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This work continues the previous one111 ,-therefore using formulae 

of the latter we put the number I in front of them,- ne'vertheless we 

shall try to present the results in a way that it may be read, indepen­

dently. 

The equation under consideration is 

(I) 

where ("f).._ = 'lf("'l(x
7
t) !a=l, ••• ,nl and 

- p h. 

(V¥) = 2:: I '1.1'("-)1~- L. 1"~'"'"-lj'' ( f+- v fl..). 
Cl."'i. a..zp~L 

(II) 

This system is quite complicated since a large set of boundary 

conditions are possible for it. We reduce the problem to: simpler one 

but conserving in main features essential properties that stands it 

out of previously discussed. Let us for that lciok at the plane wave 

solutions to system (I) {"condensate'" solutions): 

y<a.J = s'"-le.<pti(cv._t-K .. x)] 

with We1.= t<~- (Ss.) . Following to rer. 121 one can study the 

stability of these solutions under infinitesimal perturbations and 

obtain as a result the dispersion relatiOn between the perturbation 

frequency c52 and wave number K 

It implies the condensate to be stable when ( SS l ~ 0 , i.e., the 

isotopic space metric is negative "'i:. (sCa..JfZ:s;;, ?:;/sca..J/Z. 
Therefore solutions with nontrivial~b~undary cdn~tl~tions exist (if at 

all) only in the case of either noncompact group U(p,q) or compact 

U(o,q). For example in both models U(2,0) studied by MANAKOV131 and 

U{t,1) (see rer. 141 l there exists so.lution 
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but in the ,. 

= sc" seek. .e. x 
s" -\:.o..nh. -.e. " ) 

(III) 

first case it is unstable due to instability of the conden-sate (vacuum) which this solution was constructed on. In the models 0(1,1) and 0(0,2) solution (II) should be stable. In general, nontri­vial boundary conditions mean that we have a problem of the interac­tion of infinite number of particles that leads to renormalization of physical quantities and the most adequate language for treating it is the language of noncompact groups all which unitary· representations are infinite-dimensional. It is this why we have a rich spectrum of stable particle-like excitations even in the framework of the simplest pseudo-unitary group 0(1,1), 
The plan of the paper is as follows: after a short review on . 

U{t ;a) and U(O,"t) NLS equations the properties of soliton solutions of system U(1,1) are discussed and their possible physical interpretation is given •. 

In Appendix the set of integral equations of the inverse method for the U(p,q) system is given to conclude the general analysis of part I, and the one soliton solution is obtained using them, It coin­cides with one derived by isotopic rotation of U{t,O) one soliton solu­tion. 

1. U(t,O) AND U(O,t) EQUATIONS 

(1) 

We recall briefly the properties of solutions to these equations {see also ref. 141 and works cited there). 
a) In the first case U(t,O) system or 'Je.)O, the Cauchy problem may be completely solved for the functions ~(X) rapidly vanishing at both infinities, A number of solitons and waveground occur as a result of an initial wave packet breaking down. The first are related to the discrete spectrum of the linear problem operator L, the second are related to the continuous one. Such ~olutions may be at t·he quan­tum and qua,siclassical levels thought as follows: Solitons -are the 

bound states of Ns "particles" of mass eQual ~ which energy (spectrum) 

• 
121 These results have partly been published in ref. • 
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assumes the form: 

E 
_ p,2 .,_z .t3 

s- N - iZ iYs 
s 

M = Ns 
s 2-

( 2) 

The second term in the first relation is the binding energy. These 

formulae may be easily obtained via the Bohr-Sommerfeld quantization. 

Note also that one can rewrite the relation (2) in differential form 

with 

tion 

1 r= ~ 

dE= ;dNs (3) 

'lY's2. - ~N~) being the frequency of the soliton solu-

Continuous spectrum of the operator L (Wave background) corres­

ponds to "particles" of ·masses; and dispersion relation E:p2 • Then 

the integrals of particle number, momentum and energy look as folloWs 

. N = [r•1J'dx = JMpJdp + L: Ns 
-oo -oo S= 1.. 

) 

p =;J(v"¥x -v,• V)dx = fp n.(p) dp +,f (5) 

f. ~f/'!fx/2-ot/'lf/ 4 
)dx ~Jp2 1'L(pJdp + ~ ~~ •(3?lN5--x."N/). 

By adding into the right hand side (2) the term~ one obtains 

binding energy 

coinciding exactly with that found in re-r. 151 where the quantum Ns 

Bose-particle problem was solved. 

b) In the case of repulsive potential (U(0,1) -system or ~<O) 

treating becomes considerably complicated. The operator Lis now self­

conjugate and does not possess a discrete spectrum under trivial L 

boundary conditions at infinities and solutions behave as ~OC t-L 
when /t/ -.,. oo 

Non-vanishing boundary conditions correspond to a Bose-gas of 
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finite density f , which is defined by the asymptotic value of field, i.e.~ {1Jf'/ 2_,..J at fx/~oo To eliminate time­dependence of the field phase a chemical potential ~ used to be inserted into the equation of motion, or proceed to H'~ -H - ~N and ~= 23tJ . The interaction term then assumes the form ,t ';;le ( /'V(L-J) 1Jf •. The .integrals of particle number, momentum and energy should be in this case renormalized as follows N = filv!~-J) dx > 
-~ ~ 

P =.!. ji(v'v:- v• '!T)dx + o c<-.2-L. X X J J 

E= Jli~Jz+-'de.(W!"-.fY]Jx . 

161 

-- - r:> _o L"" being the phase shift: '{T(~!= Y.J' , '¥'(-~!= Vj e . We notice that at the quantum level such a renormalization appears natu-

with 

rally due to commutation procedure at constructing a physical vacuum stat-e. 

In this case the operator L possesses again both continuous and discrete spectra. The continuous one corresponding to the Bogolubov .spectrum of excitation has the form 

w, (p) = /pl(p~+-4-atf f!\ 
f (!<) = ~-~K~-><-j' 

' 

171 

and may be obtained via the perturbation theory. The discrete spectrum corresponds to the so-called "bole" excitation mode which was first found and examined at the quantum level by Lieb161 • In the classical case we have (see rer. 141 l 
- z _/ "'". N._ =- -v ~.._- "-

"- J 1 ' 

( 
! - ~ 1J-Z ') P : .&._ 'de.j ce:\- .:k_ - 'k yatP- -iL "'- .t --lii1 z J 4 ' 

181 E 8 ( 'b'fl. ~/z i z N 3 ~ = 3:le "'.f- Lf) =- jde J,_ ' 

.2- C6:l - j __11:._ 
.t-.fiij ' 

• 
-~t W'e should stress here that the transformation y __.,. r e J relates transformed equation and equation (1) as well as their solutions. 



where '1r is the velocity of soliton-bubble. Upon calculating integ-

rals (6) the spectrum (8) can be easily verified to occur for the 

following soliton solutions of the kink type 

·11' 
L "£ 

19) 

Classical spectra (7) and (8) go over into corresponding quantum ones 

at ae-,.o 141 • A characteristic feature of the hole excitations is the 

velocity dependence of the number of elementary holes Nh= -N bounded 

in the soliton-bubble: the greater 1.r the less number of holes are 

bounded in the bubble and at ?r ..._,. ~ the soliton mode (bubbles) 

disappears (we have analogously dElld'l.T < 0), Subsequently we will call 

dispersion a dependence of inverse soliton size on ~ and Nh and 

spectrum a E(Nh' '(y ) dependence, 

2. U ( 1, 1) SYSTEM 

We have now the following .set of equations K 

i_ 'o/tl'l + Y,~L> + 2, (\VIll\~-\ yt•l\') yl<) = 0 

~ 'f~')+ 'If;~+ :z-(IY1')l'-l"~'"1')nv~~~ = o 

Hamiltonian density 

dt. = 1'1\i;t)l'- \''P)')I"- (\'1ft"\" -\V\'ln 
and the integrals of particle number, momentum and energy 

~ 

N i = J /Y1'>(''clx 
~ 

p = f f( r;fi'yl•i_ -ro•'I/T;"- w-:_zi*"/f'-2! r '1/F\<i•"f"~'') dx 

~ 

= J J{ ('; t)dx 

( 10) 

(11) 

\ 12) 

In the long wave continuous approximation the Hubbard model may be 

reduced to a system of type (10) 181 

----------------------
• We were awared that an analogous system was obtained in rer. 171 , 

but no comments on it we're given by the authors barring the existen­

ce of three types of solutions. 
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Let us first focus on those certain properties of this system which result form the general analysis of part I. 
Transformations '\f 1 =oR 1Jr when conserve the inner product ( ~~) generate four parameter pseudo-unitary group 0{1,1). Corres­ponding Noether currents J~k {1,k=1,2) form 2x2 matrices with components 

( 13) 

The Poisson brackets of the elements of "charge" matrix . Q~lc:::;; fJt_d.x and the Hamiltonian H vanishe, i.e.,{Q~k:JH}::.O. The charges ~L~ may be utilized to construct four hermitian generators of the U(1,1) group: 

Otl , Q,,_, Tt:<.: i.(Q"+Qu), Ku"Q,~- QH 1he first two 

-~ 
are the numbers of type "1". or "2" particles. 
The remaining 

~ 

Tu. = L 5( 'tiT'"v-'''+ 'lJrl~'vt'') d" 
and 

(14) 

are elements of the subalgebra SU(1,1) and generate transformations . that mix components of the vector '\f"T:("\1~\)~) The transformation matrix R1 E. SU( 1,1) is of the form 

and may be parametrized as follows 

Using these transformations one can construct the whole class of solu­tions to system (10) on the basta of its particular solutions, e.g~ 
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or 
115) 

But (15) are the solutions to the one-component NLS with positive, 

U(1,0) or negative, 0(0,1), coupling constant respectively. It means 

that the overall set of its solutions can be used to construct solu­

tions to system (10). Consider two particular solutions of type (15) 

with 

-ill-<'> ce, . I 
T = CL e seen- o._x or 

we get two solutions of system (10) 

{
"fl'\x) =~ 6 e~\)'-i:a..IJ,._ b. 

-\f\>)(x) = if' & e'9·t.ctnh ~" 
116) 

or 

The first solution differs from one obtained by Hanakov in ref. 131 

by only the definition of polarization vector. In our case its norm 

is pseudo-Euclidean, \ci.J\2. -\~11.:1 {according to subgroup SU(1,1)) in 

the Manakov case \clv\9..+\~\1. =1 (subgroup SU(2}) it is Euclidean. 

This unessential at a first glance difference leads to the principal­

ly different structure of the system under consideration. It mani­

fests through the difference in physically nat.ural boundary conditions: 

in the case U(2,0) natural boundary conditions are fields vanishing 

at both infinites, in our case, U(1,1) variant, there are at any rate 

four various types 121.w 

The simplest type is vanish1ng boundary conditions 

117) 

The general analysis of Part I works in this case from which it fol­

~ows that elements Sii{~} 1=1,2,3, s23 (~) ands 32 {_5) of transition matrix 

S ( ~ l (see formu'la H37) for definition) are independent of time • 

• 
Their sense becomes clear through .tbe physical interpretation of 

solutions obtained. 
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Only s 11 r} ) of them generates an infinite set or local conservation laws. To construct them we consider eq. !{A.11) of Part I at n=2 1> (X) X f ch(Y-:i!o)- - 4> €. !. = i- ~dY .)d~ e'-'l ('o/"0(~!'V''hl+V'•J(YJ1f''\._»e_ ,_:l) -Qoo --Upon differentiating it thrice and eliminating quantities X 

A._,
2

(x) = JdY ~[LfJ(x-Y)+ip, (YJ)'IJI" 1
l,Z)(YJ 

We come to the equation for functions_ cf>ix(x) 

1l .. .(0;"))2 + ~· (N )+ ~ ("V"~:v;" -v;~¥~))-(~l] = 
-D:G:>,, + [~· +~(rr)]]),<flt,+(~· +(f")!1cvvJ-
- \ "f v). - ("¥x If) ' 

g_ m > " = '"xW,u-<'-J- yl•J'IjT'xn where :Dx = dx + 't'<x w. .,., T Expanding <Pt~x) in the f'ollowing series 

Co In(<! ( ) cp (x) = L ,.. " x 
'-x k•! (};~y 

def (k) we obtain the recurrense formulae for coefficients Jk. ::=. Cfu. fx): 

- ("f'V"J]:f• +-ZL,f,J~<z+ L,f,,(2-31xJf", - L fk.f" f", K,rk2-:::/f;.f! K,+k:_ :k K,-t-1\z..rK.J ... X 2.. 

and ko1,2, ••• ; ft =(Yo/)> fz = ('i''i';.) · First four integrals of motion can be got in the form 
r;~l = Jdx ('f"V)(x,tJ, 
I~~ =-Jdx (VI/I;_ )(x,t), 
I~~ ~-f'dx[(VT1Jf;x)+(rVl} (x,t), 
I'~~ ;_"j'dx [cv!fl;.,) .,_ 3(f/TV)(Vi;. o/J] (x, 1:.) 
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and coincide with those described by 1(491 at n=2. 

One soliton solution to system {10) is found via isorotation 

(formula {16a), see also !ppendix). 

It reads 

'\f0'c",tl=~~P{'(!x-&.Jjt)}CLJ sech ~s ,(j ~ i,zJ. 11s1 

where Wl ~ "'• ~ ~"-(Q;a.-) 1 
"Je"=(it.Oc.)>O <Ucd S =X-?rt-X0 • 

We call hereafter this solution double drop {2D). 

The second type of boundary conditions is a "constant" fiels type 

{ 19) 

Eqs.{2) are convenient to rewrite in the form with chemical potentials 

(20) 

then Hamiltonian density will be 

J-t =-Jt + ;2,fl \Y'l11"'- -tf.,. \V'"I" 121 I 

In addition to plane wave solution {condensate) 

(22) 

eqs.(20) possess one soliton solution of the kink type~ 

'\fill= 0:" ( ta.ttlc ae. S + ;_ ;;><-) (23a) 

v\2.,1 = o:,"€1>lPt2,i.(l"<-rllt}(taA.k >€.~ +'?'.e.). 

* There are other kink type solutions but since their properties are 

analogous to these considered we did not discuss them here, 
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where~= -Cia)= ')' 0, (ia)= - jUt ~ x- 'b-t - x0 , a 0(2.) > a~l). Using formulae ( 19) one can easily find a dispersion relation 

f23b) 
We call this solution double bubble (2B). 

The third type of boundary conditions is "quasiconstant" one 

{ 

(I) 
(.L.), 0..., , X ~ 0o '\jf" I_X -/:)= •c ) (tJ t.Ot 

~- { (2.} 'L(w t-~x' a:, x-.~ C24J ,,.(t) t 2 ,. " ' ,'~' · (x 1 >e = (<J .:s. a_o e X_,. -oo 

' a e x~-&>o· 
' > 

The condensate solution to eqs. {2) is now {with accuracy of a constant phase) 

y~J = a.,~l , ~tJ = a,~" .exp{- ~ ( w, t - ~ x)) , 

w, = 2 {fcf"~J +- ~~ , ( Ci.a.) = -j'-t < o ___,. a5;' > a,;" 
and one soliton solution is 

'1\f'-q = o5'> ( t.a.nh -.e.'\; + ~ z~) ' 
'1\>(t) = ce'le.xp{-~(w,t-1x.J}(ta.tth <e.'s + 2~ ('1r-7Yo» 

here again -ai= - Cia·) )' o, Cial= - ~t. • 
It follows from (25) 

{25) 

(26a) 

2 (a5"t (!. +- t:.) = ( a:;)f J ( o:_•l)" ( j_ + (1>-4 ;;.ol ) = (a,~" t 
Solving these equation with respect to x 2 we get the dispersion rela-ticS Je.z =[ 4f' - -z,-'-('1>--<r,lJ t {[ 4 f'- -z,-2_ ('1r-1Yot) 

t 4 (4.fc'1r'/(1r-7rolt- 1.6 (a.':~2'1r, (Ur-'Oo) yz. 
+ 

{26b) 

Ve call this solution double bubble in a system of interpenetrating gases (28
0 ). 

Finilly, the fourth mixed type of boundary conditions 

{27) 

10 



defines the condensate 

and 

and 

From 

one soliton solution 

'1\Tl'l= oJU~p{-c(w,i:-trtJ}seckoe.'S, 

v<~\,. ~~) truJc_ (-ae,'?; + l. "-~) 

w, = 1j;2
-?e.

2-r!O(f2-f'cl, 'de-2 = (a..iilf+(cP~", (a.';>f=f• · 
formulae (27) and (29a) we have also 

(28) 

(29a) 

(a:•>Y( i + r~.) = (a.-~•>f=t.. (29b) 

or the dispersion relation 

2- (oS">f= f'z- (a5°J'+ f +{(fz -(a!')"+ f)'-+4 (a5'VJuz t 2 
(29cl 

This solution can be naturally called a drop in a bubble (BD) 

Solutions (2B) and (20) 1 i.e., (18) and (23) respectively are 

simply two field modifications of corresponding sol_utions to one 

component equations U(1,0) and U(0,1) -drop {4) and bubble (9). These 

can be easily obtained by use of the transformations (14) and 

!If~ € ~wt 1fF . Supposing, for example, in ( 18) a!: a we get 

(c~..-'"l= a'--r (a}2) 2 ~/<N/2 it2 , (aP·>t= (a.wf- a!dff If!" a." 

2 2 
so that J d.--/ -lj/ =1, i.e.,solutions (16) (analo.gously for (23)). 

Solitons (26) and (29) appear for the first time namely in the 

system U(1,1), therefore we discuss their properties in more detail. 

We also give them the simplest possible physical interpretation. First 

dispersion formulae will be considered: 

1) Soliton (29) is a bubble (rare faction) in the second compo-

nent condensate 'flc\12.) moving at a velocity ?J' together with a 

concentric drop of the first component o/(O The size of this aggre­

gate ( ~ Y'de. depends on the velocity 1Y however the form of this 

dependence differs essentially from the convential hole-like one {see, 

e.g., (23bl l. 

In the formula 

~ -which results from {29b) -so that solution (29) depends on two 

free parameters o}1
J and 1_Y (abstracting from constant phase <fl.· 

' 
and initial position x

0 
unessential for us). Function d 2) determi-

ned by formula (29c) has no zeros at finite Q} 1J and '(y and 

behaves asymptotically as (a..\.~~2.<"-' fU;.. (Gt!0/" when 'Zr ~oo 
) . o-• 
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It means that the soliton turns gradually rrom a drop in a bubble into a drop which size is derined by its amplitude a,<4) •. The intensity of rarefaction in a bubble {the bubble amplitude) tends to zero at increasing /lr'. 
2) Soliton (26J is a double bubble in such two component conden­sate in which one component (e,g.,the second one) moves with respect to another at a velocity '2Yo related with boundary conditionJUii. The additional parameter of velocity dimension appear in this case to change qualitatively properties of the system {and, of course, sOlu~ tiona) remind, e.g.,a beam in a plasma. Note that we have now two types of bubbles at rest ( 1.Y :0) for the same values .f't7 ~2.l(or 4 11 and 'ZYo 

(30) 
if 

f :l.< 
' - a (!.)_ a_(.f) 

' ' a-; .. , f- a.$() ) 

where 

, I r< i 1£ 
"-

( oi./'}" = , a, / (i = 1 ~J f = ~ f = ~ -;I. x (31 , ' f• ' ' ) .Jfj<r ) ' ,£.if/, / 'X = /'' 
thererore (o&;" 1{- (.t..~'Jf = L M<d <: IL= (l + 2.(./_.;'')"'T< They are narrow bubble elt <'V ~~'de.+ and a brQad one {b .-v i/'d!_ The difference between their widths £1 = eb- {"- vanishes when _f;o tends to C and ?f'-2.. turns to be complex (soliton disappear) at fc > £ {see Fig.1), How does this picture change at '&'.,0? In this case 

Q, ~~ = i -if"~-2I+2-ffo t -{(~;-- t LJ(y;- E.-") -+-4ff•FJ1·-(f,"-E -L)]; 321 
:t. £. ~ -z 

and there are real solutions for ~in the region C s; Jb ' ~ as well. Velocities of such solitons have, however, both upper and lower limits. The plots in Fig.2 display dependence£_Z .as function of p , at various values t£ .The existence of region of narrow solitons diminishes and that of broad ones 

• 
•• 

The amplitude a!0 is in turn determined by an initial state, 
We should underline that the "density" of the first sate rt.

1 
cv J1fcO>(· = (O&~.f.J)£, is less than the second 

12 
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~*~~ -~ 

1,0 
lltt 

fo~o~a 

o,3 

Fig.l 
Fig.2 

disappears at all when Jo> ,jij5 and S.<t: i . When }/"~ iC~ fl.,+ l.-2..) 
region of narrow soliton existence enlarges again and is 

j::: 5 ~ !'~) t 

where j'> ~) = t {! _ f;fo) > Ji:) = i( 1+ -/?'} 
at {!,, = l([. , 
It <f'ecreases at further growth of .fo and vanishes at jc ~ O(i/c). 

Thus in the above "beam-gas" system there appear novel hole-like 
solutions with the following features: a) two branches at the same 

values of parameters E. , jr; and J , b) bubbles are forced by the 
beam to follow it at j30 "£) zL {i.e., there are n<? bubble at rest) 

and c) they disappear at J3o ~ 0(1../g}. 
Let us now discuss th~ spectra of the solutions obtained. Calcu­

lating functionals N and E on the solution (18) one gets 

we see that the soliton energy is a function of two parameters ~ 
and Nti) • We can also check the formula • 

't) .JTJ ( :-·) dE =~~~dN;_=WdNs r~=(-~) w 1341 

' to be valid like in the case U(1,0). 

Using Bohr-Sommerfeld quantization formula 

L ( f~ ( ~.:t ,rliJ ) I Jdt dx ar/' rt· +- e.c. = ;,•tt~ 
0 -~ 

we get 

13 



T ~ r T 
Jdt Jdx f('IIJt<i>'V<i>~ -v<~*-y<;~= wj dt J;x;r<~!f'; w Jdt fl: =W TN; 

0 -~ o-- 0 
or Ni=ni with 
a bound state 

ni being large integer number. 2D solution is therefore 
of Bose-quanta of the fields l[j!i1) and 1jr('l-) and the 

latters "2'' give the negative contribution in total energy, see 
formula { tl) •. 

Equation {34) may be thought of as thermodynamical relation for the 
two component mixture which chemical potentials are r~ i.e.' JU1 :. W ,. f'- = - c:;,J • We note that such drops can arise only at those 
places of a system where density of gravitating Bose-gas ( j'i.o;; /V<0/2.-l 
is greater than that of anti-gravitating ( j:J...,= /'\!)I..Z..)/2.. ), All the pro­
perties of drops are governed by the difference between numbers of 
bosons of the first and the second components, i.e.,NtiJ= N

1
-N2 . 

Then an initial bunch will disperse as far as the inequality 
~>~ holds. . 

At constant boundary conditions energy of the system is defined 
mainly by the second component, so we rewrite Hamiltonian in the 
form (21) (i,e.,with negative sign compared with (11)) and add terms 
with the chemical potentials £~1 and z;u:J..., 

To make expressions for integrals of particle number and energy 
finite their normalization should be done as in the case of U(0 1 1) 
variant 

--~ 
E = J (df.(1f<i>cx,ffl-';JC(1fT<'i(o.J)dx 

11 Hamiltonian of a quantum system for which (10) may be 
N 07.. M quasi-classical approximation is H =: _ Y'l _ + '>' N L........ dX 2.. L..J 0( ) M " M ~·< "- "'-•1 -ZL:,O x._-X._, -!l;l;'i!(!J,-~~')+.ZL,"L, bex._-!J.,) 

IL<h . M<lo1' lt."-t Ill=! 

14 
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is a simplest solution in this case and its energy, as one can see 

from (35), depends on one parameter 1.r {or N), Equation {35) may 

be rewritten in the differential form 

dE(;rJ; f'dtJ;~y,rJrJ: 
L 

where 

bubble 

are now the chemical potentials of holes coupling in the 

{36} 

Such bubbles may occur in the infinite system of two gases if density 

of the second (antigravitating) one is greater than that of the firat 

gas, ~1. > f 1 . Note that -the condensate (ground state) is stable 

only under this condition and becomes unstable at ..fz. ~ J1 even 

for infinitesimal perturbations of density 121 • Since the energy of 

bubbles {23), (34) is positive they arise when a finite energy pertur­

bation is brought in the system. 

Condensate (25) corresponds to the analogous system in which, 

however, the second gas moves at a constant velocity 1r.; in the 

first one. We have again a double bubble but of a more complex const­

raction. Its energy 

E <iii!,_ fC!V2--N,/H[fcf•-r 'N~-1r)] rl~,; 
.I -£- (fl!.'-Jf (37) 

IV~- (-b--1'0)''-
'X.. -r lix 

is also a function of one free parameter and the dependence 

z ("lr) is given by {30) * We can see from (37) that broad bubbleS car­

ry, generally speaking, smaller energy than narrow bubbles, therefore 

the former may be excited at an easier rate than in latter. 

Consider a situation where a small amount of gravitating gas~) 

is injected into the condensate _fz +o , _!1 :.Q • The former gas 

condensating in a drop will serve as a center of bubble formation and 

we have the solution of BD type (a drop in a bubble) with spectrum 

(38} 

that depends on two free parameters and 

differential form ~f (38) is now 
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e!E'~ >"' 2;: fc JN' 
' 

) 

- c N L • t!J._ -3r +!Lf· f' = N,-r ,_)- "-f'- NL • 
- z N/ r'- = (N, +N,) + J"• N,L 

where 

play roles of the chemical potentials of the first compone.nt bosons and of holes in the second component condensate 

coupled in the BD soliton. Note that the chemical potential of bosons in the soliton differs from their frequency 

This is due to the numbers of bosons and holes coupled in the soliton depend on its velocity, - the characteristic feature of the hole mode. When 1Y =.d'tr =0 we come to those usual relations for drops dt:liY>~z::w< o!N• and W 1 =1,(N,+NJ-}N2 (N,+N,)+t'f, w,_=O ' \,. /2/ "1 IV j . ) which have been found in ref. • 
It should be also stressed that isorotation (14) applied to a solution under non-trivial,e,g.,mixed boundarY conditions gives rise to a solution of a new boundary problem. Solution (16b) of the 2B type may be for example obtained from solution (15bl, i.e~ that of the mixed boundary-value problem BD (see (29a) at a(t) =OJ. Moreover boundary -values of both components change due to this transformation: 

0 -'> ~ Q_~l.) 

0.-\'t)__, d..,,.. d~) 

herewith the ebergy remains constant that follows from (33) and (r) -v' ' since neither Ns =f..{ft.Yif--(a.ct.>Ji. nor 
change. 

(39) 

Ultimately it should be underlined that though ~ts solitons with positive coupling constant are bound st8tes of the certain number of constituents-bosons, see (3), upon formation they assume principally novel solitonic properties which differ them S';Ibstantia.lly from conventional bound states (such as, e.g., that of nucleons in nuclei). The integrability of the fiel$ equation supplies solitons with addi­tional integrals of motion (for exam~le, integral of total number of solitons like the baryon or lepton charge conservation 1awsl that 
lead~ to their elastic interactions. As a result proce3ses of soliton fusion creating havier soli tons although b'eing exoerP,;ic are forbidden, 
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so that even at the classical level solitons possess an analog of 

quantum properties that suppresses collap:se type instabilities. An arbit­

rary initial state breaks up into a number of solitons (and "noise"); 

if large number,a distribution function over amplitudes or N may be 

found. 

Applying results obtained to examine magnetic excitations 

( CX:: /1.f1V4)j2. ) in the framework of the continuum Hubbard model 

(system U(1,1)) one needs to bear in mind that the ground state of a 

chain 1:3 antiferromagnetic) r<"){~) = 0 and may pretend to des­

cribe magnetic excitations over antiferromagnetic vacuum. In this 

connection studying 20 soliton collisions becomes interesting that 

will in particular be the subject of the third part if the present 

work. 

Authors thank Drs. N.Makhaldiani, I.Gochev, Prof. V.Fedyanin 

for stimulating discussions and Dr. Yu.Katyshev for a help in prepa­

ring the manuscript. 

APPENDIX 

Inverse method for the U(p,q) NLS 

Recall briefly the main formulae of Part I we will use in what 

follows. Matrix Jost solutions are governed by eq-uations 
A X A 

~ (><,)) = ~~rL;' X+ s €-~fL:;(H)Q(YJ~(Y,)) oly (A. 1 I --
~(x,f) = €-;}£:x- fe_-c~i;(x-Y}Q(Y)4-IY)JJY (A.21 

X 
where 

From the relation 

~)< ( '15lx,'l)'Pl~ :-n) = i.('L -))(~(x,vi:: ~ (x~» 
it follows that 

1A.3) 

Given by the relation 
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lA .4 I 
transition matrix is subject to the conditions of unimodularity 

lA. 51 

and of p~eudounitarity 

lA .61 

Its elements are 

or 

IA.71 

The Jo.l!lt solutions <:p16<A) > 11{ (x J)) _, ... -' 1/-C.,(x_,)' Jean be continued 
in the upper half plane of }' and (#l~.Jx;t~ <p3 (x,;tJ_,. ".> tfkn(S)'{1/frx)} in the lower one. From (A.7l the element s 11 c ~) follows to be ana­
lytical in the region TWt) ~0 , wheareas Solf(tJ<hereafter Greek indices vary from 2 to n+l) is analytical at I~.~ ~0 . Fol~owing rer. 131 consider a problem of reconstruction of the potential Q (.!IJ 
on the bash Of scattering data %~1C:. \)) and C1ol Whereat 

<f'1 (X};)= C,,_1Ji (x _;s) + '1' C1._.1 1\V;;_H (x~~) (A ,8) 
Zero3 of the function s 11 ( J J are supposed to be simple and located 
at points ~1 J'''J'SN . From (A.5) and (A.6) we have 

Jet ;:s"fcrJ = sl:cr"J. I A .91 

Define a matrix J'l,olf inver$e to S '1 as usual 

It 1• clear that 
s~ cr JJ?_Ir c't J = s"Y . 

elements of matrix J6 are analytical in the lower half plane due to (A.9) barring the points )...k '>- * ~1 J ·" ..> ':::::.N where they have simple poles 

with 

) _ ctrft c}; = ct17.(r; 
&J' r c J - det s"f 0; .s ,~ 0 KJ 

a..i]J(,}being algebraic complement of the element Sr;s (f). Then statement of the inverse problem is reduced to reconstruc-ting following piecewise analytical functions 

18 



l r .. r > 0 
(A.IO) 

(A. 11 ) 

having along the real axis following jumps 

~ ~ . ~ s .. { c:; ;) x 
't'iL";l)=W"._(x,~)c' ( € 

PH ) J 

(A, 12) 

cP (x_,))=il/f(x)"J $, .. (~) e-4:~1(,(x:)JS"~ ({Jrf'.) .a""'lx1A.13l 

"" ' s: c J ' s,: cr/' '"'"".._ · 
In getting these formulae we used the equality 

~ CfJ.R C}J-- s;, (}"J So~.1Crcr.) P,.. ""- - S,~~f"J =.- s,:c ~ 0 "-"- :..!..IA.14) 

r, ~ cii~A}C+l, ... ,H.;-;-1.,".,_, > 
(there is no summing over ~ ) • ~ q. 
Function tf?t ()(.,;)>.has simple poles at points5

1
, •.. _, 's,v W'ith 

residues 

rl"'' _ c.'~l "f.i.l";~ .. J-ell<pl~S .. x) 

i - ~i;c.?;,.,J 
{A,15l 

¢ "- (X)) at points "<;;i1 ~:) .... :s: 
'"'' -c'"'' An· ex.,_,. )ap(-c'>;.':;. x) r - 1ot.. ''1"4 ;">M 1'\c 

J.- -- ($ '0; ))"" A 

-( .. ) cl ('>* H "' "A'-.( ~ 
where C-1J... = Pt~ .'::> lo>-1.) Matrix function ~ XJf) is reconstruc-

and with residues 

(A. 16) 

ted using bundary values, residues and jumps according to the equa-

tions: 

where 
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A (boundary conditions for the functions ~ are due to thOse for the Jest functions <p
1 and 'lf"o~. I . 

where e 1 is the "i" 
following limiting values 

Comparing 
(A. 19) at 

asymptotic 

) -.-
expansion of ~ ~ ()<.)) obtained 
we get "potentials" 

then the 

(A.19) 

(A.20) 

from (A.2) and 

The set of equations (A.12)-(A.21) solves in principle the inver-se problem completely. 
It is interesting to note that the potentials ~~l~re reconst­ructed on the basis of only s 11 and s 1 oL 
Consider the simplest case of s 11 having only zero ~ and all the matrix elements s

1
.J... {) ) vanishing, Then we have a system of algebraic 

) 

) 
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Usinp; variables 

~.(.. '1/lif.x\*J~pc-/r:x) 
(~.: (~JY 

?; =it.~ (fcr•'t) J 

c._~ cfsy'l:~.. J 5.._ = CJ.,u< (o~ 
('!>t>J =t Jt ... J'"-.t ts~l2. 

4"'1 4=-pH. 
one gets one soliton solution 

'"-\x t)-=-c c(•l~p{.-~~x -~()"=-'1.,'-Jt) (A.22l 

q; J t crolt.( t (x-x.J-r2.f'L t 1 
and "&:.- J..,) is a soli ton velocity, t is its amplitude, x 0 is 

its position at t=O. The components of ''polarization" vector Ct()..}' 

( Cc l =1, may be arbitrary large. This solution is seen to coincide 

with (18) 1 i,e,,obtained earlier via the isorotation or the U(l,O) 

soliton, 
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