


1. The development of investigations with polarized beam
and polarized targets has increased the interest in studying
the polarization phenomena in the reactions

pp+d+ nt (1)
and in the inverse process
stedo pp. (2
Below a justification of the exact relation
L gg=2 V5 <Tgg 35 +VZ <Tgg %o = 1+3Am (3)

is presented which connects the average values of the tensors
<T20>annd Ty o.clesc:'x.':l.bmg the quadrupole polarization of deu-
terons in process (1) in the case of unpolarized beam and un-
polarized target with quantity A,,, which is the contribution
to the differential cross section of process (1) having pro-
ton. beam and target polarized perpendicularly to the reaction
plane. The conclusions obtainable from (3} and existing measu-
rements on Ay, are discussed. The generalization of relatiomn
(3) for the case of quadrupolarization of deuterons with pola-
rized protons in process (1) is presented.

Relation (3) gives a new possibility in the investigation
of deuteron polarization, to measure <Tg,>g, only, and <Ty>gg
can be calculated from (3) if A is known. Process {2) can
be used for making the experlmental control of the polariza-
tion state of deuteron target easier. We notice that due to
equality (3) the <T§0>00’ <sz>00 and A, quantities cannot va-
nish SLmultaneously at a given arbitrary energy and momentum
transfer. Taking into account the T-invariance all the con-
clusions on the polarization parameters of process (1) can be
transformed/1.2/ to inverse process (2).

For a process similar to (1) with the production of a sca-
lar particle an analogous relation can be given with changing
the sign before A,

2V8 <Tyy >p0 + VB Topd50 =1=3A (4)



2. For prooving relations (3)-(4) we have used the approach
of L.Shechter paper 2/, The amplitude M (@) for process (1) is
pseudoscalar, leading to the triplet state of nucleons in the
final states and contains six scalar functions having definite
symmetry under substitution@)” to #n-0, due to the Pauli prin-
ciple ( @, is the pion angle in c.m. system}. We have the mo-
tation for ‘the deuteron angle @y in the laboratory and @4 in

c.m. system, where @dzﬂ_g ', respectively, The value of @p'
corresponding to @& =r/2 "is denotéd by @, .
. We introduce two orthonormal vector triad
> P, - », = o - . .
P Kk gL Bk L o (fm)- (KR 1/1RE)) (5)
&4k K=k - ST '

in the c.m. system and

-

REE-(FR) | | | (6)

in the laboratory system of reaction (1).

Requiring the parity conservation at the- reflection in the
reaction plane we have the follow1ng cond1tlon for the ampll-
tude M : R

(aln)(cr2 n)M (a n)(azn)——M ‘ 7

If the beam and the target are polarized with 15’ and ’ P2 .
respectlvely, then the den51ty matrix of the 1n1t1a1 protons
1s equal to :

by =11 (@ P)][1+(02 2)1 ‘ (8)

and the differential cross section has the form
=cré[1'+(P1'n')A1 +(P,i)A, + P P A ], (9)

o
P,
where A] and A, are the asymmetry of the cross section using

normally polarized beam (target unpolarized) and normally po-
larized target (beam unpolarized), respectively

. - - + . P . .
o5 By o =17/4SpM(, -6 M . (10)
’ The definition of temsor A, is
0gAuy =1/4SPM oy oy M* . _ . an
It has five non zero components: Ay, Ag ,Apn » Apn S Ang

in the c.m. and A, , Ay LA, s Ag » Ay in the lab ‘8ys—
tem, respectively.
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The polarization of deuterons is described by the average
values of spin-tensors Tyy, which according to ref./3/ are gi-
ven by the following relations

T T
m:\f—-s T 1,__‘C_.(s +8,1); gz-‘ff-(s 18 F (12)

M
Tzl...‘f.._{(sxus )8 548,85, +18,)1; To.\,_.(as 2T, | =(-1) T;'
We choose the axis oy along the normal to the reaction
plane and the axises z and x in the reaction plane, whose
exact definition would be given below.

If the beam and the target are unpolarized in the initial
state than the polarization of the final state deuterons can
be given in terms of the quantities < TJM>00

Taking into account that the spin operator of the deuteron
can be presented as §= (3 +65 ), for the <T;,>..  average
values using the (7) we“obtain

3.
<iT, > §<o~1y+g-

1%0 ay> 1 <Tyg>pe=0

10 00

. 3
<T 9960 = re <Oy Toy= % vy

—_ (14)
| V3
<Tg1 >0 == %1z %x+01x%8, 7
1 .

Typ>00="=<30),05,~1>,
vhere

707100 =-l/4SpMM o Tp, e =
If one introduces the angle §=1/28, -dA ' then the unit vec-—

tors 1 . j and ¢ along the axes x,y _.and Z respectwely can
be e Fressed through the vectors 7 , @ and ®# in the following
way /2

- -+ -
i= fging +mcos @



—y

=0

(15)

- 2 > .

gq=Ffcosf-msing.

It is necessary to add the relativistic spin rotation ef-
fect/4/ to the result og_ ref, /2 / Due to this add1t1ona1 rota-
tion the unit vectors i and § turn by angle ) around n axis.

The result of the rotation by angle @ around the ¥ axis
for arbitrary vector & is given by expression/5/ ‘

R+ (@3 = 3(fd) (1-cosD)+3cos0+ [A'd)sin® (16)

and

Rﬁ,(ﬂ)-é-gcosﬂ +msing

X . - an
Rﬁ,(g)fﬁ =mcosf) — fsinQ
then
A =Rz(@)7 = Esing "4 cosg *
(18)

-
T ~R (@ )q. = fcosp — Msing *

take place, where
6°(@4)=0(04)~Q(B 4).

The comparison of (18) and (15) shows, that relativistic
effect of spin rotation is effectively reduced to a change of
§ for #’in the proper formulae of ref./2

For @ angle, defined as a difference from 7 of sum of inner
angles of the Wick trlangle Y (e ® +g -@d . we have

Q=®-@A-—wd . _ - (19)

Therefore angle {} is calculated as a difference between the
Wick angle w and its nonrelativistic limit. It is clear, that
m<9—®A‘ and & z20. . :

For process (1) the Wick angle for deuterons is given by
expression - - ‘

1-4M ¥s e, ‘ (20)
(A+A/8)% ~aME/s A

where A= Md—m2 s s=2M%; 2ME ; My, M and m_ are masses of

the deuteron, nuclecn and pion respectively, E is equal to to-

sin Wy T {
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tal energy of protons in the lab.system, and

6°(8)=0 (8) + 3-8, = (21
and
0 @RYy=wy(n/2)-n/d. (22)

" The polarization tensor Ny,

‘ - *,. 2
UUNuv =1 /4 SpMM T 4Ty (23)

like a tensor Ayy , has five components. The conrdition (7) for
process (1) leads to the relation /2

Nnn“'Ann° (24)
It is true for amplitude Mp,that’@/

+.» +
SpMM™ (%, #,) =SpMM ™ . {25)
From (18) and (13) it follows, that
Ny #Np=Npg + N =mi=N =1%A., . (26)

After taking into account (15) and (18) the left-hand part
of formula (3) has the following form

Lgo=1/2{3(N [ 4N  —N_ )-11}. 27)

X zZZ nn

With the help of (24) and (26) we obtain formula (3).

3. A. Let us consider scalar particle production in the re-
action similar to (1). The invariance under the reflection in
the reaction plane

(7, 513, DM, (3, 1)) =M (28)

gives for scalar particle production case

=Apngy (29}

nn

and

Nxx+sz =1~A * (30)

nn

Substituting (28)-(29) into equation (27) we obtain relation
(4.



B. It is interesring, that the form of (3)-(4) relations’
does not change if we apply a magnetic field directed perpen-
dicularly to the reaction plame. The effect of such a magne-
tic field gives a rotation of the second rank tensor of quad-
rupolarization in the reaction plane with respect to the di-
rection of the motion. Nevertheless the quantity :

_ 2 o2 _q24y_ ‘ '
Lo =<3, +8;~87)-2> | (31)

has cylindrical symmetry, s¢ it is not changed by the rotation
around the axis oy. Though, due to the effect of magnetic field,
the components <Top>qp are transformed into other <T 00
components (see formulae of ref.// )}, the combination of<T 0
and <Ty;>, defining the L, quantity is not changed by thel?
presence og magnetic field

Lip =2v3 <T22>0’0 +V8 < T, 0¥ =2 VB <T 500 +V 2<T > p0=Li o - (32)

This is valid not only for the pp--da.-r+ reaction but for
an arbitrary two body process,

C. Relation (3) is valid at arbitrary energy of collision
and momentum transfer. At the angles ©,-0 and » the quantity
<Tyy>pp kinematically vanishes and relation (3) gives a direct
connection between <Ty0>gp and A (0)

VE<T, > =14+3A0 (8=0,r). . (33)
The quadrupole polarization in reaction (1) has not yet been
measured*. 4 ‘

The measurement of A,(0) has been carried out in SIN at
proton energies of 515 and 575 MeV/19/and it has been extended
to 494 and 536 MeV, In the investigated region (08>_cosz®” =0
at 575 MeV) the value of App is near to -(0.7%0.9) which gives
an evidence of dominant transitions from singlet states of the
initial NN system. The extrapolation of the A,(B® )} data to
c082®”=-l (for backward deuterons in c.m, system) gives the
value App(0)=~-08In this case formula (33) gives \/'2“<T20>00 =
= -1.4. The extension of measurements on A,, and < Tpo>gg tO
the region of small angle pion production is of interest for

*In paper/r"/ deiteron polarization <iTy, >po Was determined at
Tp = 670 MeV at three values of angle ®4.This data are in ge-
neral agreement with the results of Niskanen/8/, In the work
of Tripp 9/ the polarization of deuterons <iTy >4 wWas mea-
sured at 340 MeV. ' ' '
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reactions (1)-(2) which are under theoretical and experlmen-
tal study for a long time/11:128.2./, Recent calculation using
the triangle diagram approximation 19/ gives a definite predic-
tion/14/ for <T80(0'&nw)>00 Among others the model gives a po-
sitive <Tou(@ =m)>, 00 below the threshold of the A produc-
tion in the NN collisions and <T20(ad"“‘)>oo turns into ze-
ro near the threshold having a negative value after it. The
above results using simple extrapolation contradict to this
prediction of the triangle model in sign and absolute values.
The extension of measurements of A,, for smaller angles O

{(in order to remove the uncertainties due to the extrapola-
tion) and for other energies has a definite interest. These
new experiments could help in the comstruction of a consis-
tent model of processes (1)-(2) and would be important for the
elaboration of a more general theoretical treatment for the
reactions of similar types.

D. The existence of relation (3) expresses that the spin-
spin effects in reactions (1)-(2) cannot turn into zero at
arbitrary energies. This important statement must be taken
into account at elaboration of a model., At high energies the
cross section of process (1) is strongly decreased with ener-
gy and this fact gives a limitation for the effective usé of
relation (1). Taking into account that at high energies the
main contribution to the c¢ross sectionm of (1) is given by the
exchange of nucleonic reggeon with intercept ay(0)= -04 we
obtain

do s _olagyom-11 _ :

EF~{f:ﬁ~(‘EB) =~(8/8,) 28 (34)

The experimental cross section of process (1)} was measured
up to 21 GeV in works by Dek}esﬁ et 31/11/ Anderson et al./lf
Heinz et al! 11/Allaby et al,

In the energy region where the observation of the cross
section of process (1) is possible, this process may be used
for measurement of the polarization of high energy proton be-
am, if the target is polarized. As the progress of the expe-
rimental technics allows the observation of smaller and smal-
ler cross sections, the energy region of the investigation of
polarization effects in process (1} and the use of that for
the study of spin effects in other process can be extended.

E. The measurement of the contribution to the differential
cross section, obtained with a target with known polarization
parameters <T,, >, and <Tgqy>, , of course, allows the deter?i??-

£fA® lts of work/!®
tion of AL, (@) using relatlon {3). As the results of wor

for p-dscattering show, the measurement of <Tyo>00 is pos-
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sible at ®; =7 that is in the kinematical region where the
measurements of A (@) in process (1) are absent. '

The more complete experimental investigation (adding A, =
= A, in the notation of work/19/) of polarization parame=~
ters in reaction (1)-(2) is of interest for obtaining addi-
tional information about the possible existence of two-proton
resonances of resonance-like mechanism.

F. A1l the conclusions given for the process (1) are valid
for the reaction

n+p -+ d+7° (353)

also, as due to the isotopic invariance all the appropriate
polarization parameters in the two processes are the same,The
relation (3) is true for {(35) and other similar processes
with production of other pseudoscalar particles, for example
for

D+D d+"q° .

Relation (4) waits for the discovery of scalar particle
production in a process like (1).

G. We consider now the relation given by Pauli principle
at ®=7/2, where the transition matrix has only three scalar
functions/12/ and has a form given in Appendix !. This fact
makes the direct reconstruction of the amplitude on the ground
of experimental data easier and leads to new relations.

The scalar amplitude E=}E}e¥®e ' and the combinations of
amplitudes A+C=]a]|e'P%* and A-C=|b|e'¢b can be expressed
by formulae

8181%/0, =1 ~Ay +Ay+A,,

2
32|E1 /oy =1—A, ~AL ~A_
(36)
41b1%/0, =14A

(e, ~e)=Ay/ Ay =—A /A G ahy /A .

For the quantities describing the polarization of the fi-
nal state deuterons, as defined in (12) and (14) when relati-
vistic rotation of the spin was taken into account, we have

for ®=r/2



<1T11>00 =0

VE <Typog =l == Ay, Y1 —sin20 *(/2) ]

(37)
<Tyy>p0 == !.3.-.-(1-1\ an) COS2 8 “(7/2)

v 1 sin9g”
<T22>00 =_2"[Ann+?(1—Ann)[l—mn26 @/2)1,

where 8 °(n/2) is given in }22) The expression (37) follows
from formulae (7) of ref. with substitution of #° for @
and when the relation

2NZ =A _—

at ®=g/2 has been taken into account.

In some works the axis oz was directed along the path of
the incident proton. At Ty= 575 MeV 28, is equal to 23°% On
neglecting the finite value of &; the quantity <T, 1(rr,a’2):-mturns
to zero. As can be seen from (37), the quant1ty<T21(zr/2)> is
negative.

At 375 MeV, by taking into account the results of work/m/
we obtain

2161% /o, =005 2lal®/o; ~025  BIE[*/o, 207 b =28

For the quadropolarization of deuterons at angle ®=r/2 with
A =-0 .9 we have

<T21>00-=-0.41 <T20 00—0 57 <T22 00= ==072.

When relativistic spin rotation effect is neglected
<T 20 (:r/2)>' =1 f{_‘i‘ as was mentioned in ref./s/ and-

<T22(n'/2)> ==0.78 (wvhen A - -0.9 ). Relativistic spin
rotation effect is maximal for <T21 (n/2)>h¢ and is relative-
ly small for <Tgy> and <T,,> at 575 MeV. These contributions
will be more and more important on increasing the energy of
particles and the accuracy of experiments.

4. For the proof of generalization of relation (3) for the
case with polarized initial protons the following property of
the transition matrix M, is taken into account.



A. As in the final state the NN system 1s formed in trip-
let state, Mp can be written as

Mo=TMg, . | : ' (38)

where T 1/MB+0 -a ) is the trlplet projection operator.
B. As it is true that

To T (39)

iv%2u

[l
Tof Tiu%2v

for arbitrary operator A we have °

+ + -~ -~
SpMAM al-va-eu = SPMOPAMODT UiVUQUT =

. (40)
=SDMAM 02‘?0 :
This means that
+ +

SpMAM %8 Tom = SpMAM % ot
and '

SPMAM a’g on —SDMAM T30 af *

C. Taking into account (38)-(40)

SPMAM™ (3, 7,) ~SpMAM" : C(41)
a_nd _

+
SPMAM (afoeg+a : m)sSpMAM (1—:ai_n_02n). (42)

The conditions A-C follow from the results of work/g/.with
the help of (12) and (14), expression for the operator L

L=2vE Tpp + V2T, =3( 5] +5% ~5%)~2431(5,5,+8,8, ) (43)

‘can be written in the following way

L-:—--(crig 22 + 7 ) 1/2+‘-“'[(g

1m% 20~ %o “2n in 2l +

(44)

L +op oy )5311164-(01rl Tyt & y0 mgmmeﬂ

if we take into account the relations (15) and (18).
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Taking into account (40) and (42) the expression

+7 & *
SpMAM L=-2-:SPMAM ( a5 +01m P 1110211)

_LSpMAM +..5LspMAM [(o) 050 +0;p @, )80 "+

cosg’
+(01 02m+ olmazn)«- _H }

can be written as follows

SpMAM L =SpMAM™' (1 =3 0 Pap ) +

2n
(45)

i3 + o . ’ ’
+—-2-~.SpMAM 0y p (opgsing “+ o, cosd ).

If A<1' one obtains formulae (3) immediately.
If Amoyy having the motation for the left .side of (45) as
oobiyg and using (7} we obtain
6
Lo =A;+34,. (46)
Similarly, introducing the
opLg,= 1/4SpMM" o g,
and
'1/4SPMM %10%n
we obtaln frem (45) that

=A2 +3.A1 i ' N L (47)
and

L <A 4+3. (48)

nn nn
Notice that due to the Pauli principle at ©=7/2 A, +A,=0
and ‘

Ly (7/2) ==L, (/2) =28, (n/2) = =24 (1/2) . (49)

If we accept the density matrix (8) for the initial trans-
versely polarized protons (f" zP d andl’z=!;ﬁ) as the opera-
tor A then .

P <L, >"°0[L00+Pln[‘n0+%n£‘0n lhpan I

Pln 2n - {50)
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We introduce the cross sections in the pure spin states

o(t1)=o (1 +A; +A, +Ah, )

o (44 )mop-Ay ~Ag +A,)
(51)
ot} =gyl '-;.-Ai -, ~A )
o(41) =opl=A +A, ~A )
and we have the notations <L, ;>, <L_, _ 2 <L. ‘>"hﬁd<L_n n >

for the values of the operator L in these states. From (50)-—
{51) we have

< Ln'n> ™ _(L_n'_n)'- =4

(52)
<Ln'_n>=<L_n'n> =g,
In the experiments where the beam and the target are polari-
zed in the reaction plane the Lg , L __, L, and L ,can be
obtained. Formula (45) yields

LZE -Aez --‘3Amm; LEm-Afm +3Amf
(53)
me'Amm_ 3AE€ ; me=Amf+3A8m -

The parameters Lgg , Lg,. Ly and LBm are expressed in
terms of the corresponding quantities in laboratory system as
follows

Lgg =(Apy—Ag )c08B + (A, +A,, )sinB- (A  +A )

L mm_'"'(A k=B gg) cosB- (A, +A )sinB-(A, +A )

(54)
Ly, =(2cos®-~1)A, - +(2cos®+1)A_, ~R(A,, ~A g5/ 508

Lm£==(?,cos-®+1)Aks +(2cosB-1)A , —2(A,, ~A _)sin® .

The expressions for Lgy, Lpgs Lgg » Lgy » Ligg » Lgp oLy
and L, are given in Appendix 2. :
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In analogue with (46)-(48), expressions for production of
scalar particles in the reaction of type (1) can be cbtained
straightforwardly. In this case

Ln0=A1_3A2 Log=Ap =34,

(55)
Lnn'Ann—lg'
Besides this using (4) and (51)
<I“n,n > - <I"---1'1,---:1) ==2

(56)
<Lﬂ.--l? =<L > =4.

=0,

APPENDIX 1. THE WILKIN RELATION

Recently Wilkin has established /18/ 5 useful relation among
the A, , App and Agg components of the tensor Ayy for the
process (1) in forward direction., This relation can be  written
as follows

Agx FAgg F Apy =l _ (A.1)

in our notation, where the upper (lower) indices correspond

to the production of pseudoscalar (scalar) particle. The ex-
trapolation of data from /19/to 8, =0 has given for the first
time the possibility of the direct determination of negative
parity of pesitive pion.

For the demonstration of relation {Al) we begin with gene-
ral structure of amplitude of the reaction of type (1) with
forward pseudoscalar {scalar) particle in the final state.

In the case of pseudoscalar particle we start from the ge-
neral expression

= = o s ” -+
As My =TMy,=T[A (g, +0,,)+B" 0, -, }+C (i[r,r1 7, bl . (A.2)
T - ‘ : (A.3a)
T(Ulk +0,, ) =0, + 0
and .
Tlo, 0 +i(k[& 0 D=0, -0 &S 3D (A.3b)
1k~ 2K 1% = Y1k T %2k 1%¢e o

we obtain the final result

My,=T {ap(aik +02k)+'ﬁp{dik-aék+‘i(k[ai a, Dt ‘ _(A.&)
where on taking into account (A.3) the T factor can be omitted.
So M (0 contains two independent scalar functions.
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For the production of scalar particle the transition mat-
rix is written in the form

M =Ty, T4, 4B, oiy0p, + 0y (3} 7)1 A
and using the relatioms .

(8 5, =3~2(87,), T(aapf =T
and

Tlso o) =1 40,04
(A.5) can be written equivalently as follows

MB ‘TMOEET‘AS+CS +'Bsalka-2k1=T(a+Bo‘lka‘2'k) ) (A.ﬁ)

which contains two independent scalar amplitude also.
Using the general expression (4.4) and (4.6) in forward di-
rection we obtain for the production of pseudoscalar piom

. 2
op=2lay % +41B, |
. 2 .
ophyy =21a,(* 4|8} - @D
.2 '
a‘o Aﬂﬂ =00ASB =—4IBP [ R
and for the production of scalar particle

o =1-Uai®+1B1H+ LlasB|?

% Am’x =UOA55=%*{‘1'-B12 (4.8)
0o +A,, )= lasBl® .

Taking into account, that at 8, =0 Agg=A;, ., for the spin-
less particle for both parities we obtain (A.1) immediately.

It can be seen from (A.7) and (A.8) that at B,=0 A is
negative (or zero) for pseudoscalar particle and is positive
(or zero) for scalar particles. Therefore the fact, that A (0)
is negative in process (1) already demonstrated the negative
parity of positive pion. This conclusion, based on the extra-—
polation of one experimental value, less sensitive to the ex-~
trapolarion procedure to @_ =0.

As it was mentioned in /18kfelation (A.1) is valid for
®,=r/2 in the case of pseuodscalar particle production.
We present here the demonstration.

Due to the Pauli principle Mp(z/2) contains three scalar
amplitudes and can be written in the following form

14



Mp (#/ 2}/ V§=A'("1‘k + -a-zk)+iC(al-na-2k' +0k*%gy )+ ‘

Elé . (A.9)
tE Lo emagyr t i g — a9, M ]
As at ®=n/2 =k, A=A, s+ . We can write
M (7/2)(q  opy =0 0” = 0y 0 V=M (7/2). (A.10)

In this case
Akk_ —Ap A=A~ Agy — A=l

and we obtain (1) for the production of .pse.udosc:atla"r particle.
The existence of the relation (A.1) at ®_ =0,r/2, the equa-
lity Ay, =A,;, at B; =0 and the relation (3] are. useful for

evaluation of the experimental data and for the phenomenologi-
cal analysis.

APPENDIX 2
If we have for A=ayp » Tym v T8l > aﬁm s Tinfof o "’1:_2 Ghps

%y %m, and 0y p ¢y, Tespectively, then the first two terms

in (124?) vanish and for nonzerc elements we have

i3 +
L. _i3 +
dgLino= - ‘g“"SpM‘HE_%nM Y2(q)g

IUOLOf z-—.s-—LSpMO"lnG"ZmM Oz(q)R

L .- i3 o MY :
% Liom= = ‘g‘SpM Tin%2 M 0pq) .

COLHE=—é—-SpM0‘2 M o

m 2a)p
i3 . + ,
i3 anm +
99 Lige® -g“SPM %G o)
i3 oMt
ToLpg '§“SPM“1E Msch)R
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The unit vector T along the path of the deuteron and its
rotation value qR are given by last expressions in (15) and

(18).
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