


1. INTRODUCTION
At present, 1in ordér to get rid of thé infrared dlvergences

in gauge theories, one usually introduces a cut-off e « In QED
thls operatlion makes physical sense i1f all inelastlc proecesses -with
. non-—observable Iong-wave photons arg_taken,into'accoﬁnt.-ﬂbwever, in
QCD the cut=off iz a formal mathemtlecal tool which 15 justified only
by referring to confinement and a finite hadron size. On the other
slde, one of the central problems of the theory is to glve a proof
for confinement based on the behaviour of the gluon flelds over -
large distances, that 1ls on theéir long-wave singularities. Fimally,
there seems to arise a logileal clrole: the confinement is justified
by infrared singularities and the removal of them by the confinement,

In our papers /2,3/ we have made an gttempt to remove the
infrared dlvergences im QCD without reference to confinement but by
analogy with quantun liquid /**??%/ | From this point of vies the
infrared behayiour is described by macroscoPic (global) excitations
of the liquid as a whole, .‘being accompanled by spontaneous vacuum
symmetry breaking. This analogy for a non-Abelian gauge theory leads
te vacuum fields, satisfying self-dual equations in- the Minkowski
space. :
The main aim of this paper is the relativistic—covariant
deseription of a spinor field within a self-—dual vacuum.

To und erstand the points of departure, we describe briefly the
‘results of papers /*~*

The infrared problem in YanghMills theory with the action
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arlses far before quantization, when independent dynamical variables



are defined by solving the constraint equations, %f.e.,the classical !
'equations for components A o » Which have no canonical momenta :

S (WA T oh0if = 28" 56" ). o

The infrared slngwlarities are connected with zero elgenvalues of
the operator ({Z”) « If these zeroes exist (this is the starting
point) then the general solutlion of eq. (1.2) can be represented
~as a sum of solutions of the homogeneous and in.homogeneous equations
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with Vz¢ 0 + The operator [/szmg is defined in a class
‘of Funetlons for which [T, #0O . The coefficient 9o {(t)
Just represents a global dynamical variable, It has cowvariant
-properties under gauge transformmtions provided we connect it with
the Pontryagin index
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AFor soiutions (1.3) 1t has the form of an imtegral over time for
the derivative; Y = Jdt ¥ L=V /2

Substituting eq. (1.3) into eq. (1.1) we obtain the action and
the Hamlltomlan expressed in. terms of the global varlable
P" &57('30_\;) and transverse eleotric (E) and magnetic (B)

fields. - z ¢
IR TY YRSy 40 clac A

b S EvP Ji v
E=E-V y: (VWNB =B-v ¢sz =%

VE—CZVLBL:VIKQ¢)=0 ' @

£
The Hamiltonian depends upon fileld ¢’ via the characteristic
functionals: [¢ % (VP)* ;. Jok Fyd |, Jek EVS;
which due to Eqs. (1.6) are non-zero only for singular fields
B E P¢  (d.e., nondifferentlable at certain points of R{3) or
nonvanishing at spatial infinity in R(3} « Within this context the
following alternstive ariszes:

(1.5)



1) For regular fields the glodal dynamics vanishes and we obtain
the usual Yangdills theory H = §[a'x(E*+B%) with an
infrared unstable perturbatlon theory.’

2) Spontaneous vacuun symmetry breaking, by shifting 74‘ (x,t)
with a singwlar nondymamical field # . yae (%)

74:. = 74: veac {x) * A:Reg {"'{)

is the condition for the existence of the global variable, Here
.A-f“s- and operatorf "/71],“3 are defined within the class of
functions, vanishing at the singularity points X , The Hamiltonian
{1.4) is obtained just for this cases The characteristic functlio-
nals here play a role analogous to nconstant® fields in the 8 -
model . . ’ ‘
Starting from Eqs. (Ll.4),(1.5)}, one can show that the "quasi-
particle® Bamtltonian ~ Jd3x (£4 + B4) 1s finite provided
the singular vacuum flelds satisfy the integrability conditlons

E(Avac) ~ B(A’vac) ~V¢’

The vacuun energy Myac ~ fa% (V¢)z" tay be infinite, However, thils
energy is subtracted from the total energy by redefinition of the
asymptotic states wlth the help of the intétraction representation:
HR"S = Hyyt = Hvac . The obtained theory reminds ome of a
quantum liquid /4’5’6/. In the microscopic Bogolubov theoxy /6/ the
criteria for an energetically favoured condensate Avac are the
existence of a Hermitean Hamiltonlan and the infrared stability of
the theory. -

We should remember that due to the infinite vacuum enexgy the
olassical theory of the quantum llquid is an approximation, which
has no physlcal meaning. (The cause of the olassical infinlty is
explained by a more fundamental theorys which takes into account
the size of a Miquld atom").

The same situation arlses in the & -model iz a finite

volume of R(3) : "constant" vecuum flelds have a jump at the
boundary of the volume, while "guasiparticles® fulfil the zero
boundary conditlon.



For the existence of the global dynamlcs and the vacuum
symmetry breaking, we have to pay with a loss of the usual relativis.

tic covariance. However, for self—dusl £ieids e a4
. TWEVELs ém (¢>) c'var)

E=—V¢:1‘;‘B f@ #5.'“(74&7: f‘(ﬁv {A(ij (1.7

the covariance group of ithe new'vacut,\m containg the group of trans-
formations (mixing internal and external indices), the algebra of
which coincides with that of the Poincare- group., The new relativistic
group gives additional dynamics caused by an ambiguous cholce of
field components -,‘4-"'a .

This paper is organized as follows. In sectlon 2 the classifi-
catlon for self-jual fields is given, in section 3 we describe
splnor fields within a self-dual singular background in a Lorentz—
invariant way; in section 4 the complete set of solutlons of the
corresponding Dirac equations are obtained, in section 5 the spectra
of observables (i.e. conserved quantities) are calculated. In the
Appendix the generalization of ADIM=-construction 9/ to the Minkows—
ki-space is given,

Zs SELF-DUAL FIELDS IN MINKOWSKI SPACE

Recently, there is a considersble progress in the construction
of Euclidean self-dual non-Abeliasn fields 9-11/ + Some of these
results, in particular the ansatz /10/ y can be generalized to the
Minkowski space al(*) s a/¥) 9%

A =T, 2hp, 1)
m 3 _/iﬁ v

where .
al} |, sa %) @y . ag) af)
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and the function j has to satisfy the atAlambert equatlon

ap=0 , (207=0). (2.2)

The atationary vacuum fields correspond to the factorizable solution
of Eqe (2:2):_p = explikot ) B(X) » where (%) is an
arbitrary function, satisfying equation (’3¢;+k3}¢—‘0 « For
the vacuuw at rest there are no preferable directions and due to the
spherlcal symumetry we obfain immediately a solution

ﬂ = e t"’,f Lon léo/xl . (2.3)

(273 ?



where kn has a real value and defines a scale similar to the
photon momentum in the conform~imvariant QED without chaxrge (k,=(&¥

‘corresponds to finlte energy monopole solutiens '~ ', which are not
considered here), The solutton (2.1),(2. 3, up to a gauge transfor-
mation, colncldes with the oney considered in ref. / .

The transformation group, preserving the soale ] ', coincldes
with the Pélncare group with the usual Lorentz generators’ 4;/‘V '

replaced by . u&
L = L * T (244)

-T-u
where is the colour generator.

By the Poilncare group tramsformation, the field (2.1)s (2. 3)
transforms into the vacuum moving with an arbitrary veloclty v
starting from an arblirary point X 5 v _
PE)=L, x(x)“f(x’*X) )ﬂ‘::/l“x- BN
As will tbe shown below, the theory of quasiparticles in such a
vacuum reminds us of a relativistilc generalization of the bag
model /134141 Therefore, we shall call the vacuum (2.1), (2.3),
(2.5) self-dual bage.

obviously, the configuration

Fw = ka_b X, 2:8)

corresponds to an N-bag vacuum.
The general solutions of the Euclidean self—duality equation
are obtalned by the A.D.HM. construction /9/ ( see also refs./ls’lﬁﬁ
a variant of the A.D.H.M. construction for the Minkowsklan
solutions (2.1), (2.3) is considered in the Appendix.

3, DESCRIPTION OF SPIROR FIELDS IN A SINGULAR
SELF~DUAL VACUUM

We consider the spinor fields within an external field in such
a way that the whole theory becomes invarlant under the transforma—
tion of the Poincare group. Usually in the case of existence of zerc
modes Poincare-imvarience 1s restored by applying the method of
collective coordirnates. Since in our case of singular fields these
zero mode states are not normalizable, we do moi refer to this
method. We shall rather use an analogy with the two~component
superfluid theory 73/, what is, the dynamics of the vacuun fields o
is considered to be independent of the guasiparticle excliations.



Let us consider the Lagrangia.n
- ' ai ayd nv .1
L= ‘J’/"[J-")q- (2_ 295 @]55 faj’ 9/2 . (3.1)
(-
which obeys asymptotic states of the spinor fielas_ in the vacuum
{2,1),(2.2), Here A (x} 152 Lagrange factor. Variation wlth

respect to Ax) gives the vacuum  self-duality cendition, i.e.,the
"{ree" equation (2,2),

The Lagrangien (3.1) is invariant with respect to the Poincare
group. In accordance with the Noether theorem the following
‘quantities (observables) are conserved: energy-moment um, P:(I“fJ EJ,
spin § ; charge @& 7~

P {‘{33”7—» ; I ‘kadjsﬂ/‘:”"gk)/ Q= [43‘3 o - (3.2)
v a(p QUp Ap

Here 3/« is a space=like surfaée chosen in such a way that the
é., -projectlon of the bag world lines describe a finite reglon
instde ( ) is the integration region which is defined
by the zez-oes o:t‘ Jo(x) . (For exampley, in the case of vacuum
(2.1),(2.3), we have @s, ,rk-,%(*) Yo Do, , My (,,. V)

are the current vector, energy—momentum and a.ngu:l.ar momentum tensors,
Do = a(aﬁfo) e p) o 9(9 o > '3/«”&’

y 4} :
Mapeo 6Ta=5To; +F ag{,r*m A /j 2 )gb (3.3)
L= 444

The quantities (3.3) are defined by the solutions of the eguations

of motion
V.4=0 ; 403""5,7.'.'?-‘.0 G

D,\_-—a,,(¢ Q”""ql""/') - Ap=o0. (3.5)

a(~? 98 ~v
Here /., -(a' ¥ a0 "ét" 9‘4._/0) s the spinors have to satisfy
zero boundary conditions g% the points of the vacuum singularities

4’"/20 = fl,=0 (3.6)

It is easy to prove the covariance of the observables. Within-this
context the observables, caloulated for a moving bag
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are connected with the observables of the bag at rest (X")

by the Lorentz transformations. .
In particular, we have: /D(Vfa) =/ VP(V:OJ .
‘Q(vie) = Rfvs o). Let us prove, for example, the
last relationy taking into account that for the bag (3.7) the
Surfaoe element q/z/“ is chosen in the follewing form: )
da _{d‘? ; A dadt ;0 ;0 ) (3.8}

Q(v£o) = fa/x%/xw + fa’xza/z de I i) -

Let us pass to the new integrat:.on variable (X =x’) (3.7) and
appLy the current transformation property
T Oclpyt0)) = Nt T Af'//om)-

Then we obtain the expression for Q (vie)

atvio)=; faf(i; {-f—;z[i)_ﬁ(— - [l m.ﬁr)]] .

71- v T e

<o vz @) 5 (T00=I6Yp00)).
L(p(x))

Thus, it is sufflclent to calculate the speétrum of observables

for the bag at rest.
We suppose that the spinor excitations describe the a.symptotic

hadron states. The hadron mass spectrum and spln are defined by Eqs.
(342)5(3.3),(3.4) ani (3.5), The charge (3.8) may be used for the '
wave funotion normalization. The solution of Eq. (3.5) for the un-
physical field A(x) 1s chosen in the form A(X) v(ﬂl{&)
Therefore, all physical observables are egual to zero provided the
splner excitation is absent. In this serse the vacuum (2.1),02.2)

is Lorentz ilmvariant. C

4. THE SOLUTIONS OF DIRAC EQUATIONS FOR
ARBITRARY f(ﬂ

In order to solve Eq « (3.4), we shall use the two-component

spinors
= (42,%) 4’:(4;;}
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J=(o?‘-i ; %) / (aﬁf)/s ‘:ﬁﬂ ’* é)") (4.1)
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We shall first consider the left spinors in the fiela 74)(:’ ‘
Sy cA ae) 8 _ug ) c (4.2)
AQ;L)=‘(¢4) //9- 2., 77 f’); “), @J( ‘

In the Euclidean spacey to solve the Dirac equations, one applies
the ADHM construction /9/ + However, in the Minkowski space this
method yields not all the solutions of Eus.(3.4) (see Appendix). We
shall use here a more simple method, remembering the infrared
factorigation in QED.

Let us make two transformations of Eq. (4.2)

1) Using the identiyy

: ‘ o 9 ¢
A g <2 A

"* cl Q * .
where Aé c = (?Q)"» (8 )c y We remove from the Lagrangtan %the
interaction tem with the derivative by transformation:

&+)£’4=(¢i+)jé[u—‘60)];g .; (ﬁli [Z((P)]‘-‘ig(%’)ég . (4.4)

where 43,'* and ‘;é are new spinors, and the matrix u(ﬁ)
18 of the form '
% Y2

L) -2
Ulp=veftbpflex L2 p 5, (220",

(In order to £ind the explicit form of the matrix -£xp(?)s1B +4D
one needs to solve the differential eguation:
-%[IB{G} +ADE] = ALIBH) + ADie)] taking into aceount the
relation A.A= 9F~A .

2) We symmetrize the Lorentz and colour indices im ¢+‘ P
by



(an(F) £ A 8 )
(& oy @)= 5 (A + A2 )2

r
Fimally, we obtain the Lagrangian (4.2) in terms of the fields 74, A’

8%, =cf AT[ Ao~ e (Aep)] +
S A [ - %l ) ¢ s A | D

The Dlrac equations corresponding to (4.7) are of the form

(4.6)

2, - oA p) =0 5
A - (,4:}2) . cothat %)4!:0,; (4.8) |

2 AT -2 KA =0 } (4.9)
%A - protk - i€ xeb oo Ap=0]

- A AL
and are easily solved, if the vector fields Kk, 'K
are represented as the sum of a gradient and a transverse field

A"x = 9;-2 + Vk 5 74:= 9:2#"‘ K.+

{4.10)
AW =dV=0.
Zquation (4.8) takes the fomm
) WA -0 (PrOT) = L (3cp) Vi s §
2) A 9;2: "QK (740‘)0—2) = - G;*}xfj/f. .
Here we have introduced the notation )
Gex =(é‘,3 B 9;—‘;9 axce™la (4.11)

I
From the second Eqs (4.8) we may pick up the transverse and
longitudinal parts actling in them with the operators I
and G(,)“. » respectively. We obtain the relation between Z

and A, o
xx) = 2 (A, ) (4.12)



and the equation for the vector field
V. - . _ ' ‘ (4.13)
OVi=0 y G V=0 - . |
z - .
The set of equations (4.12), (4.8 )Y 1s solved by substitution
2 ¥
74} 31/9 5%:;%-

which leads to an equation for the scalaw field Sf' _with &
source term

= 2(99:)% .

Finally; we have the following solution for Eq.s (4,8)

A =P 2(})‘4] S T B%%o0

(4.14)
>

#¥ 9 [- 4.——--— 2{2%}Q)k?.] vt ; C%¥9k5l4;:
In the same way, one mey find the solutions of Eq. (4.9)
f*f-: 2 ¥ t

° _P (4.15)
A= 2ol B0 )] = 5 Gt dd + T
where

i= i) 2 ubeer2p - 4R ] oo

-'. - +
The fields 72 and V& satisfy the eguations

*
(4.17)

Gons V=0 (D W= 0). , Vf/f =0

Zo

Analogously, the equations for the right spimors are solved,
The solutions coincide up to the sign with the expressions (4., 14),
(4.15) with. f} f¥ replaced by 1+k N f%e respectively,

(’4_ = % 'ffz - g% = i Geks(V)e = O (4.18)

’

ﬂ)a-— %%k ‘)]+— oxbdel%) + (Vi )e
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(A;JR:JOZ 9"[;{ 4..3{5' 2("&’/{547:?] ;A% =0
(4.19)
A& L L] W G0

-’.
where A' 74'2 are related with the spinors 4’ "‘é by

)= )nlt)™ £ [ fffz VA 3] M
U-(8) o= = [ALp o SIS

Once we k¥now the solutions of the Dirac equatiens (3. 4), we obtain
jrmediately the solutlion of eqs (3.5) for the Lagrange factor.
Therefore, the set of equations (3.4), {3.5) is completely integrable.
As it will be shown in the Appendix, uslag the ADIM construction
one may obtain the scalar veriant (Vx V.c =0) of the soluttons for
4 and %43 . The analog to the ADHM solutions for Yt Y
(435 ), (4.18) do not exist (the correspording Euclidean solutions
are equal to zZero).

5, CALCULATION OF THE CONSERVED QUANTITIES

Let us calculate the observables (3.2) for the bag at rest
(2.1), (2.3) with the scale k,>Z . The vector flelds in-effect
coincide with electromagnetic waves in a cavity with an 1deally
conductible surface provided both the electric and magnetic .
oseillation have the same energy. But for the spherlcal 'ba.g this
condition 1s not fulfilled, therefore we oonclude V;— t=0 /11 .

We expand the scalar excitatlons ‘P{R) s ‘ﬁ(e‘ inte. a com-~
plete set of spherical functions P, o “ PR

¢"( (x -le(ca.'-‘l?.fmﬁ- fiaPLnb, w.m)) ~ e"’"f’p m(co.f a_)‘h’ﬁx'_?hé

e

THEm
A

Vrf ‘ ) ' o
‘)ojn)-:nZ(@“m(“’)e 4 G,-:, +¢ -_-)e ?n,:faw )’

nem
l'h v

1
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X id >
where RL} 7 5") are the expansien coefficlents ang Q’j-,.)/ are
mmbers to be determined from the boundary condltion

J( ('?"', [X) =0 . : (5.2)

For example, the basic state corresponds to the value a’n-z, -{:o='{'
The wave functions are normalized such that the probability to
find a "quasiparticle® in the bag is equal to unity

szd‘ax "L?fa’gz()‘f:r% +’4:74k/&)+{.{¢k) :gfa”’a‘"’-r 5""3“?,
) 2p o

This is equivalent to the condition

-3 ¥
= 5.3
4'2’.4),]“’5 Bor Bom=1 . (5.3)
60
Furthermore one obtains the following expressions for the energy
(Hamiltonian), momentum /2 » and the spin projection (3.2)

- gt i o
Engj\' Toc =Qfg)§({¢/;40 2)’; +?’},2-74k](‘)+ ﬂ"‘ﬁ)raé %‘9""?‘%)@4 -(5?4)
sz"%"{"[’q':a»ﬁ +74':(9cr741](£)+(4a£)+’99,\ ?"’f?* ?f?u\]f

20 =5 (aa - gp™) @oer)(@y0-1) (5.5
i m

h &m @'rgf -

} . . ’ A7 - ) gD
,I'g:f‘o/.g‘ 83.)[ero‘ "f(’q'c‘ﬂi)m‘*ﬂu‘b}@]: A0t g f)m
ek fOgrfeieR)g, oo

Y, S2p)

The calculated observables are relativistic covariant {see
section 2) and define the possible mass and spin spectra for the

spherical bag,
For considering the N-bag vacuun, we shouid take into account

that the asymptotic states of noninteracting hadrons are
described, i.e.,the case when the distance between the bags is
larger than their size. In. this case the system is factorized and
we may consider each bag separately, passing to the system of axes

moving with the bag.

12



The effective spin of the "quasiparticle® in this model is
equal to an integer number, as thé sum of "colourspin"( @i 0"'1)
and orbital momentum is conserved (see (3.3)). For the model of
colourvector qua.rks(-"-@f =4 + 3) the "quasiparticies® will
have a normal haliinteger spin, therefofe the pro'blem of intege:r:
wquark® -spin here is not important.

From Eqs (5.5) we see, that there are Goldstone modes
which are nmecessary for the description of meson states. The
Haniltomlan (5.5) is positive definite 1f we suppose, as ‘usualy
that Fermi statistics holds for the coeffiolents g(*) 152

_ 3(—) g(-r_-) = g(H gf-)

a® £
and if we introduce a normalt ordering for ’ in quanti-
zing the spinor fields. The quantization of the considered system
will not lead to gqualitatively new results, as the gel f-dual vacuum
£1elds should be considered as c-number (or in more detalls  as
coherent states 7253/ 3
Consequently, a ploture arises which is similar to the hadron
bag model FL3314/ st the relatlvistic covarlant desoription of the
hedron asymptotic states. The difference between the bag model /14/
and the one described here consists in zere boundary oonditions
for the quark fields. These 1s no problem in physical interpreting
of fempty" bags as all their cbservables are equal 4o zewo.
Concluding, let us remark that we have used nonobservable
fields to abolish infrared divergences in Yang-Mills theory. The '
physical principle of the removal of the infrared divergences by -
nonobservable fields*is used also in QED and, probably will work-
as well for other quantum systems with infinite number of degrees
of freedom, Here, this principle leads te¢ a possibility of construc—
tive description of confinement.

Conclusion

In order to remove the infrared divergences in a non-Abelian '
theory, we follow the analogy with the theory for guantum liquid.
In the guantum liquid case the infrared dymamics leads to sponte~
neous vacuwn symmetry brgaking. In the non-Abelian theory the vaocuum
fields satisfy the self-duality eguation in the MInkowski space.

The main results of this paper consist 1n the complete solutiom
of the Dirac equatiozs with self-dual background fields (depending

13



on a certain arbitrary function) and the caleulation of the energy
spectrum of the "wacuum + splnors" system,

These results lead to the following physical reasonings

1) The physical vacuum ls represented by an infinite nunber
of gluon self—dual bags moving with various veloeities in various
directions, Physical. observables of suchk a vacuum (energy, momentum,
etc) are equal to zero. Tn this sense the vacuum is Lorentz=invariant,

2) Asymptotio states of the colour particles are "quasiparticlet®
excitations of the "vacuum®. The Muasiparticle wave function is
‘given within the finite volume of one of the bags. The conserved
values (observables) of the system {™acuum® + particles) are
Lorentz—covariant and the Hamiltonian defines the hadron mnass
spe ctrum, .

In this way the resulting physical plcture yields a bag-model-
~like descriptionaf hadron asymptotic states.

The author would like to thank B.M, Barbashov, D.V.Volkov,R. ¥V, Ef=
remov, M.Ilgenfrita, VeK.Mel *nikov, M.Muller-Proisker, Vel.0gie~
velsky, A.VeRadyushkin for useful dlscussions and Ta. A.Smorodinsky
for valuable remarks.,

APPENDIX
In order to determine the self—dual fields (2.1),(2.3)
let us apply an anzlogy of the ADHM construction
In Euclidean space it consists in the following.
1) A linear matrix expression

.o yyan
AV A XA L BAE S legl, N sk,
[ c

_ Aa . FAR = ’
for quanternions X = f’m"fo +id X is considered.
2) A -solution of the algebraic equation

AC /. + ) - . AcC -~ B: I
Z_‘e MY A )en=0 > M, (MZ);
-4
is found under the assunption that the matrix k exits, where

’ + VAC
(R(k)*c = LZ (A&- AH-’) . : (a1

AL

3) Then the solution of duality equation
has the ferm

AR s o p@)AR Ac . '
?&f(ﬁ ) = ?Zp"/f) 2 (M;_)e ‘ (4e2)

14



and the Euclidean solution of Dirac équation t

. AC ((-) A C 3
2+ 4) Gl ;o KY s (1,07)
are represented in the form

€ ’f‘f)enr) (Me') “ "?zx)»tc :

Qur construction is based on integml equations for analytic
functions.
'We define the matrices

8

and 1ntroduce the funotions of
~-crkpy

=)
)

= _ L € (A8
M7= @
which are solutions of the equations _
f}r ME MO =1 fn MEI@ =0 @D
‘ ke ~AE Pru Z’o/ﬁ’ . (A'ﬁ).
4 = ~ =& "—-—q,-——
-_{‘2‘)(21 & 2\;)0 #e 1=}

In (A.5) the funcfion Qm{'!“;ekc)' is an analytic functiun. at the
7

lower half-plane of variable T , ani(i6)gives the rules of
geting round the poles in integrating in (A4.5)5(4.6) over real axis.
(Here we bare in mind that the integration over the axc of large
radius does not gilve combtribution in the lower halfplane).

We can easily convinece ourselves that the solution of Eqes
(2,1}, (2.3) takes the fom

-+ -+, (c..
’4() Ia’e M() N ). (A7)

An analog of the matrix t‘k ) (AI) is the expression
_ exp(~¢ -fli_t’.l.o)
2 - __.__________——-———'_"-
X’J +278G \f’ﬂ\’ +'F(1)(Xz' .,.,57") {A.8)

Rt = 8(5-1)

G0



The solutien of the Dirac equation with the zexo boundary
conditions takes the form af (4,3) :

2 - R O i o . - o
Y= [or, e %8 [oe, M (£ =

T . ' : ";ﬁJ(b-{)

=L p% (;*Eqb‘fai):[i R Cx) !
which coincides with (4.4), (4.6), (4,14) for the vacuum (2,1),
(2,3).. : . :
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