

сообщения ОбЪЕДИНЕННОГО ИНститута Ядерных

 исследований
дубна

$5468 / 2-81$

$9 / 4-81$ E2-81-604

Č.Burdík;, P.Exner, M.Havlíček*

A COMPLETE SET

OF HIGHEST-WEIGHT REPRESENTATIONS
FOR sl(3,C)

[^0]
1. Introduction

Construction of infinite-dimensional irreducible highestweight representations (HWR's) of complex semisimple Lie algebras represents a problem intereating both mathematically and physically $[3,2]$. There exists, of course, the classification theorem [3], but the known infinite-dimensional HWR's act on certain factor gpaces, and therefore are not very suitable for practical calculations (cf. [1-4] for a more complete diacussion and bibliography).

The purpose of this note is to illustrate the method in which the representations are obtained from canonical (boson) or matrix canonical realizations of a given algebra, in particular those described in Ref. 5 . Using purely canonical realizations [6], we have constructed in Ref. 2 the so-called maximal repregentations of $\quad a(n+1, e)$, further we have found the aufficient conditions under which they are irreducible HWR's. In this way, complete description of irreducible HER B is obtained for $n \pm 1$. Starting from $E 1(3, C) \sim A_{2}$, a gep opens between irreducible finitedimensional and irreducible maximal representations. AB for si(3, © , we have filled it partially in Ref. 7 constructing two classes of the $80 \rightarrow c a l l e d$ mixed representationa.

In the present paper, we resume briefly the reaule of Refe. 2.7 and conetruct one more class of mixed representations. They are irreducible HWR's of $s l(3, C)$ corresponding to the remaining weights (the set $\Omega(12)$ - see below) ; it means that our sethod yields irreducible HWR's of $\mathrm{sl}(3,0)$ for all weighte with exception of thoae to which irreducible finite-dimenaional HWR a correspond. Furthermore, explicit form of these reprecentations makes celculation of eatrix elements of their generators straight-
forward. Finally, let us remark that in view of many common features of the mentioned canonical realizations [5] one can hope to perform analogous constructions for $A_{n}, n \geqslant 3$, as well as for other complex semisimple Lie algebras and their real forms.

2. Preliminaries

The standard $g l(3, c)$. generators $e_{i j}, i, j=1,2,3$, obey

$$
\begin{equation*}
\left[e_{i j}, e_{k l}\right]=\delta_{k j} e_{i l}-\delta_{i l} e_{k j} \tag{1}
\end{equation*}
$$

Separating the center, we get the simple subalgebra sl(3,0) with disension 8 and rank 2 . We shall use the following CartanWeyl basis

$$
\begin{align*}
& \mathbf{h}_{1}=e_{22}-e_{11}, h_{2}=e_{33}-e_{22}, \\
& e_{1}=e_{21}, e_{2}=e_{32}, e_{2}=e_{31}, \tag{2}\\
& \mathbf{f}_{1}=e_{12}, \mathbf{f}_{2}=e_{23}, \mathbf{f}_{3}=e_{13} .
\end{align*}
$$

A representation $\rho: s i(3, C) \rightarrow \mathcal{L}(V)$ is called representation with the highest weight $\Lambda=\left(\Lambda_{1}, \Lambda_{2}\right)$ if there exists $x_{0} \in V$ such that
(1) $\rho\left(h_{i}\right) x_{0}=\Lambda_{1} x_{0}, i=1,2$,

$$
\begin{equation*}
\rho\left(e_{i}\right) x_{0}=0, \quad i=1,2, \tag{ii}
\end{equation*}
$$

(iii) x_{0} is cyclic for $\rho: \rho(\operatorname{Ual}(3, C)) x_{0}=T$, where UL is the universal enveloping algebra of L.
To each Λ, there is, up to equivalence, one and only one irreducible representation of sl(3, c) with the highest weight Λ [3]. In particular, an irreducible HWR is finite-dimenaional iff both the Λ_{1}, Λ_{2} belong to $H_{0}=\{0,1,2, \ldots\}$.

We divide the set of all weights $\Lambda=\left(\Lambda_{1}, \Lambda_{2}\right)$ into five mutually disjoint subsets :

$$
\begin{equation*}
\Omega=\Omega_{\text {fin }} \cup \Omega(1) \cup \Omega(2) \cup \Omega(12) \cup \Omega_{\max }, \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& \Omega_{\text {fin }}=\Omega(1,2,12)=\left\{\Lambda: \Lambda_{1} \in \mathbb{N}_{0}, 1=1,2\right\}, \\
& \Omega(1)=\left\{\Lambda: \Lambda_{1} \in \mathbb{N}_{0}, \Lambda_{2} \notin \mathbb{N}_{0}\right\}, \\
& \Omega(2)=\left\{\Lambda: \Lambda_{1} \notin N_{0}, \Lambda_{2} \in \mathbb{N}_{0}\right\}, \tag{4}\\
& \Omega(12)=\left\{\Lambda: \Lambda_{1} \notin \mathbb{N}_{0}, i=1,2,1+\Lambda_{1}+\Lambda_{2} \in \mathbb{N}_{0}\right\}, \\
& \Omega_{\max }=\Omega(\phi)=\left\{\Lambda: \Lambda_{i} \notin \mathbb{N}_{0}, i=1,2,1+\Lambda_{1}+\Lambda_{2} \notin N_{0}\right\} .
\end{align*}
$$

As noticed above, the irreducible HWR's corresponding to $\Lambda \in \Omega_{\text {fin }}$ are finite-dimensional; they are well-known (cf.,e.g., [8], sec .10.1).
3. The sets $\Omega \max , \Omega(1)$ and $\Omega(2)$

The canonical realizations of $\mathrm{L}=\mathrm{sl}(3, \mathrm{C})$ are homomorphisms of I into the weyl algebra $w_{2 N}$, which is the associative algera with unity 1 generated by $q_{i}, p_{j}, i, j=1, \ldots, N$, obeying

$$
\begin{equation*}
\left[p_{1}, p_{j}\right]=\left[q_{i}, q_{j}\right]=0,\left[p_{i}, q_{j}\right]=\delta_{i j} 1, \tag{5}
\end{equation*}
$$

or to the matrix Weyl algebra $W_{2 N, M}$, which is the tensor product of Win with the associative algebra of $N \times N$ matrices. The rearlizations used below stem from the formulae [6] :

$$
\begin{align*}
& \tau\left(h_{1}\right)=-q_{1} p_{1}+q_{2} p_{2}+H_{1}, \\
& \tau\left(h_{2}\right)=-q_{1} p_{1}-2 q_{2} p_{2}-\frac{1}{2} H_{1}+\alpha 1, \\
& \tau\left(e_{21}\right)=q_{2} p_{1}+u_{21}, \tau\left(e_{32}\right)=-p_{2}, \tau\left(e_{31}\right)=-p_{1}, \\
& \tau\left(e_{12}\right)=q_{1} p_{2}+u_{12}, \tag{6}\\
& \tau\left(e_{23}\right)=q_{2}\left(q_{1} p_{1}+q_{2} p_{2}+\frac{1}{2} H_{1}-\alpha\right)+q_{1} M_{21}, \\
& \tau\left(e_{13}\right)=q_{1}\left(q_{1} p_{1}+q_{2} p_{2}-\frac{1}{2} H_{1}-\alpha\right)+q_{2} m_{12},
\end{align*}
$$

where $H_{1}=2 M_{22}, M_{12}, M_{21}$ are generators of a realization of sl(2,c) computing with $q_{1}, p_{1}, q_{2}, p_{2}$ and α is a complex para-
meter. Then we have either the purely canonical realizations $\tau_{\text {max }}^{\wedge}: L \rightarrow W_{6}$ given by (6) with $\alpha=\Lambda_{2}+\frac{1}{2} \Lambda_{1}$ and

$$
\begin{align*}
& H_{1}=-2 q_{3} p_{3}+\Lambda_{1} 1, \\
& m_{21}=-p_{3}, \tag{7}\\
& y_{12}=q_{3}\left(q_{3} p_{3}-\Lambda_{1}\right)
\end{align*}
$$

or the matrix canonical realizations $\tau_{\text {mix }}^{1}: L \rightarrow W_{4,2 k+1}, k=0$, $\frac{1}{2}, 1, \frac{3}{2}, \ldots$, with (7) replaced by $(2 k+1)$-dimensional irreducible matrix representations of sl(2, ©) and $A=\left(\Lambda_{1}, \Lambda_{2}\right)=$ $=(2 k, \alpha-k)$.

Further we introduce the vector spaces V and $U_{k}, k=0$, $\frac{1}{2}, 1, \frac{3}{2}, \ldots$, spanned by

$$
\begin{align*}
& \left\lvert\, \begin{array}{ll}
m & n \\
s
\end{array}\right., m, n, s \in H_{0}, \text { and } \\
& \left\|\frac{m}{m}\right\|, m, n \in N_{0}, s=-k,-k+1, \ldots, k, \tag{8}
\end{align*}
$$

respectively, and the annihilation and creation operators a_{i},
$\bar{a}_{i}, i=1,2,3, b_{j}, \bar{b}_{j}, j=1,2$, on them :

$$
\left.a_{1}| |_{s}^{m} n\left|=m^{1 / 2}\right| \frac{m-1, n}{s}\left|, \quad \bar{a}_{1}\right| \begin{align*}
& m n \tag{9}\\
& a
\end{align*}\left|=(m+1)^{1 / 2}\right| \underset{a}{m+1, n} \right\rvert\, ;
$$

a_{2}, \bar{a}_{2} and a_{3}, \bar{a}_{3} act analogously on the upper right and the lower indices of $\left|\begin{array}{ll}m & n_{1} \\ B\end{array}\right|$, respectively, and similarly for b_{j}, \bar{b}_{j} and the corresponding indices of $\left\|\frac{m}{m} n_{\|}\right\|$.

In order to get representations from the canonical realize. trons, one has to represent elements of the used Weal algebra. Let us denote as π the representation $W_{6} \rightarrow \mathcal{L}(V)$ generated by

$$
\begin{equation*}
\pi\left(q_{i}\right)=\bar{a}_{i}, \quad \pi\left(p_{i}\right)=a_{i}, \quad 1=1,2,3 \tag{10}
\end{equation*}
$$

and as ν_{k} the representation $w_{4,2 \mathrm{k}+1} \rightarrow \mathcal{L}\left(\mathrm{U}_{\mathrm{k}}\right)$ in which

$$
\begin{equation*}
\nu_{k}\left(q_{j}\right)=\bar{b}_{j}, \quad \nu_{k}\left(p_{j}\right)=b_{j}, \quad j=1,2 \tag{11}
\end{equation*}
$$

and a matrix A is represented by the operator $\nu_{k}(A)$ the
matrix representation of which on each subspace spanned by $\left\|\frac{m}{m}\right\|$, m, n fixed, $s=-k,-k+1, \ldots, k$, is given just by A. In particular, we may write

$$
\begin{align*}
& \nu_{k}\left(M_{12}\right)\| \|_{\mathrm{s}}^{n}\|=(k+s)\|\left\|_{s-1}^{m}\right\|, \\
& \nu_{k}\left(M_{21}\right)\left\|\frac{m}{m}\right\|=(k-s)\left\|_{s+1}^{m}\right\|, \tag{12}\\
& \nu_{k}\left(H_{1}\right)\| \|_{s}^{m}\|=2 s\|\left\|_{s}^{m}\right\|,
\end{align*}
$$

The last mapping we need here is the automorphism φ of $s l(3, \mathbb{c})$ generated by

$$
\begin{align*}
& \varphi\left(h_{1}\right)=h_{2}, \varphi\left(h_{2}\right)=h_{1}, \\
& \varphi\left(e_{21}\right)=e_{32}, \varphi\left(e_{32}\right)=e_{21}, \varphi\left(e_{31}\right)=-e_{13}, \tag{13}\\
& p\left(e_{12}\right)=e_{23}, \varphi\left(e_{23}\right)=e_{12}, \varphi\left(e_{13}\right)=-e_{13} .
\end{align*}
$$

The following assertions were proved in Refs 2,7:
Eroposition $1:(a) \rho_{\Lambda}=\pi \circ \tau_{\max }^{\Lambda}$ given by (6),(7) and (10) is the irreducible representation of $s 1(3, \mathbb{c})$ with the highest weight Λ iff $\Lambda \in \Omega_{\max }$; in this case $x_{0}=\left|\begin{array}{ll}0 & 0 \\ 0\end{array}\right|$.
(b) If $A \in \Omega(1)$ with $A_{1}=2 k$, then $\mu_{A}^{(1)}=\nu_{k} \circ \tau_{\text {mix }}^{A}$ given by (6),(11) and (12) is the irreducible representation of sl(3,0) with the highest weight A and the highest-weight vector $x_{0}=\left\|_{k}^{0} 0\right\|$.
(c) Let $A \in \Omega(2)$ with $\Lambda_{2}=2 k$ and denote $\Lambda^{\prime}=\left(\Lambda_{2}, \Lambda_{1}\right)$ then $\mu_{\Lambda}^{(2)}=\mu_{\Lambda^{\prime}}^{(1)} \circ p=\nu_{k}^{\circ} \circ \tau_{m i x}^{\Lambda^{\prime}} \circ p$ is the irreducible representation of si(3, ©) with the highest weight Λ and the hig-heat-weight vector $x_{0}=\left|\begin{array}{ll}0 & 0 \\ k & \end{array}\right|$.

4. The set $\Omega(12)$

In order to get the $H W^{\prime}$ 'a corresponding to $\Lambda \in \Omega(12)$, we change firgt the representation of the canonical pairs. We introduce $\sigma_{k}: W_{4,2 k+i} \rightarrow \mathcal{L}\left(U_{k}\right)$ by

$$
\begin{array}{ll}
\sigma_{k}\left(q_{1}\right)=b_{1}, & \sigma_{k}\left(p_{1}\right)=-\bar{b}_{1}, \\
\sigma_{k}\left(q_{2}\right)=\bar{b}_{2}, & \sigma_{k}\left(p_{2}\right)=b_{2} ; \tag{14}
\end{array}
$$

the "matrix part" of σ_{k} coincides with that of ν_{k}, i.e., $\sigma_{k}(A)=\nu_{k}(A)$. Further we denote by X the following automorphism of $\mathrm{al}(3, \mathbb{C})$:

$$
\begin{align*}
& x\left(h_{1}\right)=-h_{1}-h_{2}, x\left(h_{2}\right)=h_{2}, \\
& x\left(e_{21}\right)=e_{13}, x\left(e_{32}\right)=e_{32}, x\left(e_{31}\right)=-e_{12}, \tag{15}\\
& x\left(e_{12}\right)=e_{31}, x\left(e_{23}\right)=e_{23}, x\left(e_{13}\right)=-e_{21},
\end{align*}
$$

If $\Lambda \in \Omega(12)$, then $\Lambda^{\prime \prime}=\left(1+\Lambda_{1}+\Lambda_{2},-\Lambda_{1}-2\right) \in \Omega(1)$ so that $\tau_{\text {mix }}^{\Lambda^{\prime \prime}}$ exists. For $1+\Lambda_{1}+\Lambda_{2}=2 k \in H_{0}$, we can define the repromentation $\mu_{\wedge}^{(12)}=\sigma_{k} \circ \tau_{\text {mix }}^{\Lambda^{\prime \prime}} \circ \chi$ of $\operatorname{si}(3, c)$ the explicit form of which follows from (6),(12), (14) and (15) :

$$
\begin{align*}
& \mu_{A}^{(12)}\left(h_{1}\right)=-2 \bar{b}_{1} b_{1}+\bar{b}_{2} b_{2}-\frac{1}{2} H_{1}^{k}-\frac{1}{2}\left(A_{2}-A_{1}+1\right) I, \\
& \mu_{A}^{(12)}\left(h_{2}\right)=\bar{b}_{1} b_{1}-2 \bar{b}_{2} b_{2}-\frac{1}{2} H_{1}^{k}+\frac{1}{2}\left(\Lambda_{2}-A_{1}-1\right) I, \\
& \mu_{A}^{(12)}\left(e_{21}\right)=\left(-\bar{b}_{1} b_{1}+\bar{b}_{2} b_{2}-\frac{1}{2} H_{1}^{k}-\frac{1}{2}\left(A_{2}-\Lambda_{1}+1\right)\right) b_{1}+b_{2} M_{12}^{k}, \\
& \mu_{A}^{(12)}\left(e_{32}\right)=-b_{2}, \\
& \mu_{A}^{(12)}\left(e_{31}\right)=-b_{1} b_{2}-u_{12}^{k}, \tag{16}\\
& \mu_{A}^{(12)}\left(e_{12}\right)=\bar{b}_{1}, \\
& \mu_{\Lambda}^{(12)}\left(e_{23}\right)=\bar{b}_{2}^{\left(-\bar{b}_{1} b_{1}+\bar{b}_{2} b_{2}+\frac{1}{2} H_{1}^{k}-\frac{1}{2}\left(\Lambda_{2}-\Lambda_{1}-1\right)\right)+b_{1} M_{21}^{k},} \\
& \mu_{A}^{(12)}\left(e_{13}\right)=\bar{b}_{1} \bar{b}_{2}-w_{21}^{k},
\end{align*}
$$

where $H_{l}^{k}=\sigma_{k}\left(H_{1}\right), M_{i j}^{k}=\sigma_{k}\left(\mu_{1 j}\right)$. The following assertion
holds :

Proposition $2:$ Let $\Lambda \in \Omega(12)$, then $\mu_{A}^{(12)}$ given by (16) is the irreducible representation of $8(3, c)$ with the highest weight Λ and the highest-weight vector $x_{0}=\left\|\begin{array}{c}0\end{array} \quad\right\|$.

Proof : Let us denote $E_{i j}=\mu_{A}^{(12)}\left(e_{i j}\right)$ and $H_{i}=\mu_{A}^{(12)}\left(h_{1}\right)$. It is easy to check that x_{0} obeys the conditions (i) and (ii). Let further Z be a nontrivial invariant subspace of $\mu_{\wedge}^{(12)}$, then there exists at least one nonzero vector $y=\sum_{m n s} a_{m n s}\left\|\frac{m}{m}\right\|_{i}$ which belongs to Z. We abbreviate

$$
\begin{aligned}
& \bar{n}=\max \left\{n: a_{m n s} \neq 0\right\}, \\
& \overline{\mathrm{a}}=\max \left\{\mathrm{s}: \mathrm{a}_{\mathrm{mn} \bar{s}} \neq 0\right\}, \\
& \bar{m}=\max \left\{\bar{m}: a_{\mathrm{mn} \bar{s}} \neq 0\right\},
\end{aligned}
$$

Since $\left(E_{21}\right)^{\bar{m}}\left(E_{31}\right)^{\left.\overline{\mathbf{s}}+k_{\left(E_{32}\right.}\right)^{\bar{n}} y=c a_{\bar{m} \bar{n} \bar{s}}\left(\Lambda_{1}-\bar{m}+1\right)\left(\Lambda_{1}-\bar{m}+2\right) \ldots . . . ~}$
 assumption $\Lambda_{1} \notin N_{0}$ implies $x_{0} \in Z$. Applying further $\left(E_{12}\right)^{m}\left(E_{23}\right)^{n}$ to x_{0} and using $\Lambda_{2} \notin N_{0}$ we obtain $\left\|\frac{m}{-k}\right\| \in Z$ for all $m, n \in N_{0}$. Finally, the relation

$$
E_{13}\left\|\frac{m}{n}\right\|=((m+1)(n+1))^{1 / 2}\| \|_{s}^{m+1, n+1}\|-(k-8)\|_{s+1}^{m} \|
$$

shows that each $\|_{\text {m }}^{m} n_{\|}$belongs to z. Thus $z=v_{k}$ and $\mu_{A}^{(12)}$ is irreducible ; at the same time we have verified the condition (iii) of the definition.

5. Concluding remarks

If $\Lambda \in \Omega(1)$, then the mixed representations are obtained directly from the matrix canonical realizations of si (3, c). For $\Lambda \in \Omega(2)$, we have used the fact that if μ in a representsion and $\varphi \in A u t \operatorname{sl}(3, \mathbb{c})$, then $\mu \circ \varphi$ is again a representation, in general non-equivalent to μ. We believe that in the same way one cen obtain mixed representations of $a l(n+1, \mathbb{c})$, for which up to now the maximal representations were constructed only.

In the case of $\Lambda \in \Omega(12)$, we have used another automorphism of gl($3, \mathbb{C}$) in combination with an alternative representation of the canonical pairs ; the latter is itself composition of ν_{k} with an automorphism of $W_{4,2 \mathrm{k}+1}$. Some generalizations to higher n seem to be possible too, but the problem is much less transparent here.

Let us finally notice that our method yields irreducible HWR's of $B 1(3, C)$ for $\Lambda \in \Omega(1), \Omega(2)$ and $\Omega(12)$, while the standard HWR's (elementary representations or Verma modules cf. [1]) are reducible for these weights.

Acknowledgment

We dedicate this paper to Professor Ivan Vlehla on the occasion of his sixtieth birthday. We would like to express in this way our gratitude for his vivid interest to our work and permanent support.

References

Burdik, C., Exner,P. and HavliXek,M., J.Phys.A : Math. Gen. 1981. v.14, pp.1039-1054.

Seminaire "Sophus Lie" de 1 'Ecole Norm.Sup., $\nabla 01.1$, Sekretariat Mathéwatique, Paris 1954-55.
Zhelobenko, D.P. Compact Lie Groups and Their Representations (in Russian), Nauka, Moscow 1970.
Exner, P., Havlícek, M. and Lassner, W., Czech. J. Phys.1975, v.B26.pp.1213-1228.

HaviíCek, M. and Lassner, F. Kep. Math. Phys. 1975, v.8, pp.391-
-399.
7 Burdík,C., Exner,F, and Havifcek,k. Czech.J.Phys.1981, v.B31, pp.459-469.

8 Barit, A. and Raczka, R. Theory of Group Representations and Applications, PWN, Warsaw 1977.

> Received by Publishing Department on September $21 \quad 1981$.

[^0]: * Nuclear Centre, Faculty of Mathematics and Physics, Charles University,
 Povltavska ul., 18000 Prague - Pelc-Tyrolka, Czechoslovakia.

