|x_{00}\right\|_{1}=1$, one can choose C_{0} so that some of the remaining $\left\|x_{i j}\right\|_{1}$'s would equal one. In such a case, however, the following considerslions would contain three parameters and the estimation would be much more complicated.

[^1]: t) Cf. the footnote on page 3 .

[^2]: Received by Publiahing Department on September 211981.

