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t. Introduction 

Construction of infinite-dimensional irreducible highest­

weight representations (HWR'e) of ooaplex semieimple Lie algeb­

ras represents a problem interesting both aatbematically and phy­

sically [1, 2] • There exists, of course, the classification theo­

rem [3] , but the known 1nfini te- diaensional RWR ~ e act on certain 

factor spaces, and therefore are not very suitable for practical 

calculations (cf. [t-4] for a more complete discussion and biblio­

graphy). 

The purpose of this note is to illustrate the method in 

which the representatione are obtained from canonical (boson) or 

matrix canonical realizations of a given algebra, in particular 

those described in Ref.5 • Using purely canonical realizations 

[6), we have constructed in Ref.2 the so-called patia&l repre­

sentations of sl(n+1,() , further we have found the sufficient 

conditions under which they are irreducible HWR's. In this way, 

complete descriJ~tion of irreducible mm.'s is obtained for n ::e 1 

Starting from sl(3,C) ~ A2 
, a gap opens between irreducible 

finitedimensional and irreducible maximal representations. As 

for el(3,t) , we have filled it partially in Ref.? constructing 

two classee of the so-called mixed representations. 

In the present paper, we resume briefly the results of Refs. 

2,7 and construct one more class of mixed representations. They 

are irreducible HWR's of sl(},C) corresponding to the remaining 

weights (the set n(12)- see below) ; it means that our method 

yields irreducible HWR'e of el(},C} for all weights with excep­

tion of those to which irreducible finite-dimensional HWR~s ocr­

respond. Furthermore, explicit fora of these repreeentations ma­

kes calculation of aatrix elements of their generators straight-
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forward. Finally, let us remark that in view of many common tea­tures of the mentioned canonical realizations [5] one can hope to perform analogou.s constru.ctions f'or An 1 n ~ 3 , as well as for other complex semisimple Lie algebras and their real forms. 

2. Preliminaries 

The standard gl(3,C:). generators e1 j 1 i,j = 1,2 1 3 1 obey 

(1} 

Separating the center, we get the simple aubalgebra el(3,¢) with diaension 8 and rank 2 We shall use the following cartan-Weyl basis 

h1 = e22- 8 J1 h2 = e33- e22 

"1 = 0 21 e2 = 0 32 e2 = 
f1 = e12 f2 = e23 f3 = 

A representation~: sl(3,C)_,.£<.V) 
with the highest weight A= (A 1 ,A2 J 
su.oh that 

(i) \"(hilx0 =A 1 x0 i=1,2 

(ii) l"(ei)x0 o 1=1,2 

e31 (2) 

en 

iB called representation 
if there exists x0E V 

(iii) x0 ie cyclic for r : ~ (Uel(3,C))x0 = V , where UL ie 
the universal enveloping algebra of L • 

To each A , there is, up to equivalence, one and only one irredu­cible representation of al(3,C) with the highest weight A. [3]. In particular, an irredu.cible HWR is finite-dimensional iff both the A1 , /1, 2 belong to w0 = { 0,1,2, ••• J. 
We divide the set of all weights A= <A1,A2) into five mu­tually disjoint subsets : 

(3) 

where 
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Jl.fin • Jl(1,2,12l = {A : A1E Bo, i= 1,2) 

.12( 1) = {A : A1 € N0 , 112 ~ N0 j 

Jl(2) • {A: A
1
4 B0 , A2e 110 } (4) 

.Q( 12) = fA : A 1f11o , i = 1,2 , 1+ A1 + ~"- N0 j 

Jlmax =J2<.0J ={A: \4110 , 1=1,2, 1 +A1 +A2 111o J 

As noticed above, the irreducible HWR 'e corresponding to At .Q:fiD 

are :finite-dimensional; the.Y are well-known (ct. ,e.g., (8], 

sec.10.1 ). 

'·The sets .(lux, .(2(1) and .Q(2) 

The canonical realizations of L = slC~,C) are homomorphisms 

of L into the Weyl algebra w2N , which is the associative al­

gebra with unity 1 generated by q1 ,pj , i,j =1, ••• ,N 

obeying 

(5) 

or to the matrix Weyl algebra w2N,K , which is the tensor product 

of w
2

R' with the associativ~ algebra of B x N matrices. The rea­

lizations used below stem :from the formulae (6J 

't (h, J -q1p1 + q2p2 + u, 

't(h2) ~ -q1p1 - 2q2p2 - ~ n, + ()'. t 

't(e21) ~ q2p1 + 1121 • 'l"(e,2) = -P2 ' 't(e31) = -P, 

't(e,2J = q1p2 + 1412 (6) 

't(e2,J = q2(q1pl + q2l)2 
I 

+ 2 u, - IX.)+ qt112t 

't(•,> = ql (q'p' + q~2 
1 

- 2 n, - a,)+ q~l2 

where H1 = 2K22 , K12 ,M21 are generators of a realization of 

sl(2,t) commuting with q 1,p 1,q2,p2 and ~ iB a coa~lex para-
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meter. • Tmax 

Then we 
L~ 'f6 

have either the purely canonical 
given by (6) with oc = A2 + ~ A1 

H1 = -2q'p' + A1 1 

1121 = -p, 
1112 = q'(q'p' - A,> 

realizations 
and 

( 7) 

• or the matrix canonical realizations t'aix : L ~ W 
4

, 2k+ 1 , k = 0 ' ~, 1 •i, ... , with (7) replaced by (2k+1)-dimensional irreducib­le matrix representations of sl(2,t) and A= C~ 1 ,A2 ) = = (2k,« -k) • 

l 2 • 

Fu.rther we introduce the vector spaces V and Uk , k = 0 , , ~ , • • • , spanned by 

m,n,sE :N0 , and 

(8) 
m,nE:N0 , e=-k,-k+t, ••• ,k, 

respectively, and the annihilation and creation operators a1 , a1 , 1 = 1 , 2, 3 , b j , b j , j = t , 2 , on them : 

a2 , 82 and a, , a, act analogously on the upper right and the lower indices of J! nj , respectively, and similarly for bj, bj and the corresponding indices of jf: njj • 
In order to get representations from the canonical realiza­tions, one has to represent elements of the used Weyl algebra. Let us denote as Jt the representation w6 -+ [(Y) generated by 

:>t(qi) = ai Jl(pi) = 81 i=1,2,3 ( 10) 

and •• "k the representation 11'4,2k+1 .... .[(Uk) in which 

vk(qJ) = iij yk(pj) = bj J~= 1 ,2 ( 11) 

and a matrix A is represented by the operator ,!k(A) the 
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nm. nn' matrix representation of which on each subspace spanned by II II 

m,n fixed, e-= -k,-k+1 , .•• ,k , is given jast by A • In particu-

lar, we may write 

vk( 111 12) II! n\\ (k+s) \m n\' I s-1 I 

vk(¥21 l \\! n\\ = (k-s) l\:.1n\\ ( 12) 

>~t<H1) \\! n\\ = 28 \\: n\\ 

The last mapping we need here is the automorphism r of slD,Cl 

generated by 

f<h1) = h2 f<h2) = h1 

r<•21' = 0 32 f< 8 32) = 8 21 r<•31> -e,., ( 1 3) 

p<•12) 8 23 f<•23) 8 12 p< "13) = -e13 

The following assertions were proved in Refs 2,7 : 

Proposition 1 : (a) f'A =!ko 't~x given by (6),(7) and {10) is 

the irreducible representation of sl(3,C) with the highest 

weight 1\ iff II E: ,Qmax ; in this case x0 = j g 0 I . 
(b) If A €JJ.(1) with A1 = 2k, then f<~ 1 ) = yko 7~ix given by 

{6),(11) and (12) is the irreducible representation of 

sl(3,t) with the highest weight A and the highest-weight 

vector x0 = 1/ko Ojj . 
(c) Let A E J2(2) with A2 = 2k and denote A'= <A 2 ,A 1l then 

K 
A}2) = M{ 1) o !D = V o 't o '{) is the irreducible represen-
Cf\ c A' r k mix t 
tation of sl(3,~) with the highest weight A and the hig-

hest-weight vector x 0 = I~ 0 ! • 

4, The set J2( 12) 

In order to get the HWR ·a corresponding to J\ €. J] ( 12) , we 

change first the representation of the canonical pairs. We intro­

duce 0 k: W4,2k+l-+.[(Uk) by 
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( 14) 

the "matrix part" or ~k coincides with that of ~k , i.e., ~k(A) • Yk(A) • FQrther we denote by X the following automor­phism of sl(3,C) : 

J<•21) = ., 

11<•12> = •}1 

t< 0}2) = 8 }2 

71<•2}) 8 2} 

;x<•}1)·-·12 

J<< •,> = -·21 

( 15) 

If AcJ2(12), then 11" = (1+1\1 +'\,-A
1 -2)d)(1) eo that A" "m1x eXists. For 1 + t\1 + A2 = 2k£ :tr0 , we can define the repre-

sentation ~~12 ) = <rko 'l:"~:x o :X of sl(3,C) the explicit :form o~ which follows from (6),(12),(14) &nd (15) : 

where 
holds 

Propooition?: Let AcJ2(12) , then f'~l?) given by (16) is the irreducible representation of el(3,C) with the highest weight 1\ and the highest-weight vector x0 = J ~k 0 ij • 
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(12) (12) 
~ : Let us denote Eij =~A (eij) and Hi= P• (hi) • It 

is easy to check that x0 obeys the conditions (1) and (11). Let 

further Z be a non-trivial invariant subspace of f~12 ) , then 

there exists at least one non-zero vector y = .L. amns~: n~ 
llll18 

which belongs to z ... abbreviate 

n = max [ n 8 mns • 0 l 
• = max f s 8 mD.s + 0 J 
m = msx {m a--

llll18 f 0 l 
Since <E21 >m<E.,

1
) 8+k(E32)iiy =ca;ns</\ 1 -ii+1)<1\1 -'i+2) ••• 

• • (A, - 1 ) "1 xo With a non-zero c and sans ' we see that the 

assumption A1¢ N0 implies x0 € Z • Applying further 

(E12 )m(E23 >n to x0 and using /\ 2 f. N0 we obtain ~ -~ n ~ c: z 

for all m,n~N0 • Finally, the relation 

En II~ n~ = ((m+1)(n+1))1/2~ !"H,n+1~- (k-s) 1:+1 nil 
shows that each j\ : n ]I 
is irreducible ; at the 

(iii) of the definition. 

belongs to Z • Thus Z = Uk and ~;12 ) 
same time we have verified the condition 

• 
5. Concluding remarks 

If A. € J2< 1) , then the mixed representations are obtained 

directly from the matrix canonical realizations of sl(3,e) • 

For A € .12 ( 2) , we have used the fact that if t-' is a representa­

tion and 'f E: Aut slO, C) , then ('l of is again a representation, 

in general non-equivalent to (f-4 • We believe that in the same way 

one can obtain mixed representations of sl(n+1,C) , for which 

up to now the maximal representations were constructed only. 

In the case of A e J1( 12) , we have used another automorphism 

ot sl(3,C) in combination with an alternative representation 

ot the canonical pairs ; the latter is itself composition of Yk 

with an automorphism of w4 , 2k+l • Some generalizations to 

higher n seem to be possible too, but the problem is much less 

transparent here. 
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Let us finally notice that our method yields irreducible HWR'e of el(},~) for Aecfl(1) ,£/.(2) and .Q(12), while the standard HWR~s (elementary representations or Ve~ modules­of. [1]) are reducible for these weights. 
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