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This work continues the previous one s~therefore usin-g formulae

of the latter we put the number I in front of t.flem,— nevertheless we
shall try to present the results in a way that it may be read, indepen-
dently. )

The eqﬁation under consideration is

AW+ Y, £ ATV =0, S
where ("{r) N = '\p‘(“"(x)t) (a=1,...,n) and
— P h .
F) =2 v -2 1V (prg=r).
&= a-zpi-t

This system is quite complicated ‘since a large set of boundary

(II}

conditions are poséible for it. We reduce the problem to simpler one
but conserving in main features essential properties that stands it
out of previously discussed. Let us for thé.t look at the plane wave
solutions to system (I) {("condensate" solutions):

,qf(a,) - S‘“"%P[;i(w"'t —Ka_X)] :

with Wa = K,_,_z'—(§5) . Following to ref.’2/ one can study the

stability of these solutions under inf‘initesimai perturbations and
obtailn as a result the dispersion relation between the perturbation
frequency .-_Q. and wave number K '

K=k Kkr-2(39) | .

It implies the condensate to be stab%e when { 58 ) € 0, i.e., the
isotoplc space metric is negative 2> [sfﬁjzg i"ls‘“‘”a’_

Therefore solutions with nontriviala'goundary cg'rf’di'.tions exist (ir at
all) ecnly in the case of either noncompact groub Ulp,q) or compact
U(o,q). For example in both models U{2,0) studied by MANAKQY/?/
Utt,1) (see ref‘.ﬂ'/) there exists solution

and



¥, = s%Wsech s x
? (I11)
W, = P toanh s x , %% =(3s)

but in the first case it is unstable due to instability of the conden-
;ate (vacuum} which this solution was constructed on. In the models
U(1,1} and U(0,2) solution {I1) should be stable. In general, nontri-
vial boundary conditions mean that we have a# problem of the interac-
'tion of iﬁfinite number of particles that leads to renormalization or
physical gquantities and the most adequate language for treating it 1s
the language of noncompact groups all which unitary representations
are infinite-dimensional. It is this why we have a rich spectrum of
stable particle-like excitations even in the framework of the simplest
pseudo-unitary group U(1,1}.

The plan of the paper is as follows: after a short review on.
U(I;O) and U{G,1} NLS equations the properties of soliton sclutioens of
system U{1,1) are discusaed and their possible physical interpretation
is given *,

In Appendix the set of integral equations of the inverse methﬁd
for the U(p,q) system is given to conclude the general analysis of
part I, and the one soliton sclution is obtained using them, It coin-
cides with one derived by isotoplc rotation of G{1,0) one soliton solu-
tion.

1. U(1,0) AND U{0,1) EQUATIONS

VWtV + 2V Ry a0 . (1)

We recall briefly the properties of solutions to these equations
(see also ref.lﬁ/ and works cited there),

2) In the first case U{1,0) system or x>0, the Cauchy problem
may be completely solved for the functions W (%) rapidly vanishing

at botk infinities, A number of solitons and waveground occur as a
result of an initial wave packet breaking down. The first are related
to the discrete spectrum of the linear problem cperator L, the second
are related to the continuous one. Such solutions may be at the quan-
tum and quasiclassical levels thought as follows: Solitons are the

bound states of Ns "particlea" of mass equal % which energy (spectrum)

*
These results have partly been published in ref.la/.



aasumes the form:

=.E'£ ?.C;z— 3 ’
ES NS-JJ.Z I\/S )(I\/S»i) ‘ 2

PS=%?§NS ) lMsz‘_{;’/’_‘:"‘. .

the second term in the first relation is the binding energy. These
formulae may be easily obtained via the Bohr-Sommerfeld quantization.
Note also that one c¢an rewrite the relation {2} in differential form

dE :jwa{Ns | ' (31

with JL: % ( ’U@z - afni) being the frequency of the scliton solu=-

¥, = &oseck o.(crgt -xIepl{Frowt] e

Continuous spectrum of the operator 1 (wave background) corres-
ponds to "particles” of masses ﬁ and dispersion relation E= pz. Then
the 1ntegrals of particle number, momentum and energy look as follows

N = ftp” Y dx ,fn,(,o)dp +Z NS
P = j *W 'Vr*";"-)a/x IP?L(P)"]P "'Z Ns , )

O oo

E =j(rw ~ ¥ )dx = [pnipdp + 2 (e NS).

-t

By adding into the right hand side (2) the term "'T?_" one obtains
binding energy

Efb = _'f%?(bJ;S—

coinclding exactly with that found in ref.’SI where the quantum N
Bose-particle problem was solved. '

b) In the case of repulsive potential (U(0,1) - system or <0}
treating becomes considerably complicated. The operator L is now self-
conjugate and does not possess a discrete spectrum under trivial ¢
boundary conditions at infinities and solutions behave as ﬂfoc t—z
when /t/ - oo .

Non-vanishing boundary con&itions correspond to a Bose-gas of



finite density if y Which is defined by the asynptotic value of
Vi

field, i.e., 25 o at /x| %00 . To eliminate time.
dependence of the fleld phase a chemical potential used to be
inserted into the equation of motion, or proceed to H'—=>H - N
and FL= 2acy - The interaction term then assumes the fora
‘2_93([1}”""'—-\?) Y % rhe integrals of particle number,

momentum and energy should be in this c€ase renormalized as follows
— o8
- 2
N= [wr-5) dx
G g
_ 4 * *
P-z—f. I(V ’P;—’W‘x ¥ odx ffdl; (6!

_ E= j[/%/z+%(/wlz_§)1]dx
with ol  being the phase shift: Yoo) = 1/-;’, ?f(-m)={s,’e . We

In this case the operator L possesses again both continuous and
discrete spectra. The continucus one corresponding to the Bogolubov
spectrum of excitation has the form

@y (p) /PI(PZ’-I-‘t%f)%, (1)
pUO= YT s

and may be obtained via the perturbation theory. The discrete spectrum

corresponds to the So-called "hole" excitation mode which was first
found and examined at the quantum level by Lieb’sl. In the classical

]

case we have (see ref.fﬁ/)

N;L:‘T;%V.f’x_%}

(8)

* it
We should stress here that the transformation #r—’yf'éi fu relates

transformed equation ang equation (1} as well as their sclutions,

o



where ‘¥ ts the velocity of scliton-bubble, Upon calculating integ-
rals {6} the spectrum (8) can be easily verified to occur for the
following soliton solutions of the kink type

| ‘*?ﬁ‘\/acf—%'—z tankh -,/9&5)-%3 (X—?J‘t-Xo)’]"' i% L@

Classical spectra (7} and (B)Igo over intc corresponding guantum ones
at 3¢ —0Q /4/. A& characteristic feature of the hole excitations is the
velocity dependence of the number of elementary holes Nh= -N bounded
in the soliton-bubble: the greater (44 the less number cf holes are
bounded in the bubble and at W —> iﬁqi‘ the soliton mode {bubbles)
disappea'rs {we have analcgously dlwd,b_ < 0}, Subsequently we will call
dispersion a dependence of inverse soliton size on 7y and Nh and
spectrum a E(Nh, 7 )} dependence,

2. U{1,1) SYSTEM

We have now the follewing set of equations *

L‘ﬂw-}- .q,-x(:) +L(qurtt>‘z_\q;r(z)\z)w-u)___ o .
(10}

LYDe v 4 a(IVOP- VORIV P = 0

XX

Hamiltonian density
% L
o= ’L]J":’“”L_ \me[n'-— ('\"{’rm\ ~|v®) ) (1)
and the integrals of particle number, momentum and energy

Ne= [ o

—0o0

©a

D = i_ J‘(?’}(”*#fm—’%”‘m*@';”— fw;(a)*fw-(ajf w(u*'zy-iﬂ) dx  (12)

— O

de: a°
E :)CH=fgﬁ(x)t)cz/x .

In the long wave continuocus approximation the Hubbard mode) may bhe

reduced to a system of type {10} /B/.

*
We were awared that an analogous system was obtained in ref.’7/,

but no c¢comments on LIt were given by the authora barring the existen-
ce‘of three types of seluticns.



Let us first focus on those certain Properties of this system
which result forn the general analysis of part I.

Transformations 1?": R‘#r when conserve the inner product
( ﬁfuf') generate four parametep pseudo-unitary group U{1,1}. Corres-
ponding Noether currents Jfk (,k=1,2) form 2x2 matrices with
componentas

J¢ = Yyt ’ 3;1& = L(fq?&)mp%k)__q—p-'(ilwxﬁk)) (13)
so that  gepik o

The Poissen brackets of the elements of "charge" matrix
.G\LK= B&dx and the Hamiltonian H vanishe, i.E.,{QLk;H}‘-‘-O.

The chirges (Qik may be utilized to construct four hermitianp
generators of the U{1,1) group:

QR , Qag TizzL(Qiz+QzLJ,Kiz:Q;z‘ Qu .

The first two
Ni = f/fqr(ﬂ/zalx and Nz,= "f/"i"{z)/zafx

are the numbers of type "IN op P2n particle=.
The remaining

Tu, =1 S( ﬁmw_@)_’_ q-;t'}.)w-.(u) dx

and C14)

K= (FOwe_opo) dy

— D
are elements of the subalgebrg SU(1,1) ana generate transformations

- that mix components of the vector eré(qf“’QJ ﬁ The transformation
materix R1EE SU(1,1) is of the form

R ¥ [lf~1pte=4
' ?n cb*l y
and may be parametrized as fpllows .
= wshoe ¢ = sl Be

Using these tranaformations one can construct the whole class of solu-
tions to system (10} on the basis of its particular solutions, e.8.,




g w_ ,“"’,-(1) wm= o
(15)
.q,-u.)= o or

ye_ ﬁ“r(m}

But (15} are the solutlons te the one-component NL3 with positive,
U{1,0} or negative, u{0,1}, coupling constant respectively, It means
that the overall set of its solutions can be used to conmstruct solu=-
tiens to system (10). Consider two particular sclutions of type {15)
with

~ L0 T " '
FOog e sechax  or A ELBL{MBX

making an isotopic rotation R, we get two solutions of system (10)

. ) N

Tz ha e Seghax =g 8¢ Manh 6x e
—~ . or 4 .
"4"("’(*)=§5*a,eLB§eLk ax | W00 = '8 e loex
The first solution differs from one obtained by Manakov in ref, 737
by only the definition of polarization vector. In our case l1ts norm

ia pseudo-Euclidean, [cb\z -] ‘z=1 {according to subgroup SU(1,11 in
the Manakov case \&AE'+\?\Z =1 {subgroup SU(2))it is FEuclidean.
This unessential at a first glance difference leads to the principal-
1y different structure of the system under consideration. It mani-
fests through the difference in physically natural boundary conditions:
in the case U{2,0} natural beundary conditions are flelds vanishing
at both infinites, in our case, U{1,1) wvariant, there are at any rate
four various types/2/.“

The simplest type is vanishing boundary conditions

(17
Y rey=0 | a=1,2. |

The general analysis of part I works in this case from which it fol~-
lows that elements s, (§) 1=1,2,3, 523(§) sad 5,,(5) of transition matrix

~ .

S ('§ ) (see formula I{37) for definition) are independent of time.

R
Their sense becomes clear through the physical interpretation of

solutions obtained.



Cnly s (} )} of thenm generates an fnfinit

laws, ‘I‘o construct them we c¢on
) (v-
e@ {x =4 - gds gdg e’d? (’qﬂ”(!)‘ifw(%))r"?'m”(sﬂ*" ) @L(Z)

Upon dift‘erentiating 1t thrice and elt

A, 00 = f dy eoxp[(33(x-9) 4, ([ ¥4y
We come to the equation for functions @i (x)
PG R (D) FTEreTove) ).
“DEBL [ B o308, + [ gy -

“F. @),
whore Dx +®1* , A = ‘P' w—{i-) fq,-(i’.)'\p‘lﬂ

Expanding @L(x) in the following series

e set of local conservation
sider eq I{A.11) of Part I at p=2

minating quanti ties

(k)

(’_‘pLx(x) S (Pu (x)
& 3

ef‘ (k)
We obtain the recurrense formulae for coefficients fk (Pu ()‘

sz = dx A )_)cku [ 2, A a’x A( CU"*(z) Ip;,ia’?f(i))

’qrqf)]fk +2’Zﬁ’1f"‘z+2ﬁc (2—33‘;)2(:& _-ZJEMFK;J(‘%

Kitiyakid Ktk =k

and kat,2,...; £ = (Fy) fo= (?f'tp‘)

First four integrals of motion can be got in the form
I = farx (F¥)ot)
I‘f;’ ='°]dx (T, )89
@ fdx[(z,v%>+(wr)](x t)
Ifi = fax (T, + 3(TY)(T, W)](x £)

Kthyrhgmp



and coincide with those described by I{49) at n=2.

One soliton sclution to system {10} is found via isor&tation
(formula (16a), see also Appendix).
It reads

W b= ol (Tr-o ) e sech RS i1 z), e

where (0, =@, = vr_(za) N se¥={aa)>0 and é:x—?rt—x,,.
We call hereafter this solution double drop (2D).
The second type‘of boundary conditions is a "constant" fiels type

. et GL‘?,)l X > o0
vV tye 5. 22,2, U9
Clg)EZL 7 X = ~oo

4

Eqs.(z) are convenient to rewrite in the form with chemical potentials

YLL and _}Lz :
R e (Lo L A S R A

(201}

ES

R P (e A P L A VL) v

then Hamiltonian density will be

) Wy
=R O e L (21)
In addition to plane wave sclutlon {condensate)

(22)

w_ W @) (2 . _ } e .
Y= ae Vo =alP exp il ot |~ (Z @)=
eqs.(20) possess one scliton solution of the kink typex

g a® (tm a&\g sl %& ' (23a)
Y aﬁ”efAP{ZL(Y"L"f“')t}(tm ®y + LE"—%

* There are other kink type sclutions bat since their properties are
analogous to these considered we di1d not discusy them here.



where 3(?: ~(3a)= ¥ 0, (Aa)z - 1y . \S = X- Pt - X
aém) > aSJ. Using formulae (19) one can easily find a dispersion
relation

2
= - 'g_ i (23b)
We call this solution double bubble (2B), .
The third type of boundary conditions is "quasiconstant" one

(1,
aa) X =» oo

(2)
L &Jt" "X) a. X—'roo (24)
5, P e

0
w-( x -{:)
afe’ X > ~00 - )

(z)e % yat0.

The condensate solution to eqs. (2} is now [with accuracy of a constant
phase}

fi) 0 2} (2 Ky
vo= al 'LP'( =, ‘E'XP{ c{ayt - X)} (25)

[

Z(ft‘r z)‘f‘ (a—a’)‘—ﬂ1<o — afz)> @’

and one soliton solution is

Y2 oW (tanh g +L LY
Y@ ‘z’exp{ ~i{wt~ —“X)}(tan.fq, ac§+ (,b, ?),))

here again ’3ﬁ2= - (@) > 0, taa): —SL{,_ .
It follows from (25}

(Q,w (i 433 ) (Q_(:)) tz)) (i+(?9‘ '('7‘)) iz))z-

Solving these equation with respect to x2 we get the dispersion rela-~
tion

Bact =[ -0~ (o)) £ {[4fq-'ar*"—(?r-% ¥l +
+ 4@ (-5 % 16 (0% (212) V2

We call this solution double bubble in a system of interpenetrating

[26a)

(26b).

gases (ZB ).
Finilly, the fourth mixed type of boundary conditions

(2)
"y , X es (273
&
a,i,’"e 2’) X > =09

rq}-u)(t o0y =Q 5 ‘W)(x}‘t) =

10



jefines the condensate

W_ o - w® - q®
V=0 0, W = W =q.fjuz (28)
and one soliton solution

’Uf‘m - o %P‘{}L (c..)Lt - ’tr%)} Sec‘m ?&é

WO tarh (e + L)
it 0, = Yool ra(ufh), %= @Y #(@2) (@) =

fpom formulae (27) and {29a) we have also

(a®) (i+4962 ( a2 =2 (29b)

or the dispersion relation

(z)) ﬁz,_ af“).,_@’ [(2‘ (a'(u)ﬂ;_b—) +4(CLU‘)]” J (29¢)

This solution can be maturally called a drop in a bubble (BD)
solutions (2B) and (2D}, i.e., (18} and (23) respectively are

simply two field modifications of corresponding so;utions to one

component equations U{1, 6} and U(D,t) -drop {4) and bubble (3), These

can be easily obtained by use of the transformations {14} and

Yy - e“w v . Supposing, for example, in (18) 3=a we get

éL(r))?-: az+ (a’(z))z*’l__gflowza‘z ) (aa,))z: (aff))a-_ a* d_if /F/zaz

(29a)

so that j obfz-tﬁl z1, i.e.,solutions (16) {analogously for (23)).

Solitens (26} and (29) appear for the first time namely in the
system U{1,1), therefore we discuss their properties in more detail.
We also give them the simplest possible physical interpretation. First
dispersion formulae will be considered:

1} Soliton (29) is a bubble {rare factiom) in the second compo-
nent condensate ﬁém) moving at a velocity 7 together with a
concentric drop of the first component qf“) ., The size of this aggre-
gate Z ééﬂ depends on the velocity J» , however the form of this
dependence differs essentially from the convential hole-like one {see,
e.g., (23b)).

In the formula z"él”92+ &ﬂzvz'only &Lm?zis a function of

T3+ -which results from (29%) -so that solution (29} depends on twe

free parameters @’ and 7 {abstracting from constant phase W
and initlal position x unessential for us). Function cﬂa) determi-
ned by formula (29c) has no zeres at finite @{" =and (4 and

{2y {(.L‘”) :
behaves asymptotically as (a_, )Nju when 7 oo .

11



Zero at increaging -7

2) Soliton (26) is a double bubble ip such two component conden-
sate in which one component (e.g.,the Second one) moves with respect
to another at a velocity ?5‘6 related with toundary ccndition““.
The additional parameter of velocity dimension appear in this case to
change qualitatively pProperties of the system (and, or course, sply~
tions) remind, €.8.,a beam in a plasma. Note that we have now two
types of bubbles at rest ( W =0) for the same valyes fu,)a.‘;‘*’(or &io)

and s
,?,9—(;"": = i—Foz-’f /(fjf‘-&"’)(ﬁﬁ— £%) (30)
ir _
2 & - a,” def
fc = a’u‘( 2’)‘; QJU = & <i
where

(LEP (ﬁ,‘_’)i([zf,z,) Jsz_‘?;’._ =% 2 an
1 WA ).F .-?,]/fll_; # /"f
therefore (J,:MJ'EL (od,f”}"= 1 and g2. (:f_ + .2("'{«454))2')“-1'
They are narrow bubble Z,t rv‘/gd*_and a broad one {’5 ~ 4/9&- B
The difference between their widths A = Zb— -C,,_ vanishes when o
tends to & and % turns to be coiplex (soliton disappear) at

f“"’ > & {see Fig.1), How does this picture change at ?:—;&O,?
In this case

: P
2RE=1-pi-2p" 200, £y -7y +4Jsp.,gs§.,—gef- £9](32)
and there are real solutions for 3 in the region 52'5_ 't's g%

as well, Velocities of such solitons have, however, both upper and
lower limits. The Plots in Fig.2 display dependence iz ag function of ’B r 8t various

=

values -The existence of region of narrow solitons diﬁ;inishes and that of broad ones

* .
The amplitude a,m is_x in turp determined by an initial state,

wx
We should underline that the "density" of the first component conden -

sate n, oo /QP;(”/Q’-_. (0(,1“))2 is less than the secong oneﬂzwlwl)f%f-

12
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Fig.2

Fig.1

disappears at all when Po) 1/375 and £dg 4 . When ,Pa‘t) 5{-(2.2'1‘- a"z')

region of narrow soliton existence enlarges again and is

) 2)
Sepscpy

o pESEVRE) g0 (/5T

at ja = 2
It Jdecreases at further growth of @, and vanishes at chﬂs CJ(VVt).
Thus in the above "beam-gas"™ system there appear novel hole-like
solutions with the following features: a) two branches at the same
values of parameters & , g3, and s b) bubbles are forced by the
beam to follow it at g 2> £% "{i.e.,there are no bubble at rest)
and ¢) they disappear at ﬁcﬁt O({/g},
Let us now discuss thé spectra of the solutions obtained. Calcu-
lating functionals N and E on the solution (18) one gets

(L) (t) [ 2 4 /pIhe
E = %Ns [7’ 3(/"/5')_] 5 (33)

- . ek
/V§1{=ﬁ4"ﬂé,: 2{Qlf“4£%)%=lét‘? @ = é:lj@ﬁz.ﬁv ID J '

Wwe 3ee that the soliton energy is a function of two parameters %
n

and Ns . We can also check the formula
(r) S - Y
dE =1 Q*Ld'\(:F‘*}st (VC‘H") W) (34)
L

to be valid like in the case U(1,0).
Using Bohr-Sommerfeld gquantization formula

L f;tf;"( 5L LA ce) =g
2 ST IR

‘we get

13



fdtfdx‘z (/w-(c) (L}*w_(u*’w’((— wfdtfdx”f(a) C‘detﬂ/ wTN

-0 0 — oa
or N.=n

§50y with ni being large integer number. 2D solution is therefore
a bound state of Bose-quanta of the fields YT} ang W and the
latters "2" give the negative contribution in total energy, see
formula {t1)*

Equation (34) may be thought of as thermodynamical relation for the

two component mixture which chemicatl petentials are J’ML i,e.,
1 =W . 2= —o » We note that such drops can arise only at those .
places of a system where density of gravitating Bose-gas 4:{1-}1_(’)}2‘)

is greater than that of anti-gravitating (f = f‘\p‘&ﬁ){ﬂr }. All the pro-
perties of drops are governed by the difference between numbers of

bosons of the first and the second components, i.,e. u) 1-N
Then an initial bunch will disperse as far as the inequality
f?.. ) holds,

At constant boundary conditions energy of the system is defined
mainly by the second component, sc we rewrite Hamiltonian in the
form (21) (i.e.,with negative 3lgn compared with (11)) and add terms
with the chemical potentials 2 and quz'

To make expressions forp integrala of particle number and energy
finite their normalization should be done as in the case of U(0,1}
variant

N; f (0, W foo)f2) dix

E = f(‘aremfw(xé) F (W oo)) dx

2B soliton (21)

e@. LN*+2 (J—ﬂ;j“ 2 @®)*N
1 Fl
No=Ny = 2ot =2~/p, - %
%\t

N._,/VL.,_,,?,(JL(‘")} ,z(a“’ e+ P

L

(35)

1

* Hamiltonlan of a quantum system for which (10) may be considered as
Quasi-classical approximation is H - Z ’ax . + M %z
mey e
-223(" )= 22]’5‘(3 = )+2Z:Zj §Cu-Yr ) |
! Rafmed

14




is a simplest solution in this case and its energy, as one cah see
from {35), depends on one parameter I f{or W). Equation (3%) may
be rewritten in the differential form

g @ fua/f\/=gjnd:\/;) (fo=-Ye=p),

where yr are now the chemical potentials of holes coupling in the

bubble
ju-_— 2+ 2 ,&ﬂ_(a”) (36)

Such bubbles may occur in the infinite system of two gases if density
of the sscond (antigravitating) one 1s greater than that of the f{irst
gas, 1 > 84 . Note that the condensate {ground state) is stable’
only under this condition and becomes unstable at 5°z é_f% even

for infinitesimal perturbatiocns of density 2/

. Since the energy of
bubbles (23), (34) is positive they arise when a finite energy pertur-
bation 1s brought in the system.

Condensate (25) corresﬁonds to the analogous system in which,
however, the second gas moves at a constant veloclty 14 in the
first one., We have again a double bubble but of a more complex const-

raction., Its energy

e (@ é(Nz-Nf)3+z[rz-f"ﬁ?—”(%"")] Mo

{37)
- a 2 (@)
Np- Ny ,» M xif TS My = (or=a)*

Hae ™ xf Ix
is alsc a function of one free parameter < and the dependence

gg,@QV) is given by (30}, We can see from (37) that broad bubbles car-
ry, generally speaking, smaller energy than narrow bubbles, therefore
the former may be excited at an easier rate than in latter.

Consider a situation where a small amount of gravitating gaa@rﬂ)
is injected into the condensate J%\#:o y ng = . The former gas
condensating in a drop will serve as a center of bubble formation and
we have the solution of BD type (a drop in a bubble) with spectrum

(WJ L(M_,_ .L) (3ju_,,_ lj"i)N,_ —f"'z,
(2))L
i(a}f;,ﬂ_ N, = .2,—'% SN .,.hjzﬁ,zgc,
% 7 T 2

{38)

that depends on two free parameters - and a*Por N1 and Nz. The
differential Form of (38} is now

15



B = 2 i

—?;1 _ (NWNL)&—,’LFLE:I ~ Bt + L[t
A Fa
[‘4_:_= (N +N) + {2 g%_

play roles of the chemical potentials of the first component bosons

where

fr and of holes in the second compenent condensate jﬁ;

coupled in the BD soliton. Note that the chemical potential of
bosons in the seliton differs frem their frequency

w, = ;‘v[(N”N’)l”Q‘F""%] "3t be =200, - (3p -2 ).

This is due to the numberé of bosons and holes coupled in the soliton
depend on itsg velocity, - the characteristic feature of the hole mode.
When 9 = g1y =0 we come to those usual relations for drops

dEWI- Zwy dN; and W, =%(N,+N1)i—éNg(N,+Nz)+fu, LW, =0
which have been found in rer.fe/.

It should be also stressed that iscrotation (14) applied to a
solution under non-trivial,e.g.'mixed boundar& conditions gives rise
te a solution of a new boundary problem. Solution {(16b) of the 2B
type may be for example obtained from solution (15b), i.es that of
the mixed boundary-value problem BD (aee (293} at a(“ =0]. Moreover
boundary values of both components change due to this transfermation:

TO(=) 1 0o ga®
qP-.U_) _LDQ) : (Lk:")-—’ SLF a'.ﬁ?-)
herewith the ehergy remains constant that follows from {33) and {39)
since neither Ns(r}:,z-]/@__ﬁyz_(afz’ji nor N ::,z]/(aj!y"-_ (.a(f))L
change,

Urltimately it should be underlined that though NLS sclitons with
positive coupling constant are bound states of the certain number of
conatituents—bosons, s¢e (3), upon formation they assume'principally
novel solitonic properties which differ them substantially from
conventional bound states (such a3, ¢.g&., that of nu¢leons in huclei),
The integrability of the fiels equation supplies solitons with addi~
tional integrals of motion (for example, integral of total number of
2olitons like the baryon or lepton charge conservation 1laws) that
leads to their elastic interactions, 4s a result processes of soliton
fusion'creating havier solitons although being exocergic are forbidden,
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so that even at the classical level solitona possess an analog of
quantum properties that suppresses ¢ollapse type instabilities. An arbit-
rary initial state breaks up intc a number of solitons (and "noise"};
if large number,a distribution functlon over amplitudes or N may be
found,

Applying results obtained to examine magnetic excitations
(o | ﬂf*i’fz } in the framework of the continuum Hubbard model
(system U{1,1}) one needs to bear in wmind that the ground state of a
chain is antiferromagnetic) wrfbén) =0 and may pretend to des-
cribe magnetic excitations over antiferromagnetic vacuum. In this
connection Studying 2D soliton collisions becomes interesting that
will in particular be the subjJect of the third part if the present
work.

Authors thank Dra, N,Makhaldiani, I.Gochev, Prof. V,Fedyanin
for stimulating discussiocns and Dr, Yu.Katyshev for a help in prepa-
ring the manuscript.

APPENDIX

Inverse method for the Ulp,q) NLS

Recall briefly the main formulae of Part I we will use in what
follows, Matrix Jost solutions are governéd by egquations

- X Y - A A
wug):g?zuje-‘?ﬂf" DR(09(}) dy s

'LP—(X?) —L}EX—J‘ -—L?Z:(X Y}a y}’w—('y})ij (A.2)
X
where
a 0 gy A 1 0
)= =
QL ) L%w) e ’ Z O —%Em

From the relation R .
‘é*-x(fm,@%})) =)0 @ (%,3)

it follows that
FHEO) =1 = W eyweoy) (h.3)

Given by the relation

17



¢ =4 20 )

transition matrix is subject to the conditions of unimedularity
. A
det S(¥y=1 {4.5)
and of pseudounitarity -
_f-\__ A .M
S(})S(;) =1 . (4.6)

Its elements are

Si:c (?) = W('V"; SO R %,)

or

S () =F08)0 (3.

The Jost solutions @4&}))%()()\? )} “_)-W;‘(x)?)can be continued
in the upper half plane of ? and (pz(x)})) (P«’v (x)}))“')"gl—ﬁ’(x}}g%ﬁ})

in the lower one., From (A.7) "the element 3”( ?‘ ) follows to be ana-
lytical in the region T, }' > , wheareas § (?)[hereafter Greek
indices vary from 2 to n+1) is analytical at Ty, .\fso . Follpwing
ref‘./3/ tonsider a problem of reconstruction ¢f the potential Q(B)
on the basis of scattering data S‘-'K_ {}) and GM. whereat

(P" (_X)E)':Qu'w;'(x;)*- "'Cihﬂapz,ﬂ(x.)g) . (4.8}

Zeros of the function S”( E ) are supposed to be simple and located
at points 31,-’-)314_ - From (A.5) and (A4.6) we have

det S (3) =S¥y . (h.9)

Define a matrix JZ inverse to s as usual
It 18 clear that elements of matrix are analytical in the lower

half plane due to (4,9) barring the points é:" o é ¥ where they
PR Iy

have aimple poles (}) }
L Qg _ Q)
Sy ¥ det Syu(?)  SE(FPY

with a,)?( )being algebraic complement of the element Sf/S (,}) .

Then statement of the inverse problem is reduced to reconstruc-
ting following piecewise analytical functions

18



A (x;f)g
@L(";?)‘; Sdf(\” 7 Im}>o ' (A.10)

vohet  Impco

-3
B, 0 Y oDE R [ In} >0 |
X} = {A.11

* %&x‘?meﬁ)ez*

Im} <0
having along the real axis following Jumps

d?i("\f) W 08) S G) e[\?x

2

{A.12)

(,3) =4 (x \{) S’:@)e X Sa (?) n. X(a.13)
X SrQ) @’(}fg" () £

In 5ett1ng these formulae we used the equality

SW(})JZM(?)— S_’:T%—-_S }A ( s ALY

e = ding (+1 +4. A, oA
(there is no summing over ol ). @ di 3'(\“lmri-J \“"VZ'J
Function (PL()(\g) has simple poles at pointsé gﬂ with
residues

Pl _ c‘:;w;u,ém)%pu\smx) e

= — .

' S (5n) |
and (bd‘ (x}) at points gq} * S e Z:* with residues

RN Cop My \S*)@*P(L , {A.16)

(B (3,07 .A

where C“' = Sh{.(’g* , Matrix function X}') is reconstruc-

ted using bundary values, residues and jumps according to the eqgua-
tions:

where (b _
. ™



A
(boundary conditions for the functions @ are due to thdése for

the Jost functions ('Pi and "P:L

Therefore we have

ez M L1 C 8 3hd :
W(*g )%P(‘é LT‘ZZS S + "g \;'\éhi (A.17)

Y5, enpli Sny). e+zS 3 e gé‘zd?(x\?g\? (h1

where u.t!1 is the "i" column or unita matrix We have then the
following limiting values @ (x \fj at the real axis

’\p“(x\f)wx(}x) A0 x éix\?)d\?l (a.19)
e B o4 (Sl

3 N ik
/\P;.Lx;})%P(—t}h: X = Ed;!;%‘:%ﬁfé: -S’id’(x\? )0\ (.A .20)

Comparing asymptotic expansion of @ U‘\?) obtained from {(A.2) and
(4.19) at ? - og we get "potentials“

@MO‘)" M—L(Z r,(m,+ L g‘q? (x})d}) .2

o+

The set of eguations (A,72)-(A.21) 3olves in principle the inver-
se problem completely,

It is interesting to note that the potentials Ct(m(yyre reconst-
ructed on the basis of cnly S and $§

1 1oL

Consider the simplest.case of 511 having only zero \S and all
the matrix elements S1J. ( }’ ) vanishing Then we have a system of
algebraic equations

B.(33)= $2 Z*

_"l}"(x;\f)&\f —et-r\?P\S ,

wl(")é)e e, +\?_

r - c45%foS)€up(t§X) )
Sy (5
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Vi (x;%*) %f’(—t'gr**)
(S (3)7 '

J..-:

Using variables

=n-f—i(?fti'a) 5, %o ‘—'fz—‘ew (§S),
a.z(g-s—éd‘)ﬁ_ s Sa =C;.a.+1.f°))
(83)=2 lsa_/’“~2/sql’-

one gets one soliton solution

“hx .y cPex {“‘}x _L(-\{L v )t} A.22)
400 T casln,{lq/(x %o+t (

and ’(":-—-2,\; is a solitoen velocity, I’L is its amplitude, x_ is
its position at t=0. The components of "polarization" vector C,,

{ EECl 1 o=t, may,bé arbitrary large. This solution is seen to coincide
with {18), i.e.,obtained earlier viz the isorotation of the U{71,0)
soliton,
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