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I , INTRODUCTION 

In paper111 it is shown that the classical conserved nonlo­
cal chargesf2~~ survive in the case of quantization for any 
of the generalized nonlinear sigma models. For the O(N) ·sigma 
model this has been shown earlier in paper 141• The existence 
of this infinite number of quantum nonlocal conserved charges 
provides the factorization of the S -matrix and the absence 
of the particle production14(Consequently, we are able to 
compute e~actly the S -matri:x/4~ when there exis.t higher local 
quantum conserved charges /5,6/ and the asymptotical states. 

In the present paper the infinite number of quantum nonlo­
cal conserved charges are found in the case of generalized 
supersymmetric nonlinear sigma models. The classical spinor 
conserved supercurrents for these models were found in ref(7•81. 
To find corresponding quantum sUpercurrents the same method 
is used for computing the classical conserved currents as gi­
ven in ref. 191 in which the regularization procedure is perfor­
med. 

This procedure consists in subtracting the singular terms 
from the currents and from the equations for generating func­
tions. These singular terins are determined nonpe:rturbatively 
using the supersymmetric short distance Operator product ex­
pansion (SOPE). From the analysis of SOPE of one conserved 
spinor suppercurrent and one scalar superfield with zero scale 
dimension it follows that there is only one singular term (up 
to logarithmic terms) at short distances. 

The explicit form of the second quantum cOnserved nonlocal 
charge is found. This charge is written down also in termS 
of the asymptotical fields. Any other nonlocal charges can be 
found as solutions of the equations for generating functions 
or from multiple commutators of the second charge. 

2. QUANTID1 EQUATION FOR THE GENERATING FUNCTIONS OF 
NONIOCAL SUPERCURRENTS 

In papers~ 1 it is shown that the classical conserved spinor 
supe,rcurrents have the following form 

' 
J(k)(x;O)~[A (x;O),X(k)(x;OlJ+[{y

5
A) (x;O),X(k-tke)], (2.1) 

a a a 
(k~l.2; ... ) 
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where the functions X (k) ( k =0, I, ... ) are NxN matrices with 
matrix elements transforming as scalar superfields. These 
functions are determined as solutions of the following super­
symmetric equations 

DaX (k) (x; e) ~(y 
5 

D) a X(k-l(x; e) -il (y
5 

A) a ( x;e), X (k-l{x;~)] , 

(k= 1,2, •.. ) 

where we start with X (0)= 0, 
a -o ~i-- + <er~'l a a aea a (.L 

is the spinor supersymmetric covariant derivative and 
-I 

Aa(x;el~iG (x;e)DaG(x;e). 

(2. 2) 

(2.3) 

(2 .4) 

Here 'G (x; 0) is an NxN matrix with scalar superfield elements. 
As it has been shown in ref.19I,X(k)are generators of·infinite 
parametric nonlocal and nonlinear transformations with respect 
to which the action is invariant. According to the last trans­
formations the supercurrents (2,1) have Noether character /9/. 
For the particular sigma models (2.4) can be written also in 
the form: ' •• A 'a (x; e) ~ 2i [ ni (x; e) D a n k (x; e) - D a n i (x; e) n k (x; el} , (2. 5) 

for the O(N) sigma model, 

Aik (x;el ~ 2i[ z (x;eJD z(x;e) -D z. (x;el z k (x;e)J, a J a a J (2.6) 
for the CPN-lmodels. and .. -

' A'a (x;e)~ 2i[vjK (x;e)Da VKk (x;el -Da vjK (x;elvKk (x;el] (2. 7) 

for the Grassmannian models. 

In the quantum case, when Aa(x;O) and X(k)(x;O) are opera­
tor-valued functions, the currents (2.1) as well as the equa­
tions for the generating functions (2.2) are needed to be cor­
rectly determined. For this purpose the nonperturbative method 
of supersymmetric operator product expansions at short dis­
tances (SOPE) is applied. With this method the singular terms 
at short dista~ces of the product of two operators in (2.1) 
and (2.2) can be determined nonperturbatively. In our case 
when A (x.; 0) is a conserved spinor supercurrent,. i.e.,. 
Da A ("f;e) =0 its scale dimension is 1/2. For the function 
x<k)(~;O) we restrict ourselves to solutions of eq. (2.2) 
with zero scale dimensions. Then we define 
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(2.8) 

(k=1.2, ... ) (2. 9) 

and x<O) =0. Here Ei=v'-(x!-x2) 2,and Aaare given by form\llas 
(2.4-7) where the classical fields ·G(x;ll) are replaced by the 
corresponding renormalized quantum fields:t Ca ( x;8) are the 
singular c -number functions which will be determined later 
from· the short distance SOPE. The thus deterudned c~rrent 
(2.8) and equations for generating functions .(2.9) are regular 
at xrx 1 and consequently the limit x 2-+~,wbenxcx 2 is space­
like interval, exists ther_e. 

The corresponding -~onserv:ed charges are determined- from 
the vector components o-f the s-pinor supercurrent (2.8)-. These 
currents are given by 

J~) (x 1'x2) = [A~ (x1). x~>(x 2}] + 'tw [A v (x1).x~-~~x2)] -
(2. 10) 

- (k) - C (x -x )x o (x ) -, 
~ 1 2 0 2 

(k = 1,2, ... ) 

and 
v (k-1) v (k-ll a )(o(k)(x

1
) =< (}X o (X )-i< [A (x ),)( o (x

2
)J+ 

~u tw o 1 pv 1 u 

(2. II) 

where 

)(~) = 0. 

The corresponding conserved charges are given by 

(k) ' (k) ' ~ (k) Q =hmQ 0 =hmfdx 1J 0 (x0 .x 1 ). 
8""*o a.~o 

(2. 12) 
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It can be checked tllat the limit in (2. 12) exists and the 
charges Q(k) are c-onserved-, indeed. 

From (2.10), (2.11) and (2.12) it follows that 

Q~·~ ~ x<tl{x 1 ~ ~ ), (2.13) 
c-onsequently, the generating functions for x_j + cc coincide with 
conserved charges. 

3. SUPERSYMMETRIC SHORT-DISTANCE OPERATOR-PRODUCT 
EXPANSION 

Consider the supersymmetric short-distance expansion of 
the product of two local operators 

A(x;O)B(y,O)- !CX(x-y, O)~X (y, 0), (3.1) 

where C are singular ·c -number functions and OX are, composite 
local o)>erators. In the case when fields A(x;O) and B{x; 0) 
have isotopic indices, i.e., if they are transformed under 
some internal symmetry group 0, then C are scalar wit.h respect 
to 'G. The singular terms of (3. I) can fre determined only from 
dimensional considerations. In the case under consideration, 
when we have a product of one conserved spinor super~urrent 
with scale dimension I /2 and one scalar field X(x; 0) with 
zero scale dimen~ion, we have 

Cx(,\x; ,\1120) ~,\-112+dx (x,O), (3.2) 

where d is the scale dimension of the composite field OX,A 
is an afhitrary parameter and it is taken into account that 
the dimension of the anticommuting variable 0 is 1/2. Conse­
quently, from (3.2) it follows that the singular terms at 
short distances correspond only to the composite (which can 
he constructed from A and X ) fields with scale dimensions 

, dX =0 and 1/2. The te~ms with dimension 1/2 give logarithmic 
s~ngularity which is cancelled in the charges and consequently 
such will not be considered here. 

The supersymmetric c -number coefficient function C (x1 -x 2 ; e) 
corresponding to the terms with zero scale dimensitnal can 
be written in the following form 

C (x;O)~(y D) lnl'lxJ, a 5 a (3. 3) 

where~ is a parameter With the dimension of mass and Da is 
the spinor covariant derivative (2.3). It can be checked that 
(3.3) is a conserved spinor, i.e., 

oaca =-o • 
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and is invariant with respect to the --supertransformation~' i.e., 

(Sd + s!) C {:l (x1 -x 2 ;8) ~(y 5 D) {:l (Oy "Ja (a >a;) lnl'ix 12 i. ~ 0 • 

Here S ~·2 are the generators of the sU.pertran;;f<;>,:r,-mations an­
ticommuting with Da. 

Substituting (3.3) into (3.1) we have 
1 -

Ja (x 1,8)X(x2 ,(8)) ~(y 5 D )alnl'ix 12
iX(x 2

,8) + (3.4) 

_ + reg. terms, 
where X_is a scalar or pseudoscalar superfield ~ith zero scale 
dimensio'n. From (3. 4) for vector component we have 

J ,cx 1 lxCx 2 ) ~',.,a~ In, lx 12 1x<x 2 ) + (3.5) 

_ + reg. terms, 
where x(x~) is a pse~doscalar component of X(X. fJ~. The firs·t 
nontrivial function X is given by the formula 

X 

- (2) f ( 6 x ~ dy 
1 

A 
1 

(x
0

, y 
1

) • 3. ) 

Consequently, the l.h.s. of (3.5) is transformed also as a 
vector under spice reflections as the r.h.s. The normalization 
coefficient in (3.5) has the same value as in paper 141, 

4. EXPLICIT FORM OF QUANTUM CONSERVED CHARGES 

The explicit form of conserved charges (2,12) to be found 

requires the generating function to be derived as a solution 
of eqs. (2.9). If we find the second charge Q( 2l, then using 

the commutation relation we are able also to derive and other 
conserved charge. From (2.10d it follows that. it is necessary 
to determine the function X 21 (x) from (2. II).· It can be chec­

ked that this function is given by 
Xl 1 i - 1 

x<2l(xl~.J, dy 1[g- a
0

y(x
0
,y

1
)- 2 •ry

0
if<Cx

0
,y

1
)], (4.1) 

where 

A,(x) ~ig-1 (x)a,g(x) +i v;-1 (x)y,if<(x) . (4. 2) 

is the vector component of the first conserved spinor super­
current Aa(x,B) is given by (2.4-7); g(x) and if<(x),respectively, 

are scalar and spinor components of chiral superfield 'G(x;fJ). 
Substituting (4.1) into (2.10) we have 

(2) ('2) v l 
Jl' (x 1 ,x 2 )=lA,(x 1 ).x 0 (x 2)l+<,v[Av(x 1 ).C -

_ ~=3, a" In,Jxlx <21 Cx 2 l. 217 IJ.V 

(4.3) 
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(4.4) 

and 
g<2J z lim g 8<

2J • (4.5) . a-.. 0 
The current (4.3} and the charge (4.4) have the same form as corresponding q.uanti ties for ordinary sigma models 11,4/, 

however, here in A (x) ghoon by (4.2) there is the term if;u .p found from the spilor component of. the chiral field. By th~ method given in paper141 it can be che~ked that the charge is indeed conserved, i.e., 

«JOO /dx 0 = 0. 

Any of other. higher conserved charges can be found from (4.4) by the multiple cotmniltator. 

5. CONSERVED CHARGES IN TERMS OF ASYMPTOTICAL FIELD 
. f "(k) • f From conservat1on o the charges .. 1f allows that they 

do not depend on x0 o i.e. , they have the same form at any x0 . Then suppe>se that there exist the asymptotical fields 
0 t" 1/.o (x; IJ) with the following components for the O(N) .ou \I'D d l s1gma e 

(n
1 

(x)) 
1 

=-1-J df [e '£.~a: (p) + .-!pz a~ (p)], (5.1) 
(o~t) 217 y'm2+p~ J - J 

(.p
1

(x))
1

· =2.._fdp[e 1P•u+ (p)b+(p)+e-iP•u-
1

(p)a .(p)], D 27t JS SJ S - SJ -(out) (5.2) 

where m is a dynamically generated mass, and for the spinor we have the following normalization conditions 
-·± + m t- (5 3) u

8
y(}u =+-o • - Po sr 

Substituting (5.1) and (5.2) into (4.4) using (5.3), after some computation (see 14/) and taking the limit we have 

~=.l.J df. ~.(p-q):la+(p)a-(pJ-•t(p)a~(p) + N2po2qo-- J_k_ -J-
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(5.4) 
+ - + -

+ 2qo [be <.Y bk c.y- br('!l ~k ~ll + 

+ N-2 J~ln(Po+P:l)la+(p)a-(p)-i~k+2p [b+(p)b-(p)-i~kl!. 
nN Po m J - k- -0 J - k -

The charge (5.4) and higher conserved charges which can be 
found by multiple commutators. of (5.4) can be Used for com­
putations of the S matrix (see ref. 14 ). 

Acknowledgements are due to V.Krivoshchekov for useful 
discussions. 
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