


1. INTRODUCTION

Dipole ghost fields have been originally introduced by Hei-
senberg/l/ in order to justify the use of a double pole pro-
pagator in his nonlinear spinor field theory. Then the prob-
lem was dealt with by many authors among which cone should es-
pecially mention Froissart/?/ who investigated the problem in
the framework of indefinite metrics field theory. Then it was
realized that massless dipole ghosts are implicit in the mani-
fest covariant formulation of Quantum Electrodynamics as a gau-
ge theory/3{In that connection one should, of course, mention
the role of the dipole ghost for the construction of the so-
lution of the Zwanziger mode1/4fDipole ghosts are also preseut
in the consideration of the Schwinger model/56/(i.e., massless
spinor electrodynamics in two space-time dimensions). The pre-
sent paper considers a couple of massless dipole ghost fields
(treated according to the Froissart model’/2/ ) in a more comp-
licated situation. The formulation of the problem is as follows.
Consider the system of scalar and pseudoscalar fields F(x)
and F(x),respectively, that obey the equation {(duality conditi-
on):

c?aF‘(x)+eW8VF(x)=0, (1.1)
where €., =-c,, N » ¢gy=1 and the metrics is chosen to be
guu=(+.—).1t is then obvious that these fields satisfy also

oF{x)=0, (1.2)
aF(x) =0. (1.3)

Now consider the scalar field ®(x) and the pseudoscalar field
¢ (x) that satisfy the following equations:

‘od(x) = A, F(x), (1.4)
0B(x) =A,F(x). (1.5)

It is clear (in view of egs. (1.2) and (1.3)) that ®(x) and&%x)
are in fact massless dipole ghosts, i.e., they satisfy

afd(x)=0, (1.4a)
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02®(x) =0. {1.5a)
It is now obvious that we have two Froissart systems of equa-
tions (egs. (1 2)~(1.3)), which are however related through
equation (1.1). Although such a system might seem somewhat
artificial, it should be noted, that such a situation can take
place in the case of a "non Schwinger" solutien of the two
dimensional massless spinor electrodynamics., Here "non Schwin-
ger means a solution that is covariant under both gauge and

—gauge transformatlons, unlike the standard case when ¥
gauge invariance is lost in the quantization procedure.

In order to find out the explicit solution of the above-
formulated problem some boundary conditions are needed. The
existence of the relation (1.1) indicates that in general we
should modify the conditions that are usually impdsed in the
Froissart model. However this does not concern Poincare inva-
riance, which should be present in the solution. As for loca-
lity, it is eq. (1.1) that leads to certain modifications. It
is in general known that scalar fields that are related with
pseudoscalar thro ;h equations of the type (1.1) cannot be
mutually loeal /1-9 However, we can still ask that the rest
of the commutation relations are local. The requirement that
some commutators should be canonical will be commented on in
the text since at this point we cannot give a brief formula-
tion of this condition.

2. COMMUTATION RELATIONS

In this section we write down the proper commutation rela-
tions. To start with we begin with the observation that trans—
lational invariance implies that

[F(®,F0]=[F®,Fy)- [F®,Fl-o0. (2.1)
That is readily seenm from egs. (1.2)-(1.5) and thg considera-
tion of the appropriate commutators of F(x) (or F(x )} and
¢(x) (or Q(m ). Further on the same arguments when applied

-to the commutator of ®(x) and ®(x) lead to the fact that the
only independent commutation functions are the following:

i/'\i [®(x),F(y =1/, [5(x).ﬁ(y) 1= D(x-y), (2.2)

1/) 10(®) , F(y)1=1 /A5 B(x), F(3)1= D(x~y), (2.3)




(9D, 2(y)]=H, (x~3), (2.4)
[$(x, By 1= Hy (x-3), (2.5)

[9(x), ()] =H(z-y). | (2.6)

Having in mind the system of equatioms (1.1)-(I1.5) for the
fields, it _is obvious that the functions D(x), D(x , Hj (%) ,
Hy(%¥) and H(x) satisfy the following system of equationms:

4D(®) + ¢, dD(® =0, (2.7)
aH(® = A’ D(w), (2.8)
OHy (x) = 3D (%), (2.9)
OH(® =\ A, D (D). ' (2.10)

A system of commutation fumctions that satisfy eq. (2.7) has
been studied by many authors (see, f£.i., papers 7-114 mainly
in conmection with the massless Thirring model, It is well
known that the condition D(x) to be canonical, i.e.,

) . 1
60D(X)Ix.o=0 w=8(% ) _ (2.11)
fixes the solution of (2.7) in the following form:

D(x)=—-%-£(x°)6(x2), : _ S (2.12)

"D(x)n-‘%»-s(xl)e(—xz). (2.13)

Now consider egqs. (2.8)-(2,10). Having in mind that D(x)
and D(x) are homogeneous functions of zerc degree, it is ob-
vious that one can write down the following explicit expres-
sions for the general sclutions:

(e 5 p D °K
1(x)-- p” (B+¢D(H=MHy(D+ c4 D(x), (2.14)
Ho(x)= -ﬁ-.-.D(x) + ¢ D(D= A H (D +¢,D(x), (2.15)
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H(x)= '\142x = D(R)+e3 D(%) = A A H (0)+c,D(x). (2.16)
Here Hy(x) and Hy(x) are just particular solutions of (2.8)
and (2.10}, respectively, for Ay=Ap=1, while the terms deter-
mined by the constants ¢j, i=1,23 which are just solutions
of the homogeneous equations with definite parity* involve
the possible arbitrariness of the solutions. It is obvious
that H,(x) and Hy(x) can be made canogical if we fix Cy=Cg=1
on the contrary to H which can be fixed by some other condi-
tions. In what follows, however, we keep the constants ¢y »
cp and ¢z arbitrary in order to be ready to meet some other
requirements. Since solutions of eqs. (2.8) and (2.9) of the
type (2.14) and (2.15) have been already written (see, f.1.,
papers/8.10/)  the aim of the present section is to give a mo-
re detailed treatment of the infrared properties of the posi~
tive and negative frequency parts of these functions.

In what follows it is convenient to use the cone variables.
So we introduce the notatiom

Xy=X, t X X,=x* dzxz-%dx+dx_
@2a7n

The infrared problem for the functions D(x) and D(x) has been
dealt with in many papers (see, f.i., refs./7—1h6; we would
just write here the solution in terms of the cone variables
without any further corment. So we have for

dp . T ipx 4 Fipx_

plmasip B ‘e —260(x-p)}
o P

1
47
(2.18)

=5 doln(-,2x? + ipx°),
47
where uee¢’x , y=-I'’(1)is a parameter with a mass dimension,

that is needed to make the argument of the logarithm dimen-
sionless. For the functioms Di(x) we have

*We remind that H,(x) and H,(x) are scalars, while H(x) is
a pseudoscalar under space-time inversioms, and it is exactly
this condition that renders the arbitrariness of the solutions
in the form written above,
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N 1 p ¥ ipx,, _ Fipx_ el X, 7i0 |
(%) = -~ l}f 5 € e yy n_-n——-,—-x-;_ (2.19)

The main problem is how to define the frequency parts of Hy(x)
and Hy(x), and to formulate therefore a consistent infrared
regularization procedure. For the purpose one can use of
course the standard procedure. Since we are mainly interested
in the infrared regularization problem, we can proceed+ in

a more straightforward way. Namely, we shall define H_ (x)

and H (x) as the solutions of the following equatlonS'

nHa(x):4a+a‘H0“(x+,x“)aDt(x+,x__), (2.,20)

H (x)+ Hy(®=iHg (%),

Dﬁc?(")ﬂa,,? Eé (%, X_). (2.21)

Hy 0+ B (0 =iHyx),

@}_ere in the r.h.s. of these equations we coansider Di(x) and
D™ (x} in the form of one-dimensignal Fourier integrals
(eqs. (2.18) and (2.19), respectively). This gives an insight
of the needed regularization. Indeed, since in the cone va-
rlab es the D7 Alembertlan is idctorlzed, it is ev1dent that
Hy (x) and H t(x) are determined by D“-(x) and D (x) respecti-
vely, up to an additive linear combinations of x_ and X_. The
latter are needed in order to regularize the leading singula-
rity (the first order pole) of the integrands. Thus we are
forced to write down the following expressions for Ho(x) and

I—I {x) : .
P Fipxy .
H (x)--é-l-?-r-—l,} —-!-)%[x-[e -1 2ipxg(x=-p)1+
(2.22)
Ti 2
+x+[e+:px -1 % ipx_@0(x-p}li= -}%(Dt(x)i'i),
e
+ipx Fipx_ ‘
H (X)=1—--£‘—['J—-2-3 + -1] -x_ [e ~11} =
2~ (2.23)
=70 (®.



Since these expressions satisfy eqs. (2.20) and (2.21), it is
obvious that the1r regularlzatlon is compatlble with that of
the functions D2 (x) and D¥(x). There is, however one parti-
cular point that needs to be discussed. Tt concerns the regu-
larization of the leading singularities (the terms x:/p2 ).
At flrst glance it seems that one should subtract the terms
x+/p multiplied by &(«x-p) as for the logarithmic terms.
It is not difficult to see, however, that in such a case Lo-
rentz invariance would be badly afflicted. Indeed, under Lo-
rentz rotations at an angle x such counter terms would gene-
rate additive terms of the kind 1/y(l—e ¥X ), It is evident
that this cannot be a group transformation law. Therefore,
Lorentz covariance determines the regularization of the lead-
ing singularities uniquely.

At the end we must rem1nd v.the Lorentz transformation pro-
perties of the functions D~ (x) and D? (x). As it can be seen
from eqs. (2.18) and (2.19), they transform as follows:

+ t
D™ (A ,x)=D" () chy shy

A = (2.24)

~ 4 ~ 4+ P -
D™ (A, x) =D (%) +.2 shy chy
2w

=+
Then the corresponding transformations of Hé:(m and H ()
t +
H(] (AXX)‘:HE(X),

- - (2.25)
Hy (A, x)=H{ (%) 2 ﬁ.xz

can be easily obtained in view of egs. (2.22) and (2.23). It
is quite important to note at this point that the equations

{2.7)-(2.10) are invariant with respect to the transformations
{2.24) and (2.25).

: 3, OPERATOR SOLUTION

_ In this sectlon we give an expllclt operator solution for
. the fields F*(x) , Fi (x P (m and % (%) satisfying the

‘commutation relations obtalned in the Erev1ous section. We

consider first the fields F *(x) and F % (X). It has already

~'been mentioned that they were intensively discussed in many

_papers/7—11/ Here we just write down the explicit solutlon in
terms of the cone variables
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F(x)= \/ y_lg TN AT e P E (g0 (c-pIAT 0+ BEOL, (3.1)

50 T + Ti .
@ m v [ -g?iz e P Atp—e | BED-6 (-PIATO-BT (O} (3.2)
It whould be noted that the above form of the infrared regu-
larization is fixed (following the method of paper/llé by two
conditions. First of all it must be compatlble with the regu-
larization of the functions D¥ {(x) and D- f(x). And second
the existence of both charges

= [ ax'y Fro=5ila%0+B @], (3.3)
Q% 7 ax'a Frw ~ 71 (A*@-B O] (3.4)

is required.

The above expressions for the charges make clear the charac-
ter of the singularities in the integrals (3.1) and (3.2) and
at the same time fix the regularization up to the multiplica-
tive function 8 (x~p).

The main problem is the construction of the explicit solu-
tions for the fields ®¥(x) and ®*(x). We shall define these
fields as solutions of the equations

ad (®m=r F¥(x), (3.5)

D@i(x)=,\-2fi(x). (3.6)

The general solution of these equations can be written down
in the following form:

o ) =0 )+ ® S rcy/20 T (@) (3.7

F50 = D0 + 3, (%) + ¢,/ 20 ,F *(x), (3.8)

where tl)o(x) and tD (x) are particular solutions of egs. (3.5)
and (3.6), whlle the solutions of the homogeneous equations
@ (x) and ¢1(x) are necessary in order to satisfy the
commutatlon relations of the previous section (the constants
¢; and ¢y are introduced by egs. (2.14) and (2,15)).

Now we first write down the following explicit expressions
for ¢ (X) and @D(m



02t L I px (e At AN 0 po(c-py(A” Y0 7ix, A0
2 2\["' 0 p
o
o
+x 16 P8 (9)-B* (0= po(x-pXB T0) 7 ix_B “Opll, 5.0
02 (9ot mt T B ix 1077 A¥(p-at ©)-p8 k-p XA EO) T 55, 8% O))
o0 P ‘
2vem (3.10}

—x e TR Bt )~ B (0)-pae-pIB EO) T 1x_BEO)IL

where AX0) and B UD are the first derivatives of AT(p) and
B¥(p) at p=0.It is evident that expressions (3.9) and (3.10)
are solutions of eqs. (3.5) and (3.6). However, some comment
on regularization procedure is needed. It concerns the terms
that do not survive under the action of the D" Alembertian
(i.e., 5. A0 , x, B , 0(- PIPX_ A" *(0) and B(x~p)px, B’ X0)).
The analys1s of the 51ngu1ar1t1es at p={) makes clear fhat
such terms are indeed needed. However, their ewact form is
fixed by the requirements for Lorentz covariance and the ne-
cessity to reproduce the commutators obtained in the previous
section. Further on, lt is clear from eqs. (2, l) {(3.9) and
(3.10} that @ (x} 0(m . F+fm and F* (x) should com=-
mute tr1v1a11y. ths ccn51deratxon makes clear the introduc-
tion of the subsidiary fields &7 7 (x) and &2 (1) , which should
make possible to obtain the Lorrect Lommutators For the lat-—
ter fields, we write down the following expressions:

dp{[e Fipx

®X(x) - )w——r *erp-c T @lle PP T (-t ol 3.11)

o E(x)-A \f-r 2ire e Hm-c Eol-le T PR Xp—GE Ol (3.12)

In these expr3551ons we do not use the standard regulariza-
tion (6( «-p) is missed). Going ahead for a while, we can say
that the latter is motivated by the requirement that all com—
mutators should be Lorentz invariant, which can be achieved
by a special choice of the field transformation properties on-
1y And this in turn results in the above choice of the regula-
rization.
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Now we face the problem of formulation of such commutation
relations between Ai(p) , BY(m , CXpand GHp) which imply
the commutators obtained in the previous section. A simple
generalization of the method employed in paperfﬁlfleads to the
following system of commutators

1 + I + - 5 K
—[C* (m.a¥ wl--L(a Tl L 2P0 & (3.13
o [C (AT 1= (G0, BT@I - 155 somp@r #1319

é——[ C *(0),A%g]~ é—[ G*(0).B (@)= Lic ), A ) - (3.14)

Lt Fovla+ L
- q‘[G (@), BT (0)]=+ £8@)

TIC @ a%0l- Li6*w. B *ol-7 o @, (3.15)

All other commutators are vanishing.
It is easy to check that using formulae (3.13)-(3. 15), one
can obtain the correct commutators between the fields F-—(m

Fifx) ,o%x andd *(x) provided that the constant in for-
mula {(2.16) is fixed to be
A
03=.L{c ALie if), (3.16)
2 ZAQ /\1

S0 we have partially removed the arbitrarity determined by the
constants ¢, , Cg and ecg

At the end of this section it is necessary to discuss brief-
1y translatlonal 1nvar1ance. From egs. (3.9) and (3.10) it is
evident that @ {(x) and @ (@ are lacking manifest transla-
tional covarlance. And it is known/3/ that in order to deal
with the problem of Poincare invariance of a dipele ghost cor-
rectly, one must use the representation as a Fourier integral
over the whole space- time rather than the one-dimensional Fou-
rier representat1on. In such a case we use the f0110W1ng equa-
lities:

Ai(p,q)=—\§-28’(q)Ai(p.q). | (3.17)

+ + .
B7(p.q) = - i—za °(p) B (p.9). (3.18)
where AI(RQ) and Bi(P&) satisfy the conditions

A o=at ). afopel -0, (3.19)
éq §=0



00 =B* 9 gt - 3.20)
B~(0.9) = B (), FB'B (p.q)il):c = 0. (
Then using the standard transformation laws for Af(pg) and
+ . 5 ipa, +iga_, 4 &
B (pq), it.e., A”(pQ o e AT (pa and B~ (pa) -

- g 'Payiqa B*(pg), we can restore the mani;fest translatio-
nal invariance for the dipole ghost fields (D'O‘(x) and c1>0‘(X)-

4. LORENTZ INVARTANCE

The aim of this section is to define the proper Lorentz
transformations of the fields F *(x) , f"t(x) $ Xx) and @i(x)
under which the commutators of the fields and the equations
are invariant. At the same time this would serve as a check
of the self-consistency of the results that are already ob-
tained.

For +the purpose it looks natural* te adopt for the opera-
tors AS(B) ,B3p ,C%p and G (p the following transfor-
mation properties:

UL AU =AY U A o, -ea T, 4.1
U;'Bi{p)UY=Bi(e D) U B U, - e X ¥, (4.2)
Uy C X MU~ C¥e p), - (4.3)
: Uy G @ U, = 6" ). | (4.4)

Then 'having in mind the explicit expressions (3.1), (3.2),
€3.9)~(3.12) one can immediately obtain for the fields i,
Fiaxy »®*x) and $%x) the following transformatiom laws:

N =1 i + o = '

Oy FI@U =P (A x) f iyEy @ i © (4.5)
M 7t +i. 8 ot (4.6)
UX F (x)UX-F (Axx)—xv—;)(a , _

*An analogous method has been used in paper /11/in order to
obtaén+ the correct Lorentz transformations of the fields F‘i'(x)
and F ~(x). . ‘
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_1 i Cl
U, e (nU, s (A, x)_ r( + =) +
X V2 Ay
Ay + Sx
si—tefe X x A” (0)—e x,B°7(0)] L.
2\Bw '
=0 5(A_x) t iy KA _x)
= ¥ - ){ ¥ »
-1 + + 2 c +
U, ® (U, =0 (A x) ( 237 4+
\/217 Ag 4.8)
A -
+_L£3;_[e Xx_A 1m+exx+3'im)'=
2venm

EEF(AXx)t ix K" (A, %),

where @% and @~ are defined by eqs. (3.3) and (3.4) and A,
is the matrix of the vector representation of the Lorentz
group defined by formula (2.24).

Although these transformation laws look quite unusual, we
shall prove now that the whole problem is invariant under
their action. For the purpose we first note that the follow-
ing equations take place:

OK™ (A, x) = %ix, vExat, (4.9)

o . 2 %
oK (Axx)=il,\2\,’7)( a” . (4.1Q)

But now it is evident that the r.h. sides of these equations
coincide up to the multiplicative constants Al and A, yith the
additive term in the transformation laws of F¥(x) and F (%),
respectively, Therefore, we can conclude that eqs. (1.1),(3.5)
and (3.6) are covariant under the action bf these transforma-
tions, '

A little but more complicated is the proof of the iunvariance
of the commutators. Having in mind eqs. (3.13)-(3.15), it is
not difficult to see that the only nontrivial commutators in-
volving Qt , A , Ki(x) and ﬁi(x) are exactly the following:

. A .
(e, 0¥ ml- 5 -k, (4.11)
22
(3%, 8% w1~ 7 —22., | (4.12)
22nm 0
* ¥ N + F Ay
(2700 K70) )~ -(K ), 0" )] -y —x, v ), (4.13)
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- - -~ ~ A

[3°@®. K 5 (R, W= &ea v, —x,y_), (4.14)
T i A Agh

[‘I’i(x)-k+()’)]=?8—1?;—02x~;¥i—i%;-2—(y2—--x+y~—-x_y+), (4.15)

+ rd i A AA
K ®),d " m =7 é-ie-cl-—x% ¥ i-l-é.;g(xz_x+ y_—%.y.). (4.16)
Now having in mind formulae (2.14)-(2.16), (2.24), (2.25) and
(3.16), we arrive at the conclusion that the additive terms

in the Lorentz transformations of the fields exactly cancel

the additive terms in the transformations of the functions
DY(xy) and D*(x). In fact, the commutators of the fields are
invariant under the action of the transformations (4.5)-(4.18).
Thus, we see that the whole problem is invariant with respect
to the latter transformations. This in its turn can be regard-
ed as a check of the consistency of the regularization proce~
dure,

At the end the author expresses his gratitude to Prof.
D.Ts.Stoyanov and Drs. M.Mintchev, E.A,Ivanov and L.K.Hadjii-
vanov for the stimulating discussions in the course of the
present work.
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