

сообщвния объедииенного института ядерных исследований

дубна

5488 $|2-8|$

$9 / x+81$

E2-81-548
A.D.Linkevich, N.B.Skachkov

PROTON STRUCTURE FUNCTIONS
AT LARGE TRANSFER MOMENTA
AND ITS DESCRIPTION IN A MODEL
WITH THE QUARK-AMPLITUDE FACTORIZABILITY ASSUMPTION

Recently new results of the experiment on the deep inelastic muon-nucleon scattering in the kinematical region $0.35 \leq x \leq 0.65,27.5 \leq 0^{2} \leq: 170 \mathrm{GeV}^{2}$ have been obtained $/ 1 /{ }^{*}$. A very small violation of the Bjorken scaling ${ }^{(2 /}$, studied earlier in Ref. ${ }^{1 /}$ on the basis of general principles of the quantum field theory, is a characteristic peculiarity of the data on the structure function $F_{2}\left(x, 0^{2}\right)$ (obtained with the assumption $\mathrm{R}_{\mathrm{m}} \mathrm{o}_{\mathrm{L}} / \sigma_{\mathrm{T}}=0$).

Since a field-theoretical description of the system composed from three and more particles (quarks) is a rather complicated and yet far to be solved problem, then to obtain an explicit form of the structure functions, it is necessary to use model representations.

In this paper it is shown that the NA-4 experimental data as well as the data of the earlier SLAC experiment/4/ are well described by the simple quark model with the factorizability hypothesis namely the dynamical model of factorizing quarks (DMFQ) ${ }^{15 \%}$.

DMFQ is an extension of the model of factorizing quarks $\mathrm{B}^{\prime} /$ assuming that in a hadron collision a some effective selfconsistent field $V_{\text {eff }}$ is produced and quarks of the hadrons scatter as quasi-independent objects on this field. DMFQ supplement this picture by the hypothesis that at a large-angle scattering the range of a quark interaction is characterized by an effective size to be equal to the quark Compton wave length $M_{q}^{-1}\left(M_{q}\right.$ is an effective quark mass). Under this assumption a technique of the expansion over the unitary finitedimensional irreducible representations of the Lorentz group realized by the functions ($\mathrm{h}=\mathrm{c}=1$) ${ }^{/ \prime}$

$$
\begin{equation*}
\xi(\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{r}})=\left(\frac{\mathrm{p}_{0}-\overrightarrow{\mathrm{p}} \overrightarrow{\mathrm{u}}}{M_{q}}\right)^{-1-\mathrm{ir} \mathrm{M}_{\mathrm{q}}} \quad ; \quad \overrightarrow{\mathrm{r}}=\mathrm{in} \tag{1}
\end{equation*}
$$

permits us to find an explicit expression for the amplitude of the scattering of an individual quark $\mathrm{g}_{\mathrm{q}}(\theta)$ at an angle θ

[^0]in the potential $V_{\text {eff }}{ }^{\text {f/ }}$:
\[

$$
\begin{equation*}
\mathrm{g}_{\mathrm{q}}(\theta)=x_{\mathrm{q}} / \operatorname{sh} x_{\mathrm{q}} . \tag{2}
\end{equation*}
$$

\]

There $X_{q}=\operatorname{Arch}\left(1-t_{q} / 2 M_{q}^{2}\right)$ is the rapidity corresponding to the transfer momentum $t_{q}=t / n^{2}$, n is the number of the quarks in the hadrons. Products of the quark amplitudes (2) determine, in the DMFQ, amplitudes of binary processes and the electrical form factor of the hadron A composed of n valence quarks ${ }^{\text {/ } /:}$

$$
\begin{equation*}
G_{A}(t)=b_{A}\left(\frac{x_{q}}{\operatorname{sh} X_{q}}\right)^{n}=\left(\frac{\ln |t| n^{-2} M_{q}^{-2}}{|t| n^{-2} M_{q}^{-2}} \cdot\right)^{n} \tag{3}
\end{equation*}
$$

To find a form of the structure functions in the threshold region, in Ref. 18 there were used the formula (3) and the Bloom-Gilman relation of a local duality ${ }^{\text {®/ }}$, that for the proton structure function F_{g} has the form

$$
\begin{equation*}
F_{Z}\left(\omega_{g}\right)=\frac{t}{1-\omega_{B}} \cdot \frac{d}{d t} \cdot \frac{G_{E}^{2}(t)-t / 4 M^{2} \cdot G_{M}^{2}(t)}{1-t / 4 M^{2}} \cdot: \tag{4}
\end{equation*}
$$

In (4) G_{E} and G_{M} are the Sach electric and magnetic form factors. The Bloom-Gilman scaling variable in (4), ω_{s}, is given by the expression

$$
\begin{equation*}
\omega_{s}=\omega-\frac{M_{B}^{2}}{t}: \frac{W_{i n}^{2}+M_{s}^{2}-M^{2}}{t}, \tag{5}
\end{equation*}
$$

where $W_{i n}^{2}=\left(M+m_{\pi}\right)^{2}$ is the inelastic threshold of the leptonproton scatter $\mathrm{ang}^{\pi}\left(\mathrm{m}_{\pi}\right.$ is the pion mass), $\mathrm{M}_{\mathrm{s}}^{2}$ is parameter that takes into account the resonance contribution. Substituting (3) into (4) and taking into account the scaling relation between the electric and magnetic procon form factors $G_{M}=\mu G_{E}$ (μ, is the proton magnetic moment) we find ${ }^{8 /}$

$$
\begin{equation*}
F_{q}\left(\omega_{B}\right)=C \frac{\mu^{-2}-\tau}{1-\tau} \Phi\left(x_{B}\right)+C b_{p}^{2} \mu^{2} \cdot \frac{\lambda\left(\mu^{-2}-1\right)}{4 M^{2}(1-r)}\left(\frac{x_{s}}{\operatorname{sh} x_{s}}\right)^{2 n} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Phi\left(x_{\mathrm{B}}\right)=4 \mathrm{~b}_{\mathrm{p}}^{2}{ }^{2} \mathrm{M}_{\mathrm{q}}^{2} n^{3}\left(W_{\mathrm{in}}^{2}+M_{\mathrm{s}}^{2}-M^{2}\right)\left(x_{\mathrm{s}} \operatorname{ch} x_{\mathrm{s}}-\operatorname{sh} x_{\mathrm{s}}\right) \times \\
& \times\left(\operatorname{ch} x_{\mathrm{s}}-1\right)^{2}\left(\operatorname{sh} x_{\mathrm{s}}\right)^{-3}\left(x_{\mathrm{s}} / \operatorname{sh} x_{\mathrm{B}}\right)^{2 n-1} \\
& r=\frac{W_{\text {in }}^{2}+M_{\mathrm{B}}^{2}-M^{2}}{4 M^{2}\left(1-\omega_{\mathrm{B}}\right)}, \quad \lambda=\frac{W_{\text {in }}^{2}+M_{\mathrm{s}}^{2}-M^{2}}{\left(1-\omega_{\mathrm{B}}\right)^{2}} .
\end{aligned}
$$

Table
The results of fitting the NA-4/1/ and SLAC ${ }^{/ 4 \prime}$ data
by formula (6)

Tine variable

$$
x_{\mathrm{s}}=\operatorname{Arch}\left(1+\frac{W_{i n}^{2}+M_{s}^{2}-M^{2}}{2 n^{2} M_{q}^{2}\left(\omega_{\mathrm{g}}-1\right)}\right)
$$

is found from $\chi_{q}=\operatorname{Arch}\left(1-t_{q} / 2 M_{q}^{2}\right.$) according to (5) by the change $\mathrm{n}^{2} \mathrm{t}_{\mathrm{q}} \rightarrow-\left(W_{i n}{ }^{q}+M_{s}^{2}-M^{2}\right) /\left(1-w_{\mathrm{s}}\right)$. Formulae (6) contain the three parameters: the quark mass M_{q}, proportionality coefficient
C , and parameter $\mathrm{m}_{\mathrm{s}}^{2}$. As is shown in Ref. B^{\prime}, the formulae (6) well describe the SLAC data ${ }^{\text {/4/ }}$ not only in the threshold region $x 20.75$ but also all the data completely. Still better agreement with the experiment is achieved when in formulae a Regge-like behaviour of the structure functions at $x \rightarrow 0$ is taken into account. A use of the formulae for the form factor (3) and the Bloom-Gilman relation for the determination of the proton structure functions F_{1} led also to a well description of experimental data ${ }^{8 /}$.

Results of our analysis of the NA-4 experiment data ${ }^{\text {/// }}$ by formulae (6) are represented in the table in four first rows $(\mathrm{N}=1,2)$ that contains also results of comparison of (8) with the SLAC data with $x \geq 0.35^{/ 4 /}$. The difference of values of the proportionality coefficient C is caused by the need of introducing the normalization factor for the NA-4 data. A natural increase in magnitude of the parameter M_{s}^{2} at the transition
from the SLAC data to the NA-4 data reflects the fact that a number of resonances produced in the scattering process increases with Q^{2}. The listed under $N=1,2$ in the table set of parameter values is not unique one. A description of the data with the value x^{2} per one degree of freedom ($x_{\text {g.f. }}^{2}$) of an order of unity is achieved also at some other parameter values; part of them is.listed in the table. Note that the parameter values are stable and the quark mass is consistent in magnitude with the values obtained in Refs. ${ }^{5,8 /}$ and other papers on the description of the processes in the framework of the DMFQ.

The authors are thankful to I.A.Savin and V.V.Sanadze for useful discussion.

REFERENCES

1. Klein M. Proc. XX Int.Conf. High Energy Phys., Madison, 1980, part 1, p. 773.
2. Bjorken J.D. Phys.Rev., 1969, 197, p. 1547.
3. Bogolubov N.N., Vladimirov V.S., Tavkhelidze A.N. Sov.J. Theor.Math.Phys., 1972, 12, p.305; Vladimirov V.S., Zav ${ }^{\text {jallov B.I. Sov.J.Theor.Phys., 1979, 40, p. } 155 .}$
4. Riordan E.M, et a1. Preprint SLAC-PUB-1634, Stanford, 1975.
5. Pashkov A.F., Skachkov N.B., Solovtsov I.L. Sov.J.JETP Lett., 1975, 25, p.452; Skachkov N.B., Solovtsov I.L. JINR, E2-10530, Dubna, 1977.
6. Kawaguchi M., Sumi Y., Yokomi H. Progr.Theor. Phys., 1967, 38, p.1183; Phys.Rev., 1968, 168, p.1556.
7. Shapiro I.S. Sov.J.Dokl.Akad.Nauk SSSR, 1956, 106, p.642.
8. Pashkov A.F., Skachkov N. B., Solovtsov I.L. JINR, P2-11211, Dubna, 1978; JINR, P2-12003, Dubna, 1979; Linkevich A.D., Skachkov N.B. JINR, E2-12531, Dubna, 1979; JINR, E2-12652, Dubna, 1979.
9. Bloom E.D., Gilman F.J. Phys.Rev.Lett., 1970, 25, p.1140.

[^0]: *We use the standard variables: $Q^{2}=-t=-q^{2}, \nu=P q / M, x \geq 1 / \omega=$ $=Q^{2} / 2 M \nu, W^{2}=(P+q)^{2}$, where P is a momentum of the initial nucleon, M is its mass, q is a transfer momentum.

