


1. INTRODUCTION

In paper/1/ it is shown that the classical conserved monlo-
cal charges’2.3 gurvive in the case of quantization for any
of the generalized nonlinear sigma models, For the O(N) sigma
model this has been shown earlier in paper’%/. The existence
of this infinite number of quantum nemnlocal conserved charges
provides the factorization of the S -matrix and the absence
of the particle production’4.Consequently, we are able to
compute exactly the S—matrixf4fwhen there exist higher local
quantum conserved charges /5% and the asymptotical states.

In the present paper the infinite number of quantum nonlo-
cal conserved charges are found in the case of generalized

. supersymmetric nonlinear sigma models. The classical spinor

conserved supercurrents for these models were found in refl”
To find corresponding quantum supercurrents the same method
is used for computing the classical conserved currents as gi-

ven in ref.”® in which the regularization procedure is perfor-

med.

This procedure consists in subtracting the singular terms
from the currents and from the equations for generating func-—
tions. These singular terms are determined nonperturbatively
using the supersymmetric short distance operator product ex-—
pansion (SOPE)}. From the analysis of SOPE of one conserved
spinor suppercurrent and one scalar superfield with zero scale
dimension it follows that there is only one singular term (up
to logarithmic terms) at short distances.

The explicit form of the second quantum conserved mnonlocal
charge is found. This charge is written down also in terms
of the asymptotical fields. Any other nonlocal charges can be
found as solutions of the equations for generating functions
or from multiple commtators of the second charge.

2. QUANTUM EQUATION FOR THE GENERATING FUNCTIONS OF
NONLOCAL SUPERCURRENTS '
In papers’?/ it is shown that the classical comserved spinor
supercurrents have the following form
: k-1
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where the functioms x & (k=0, 1, ...) are NxN matrices with
matrix elements transforming as scalar superfields. These
functions are determined as solutions of the following super-—
symmetric equations

DX (x:6) =ty D), X* i) il 4, (x:0), X% w00,

2.2
(k=1,2,...) ( )
where we start with X(®_p,
D il G ' : .
Dl‘l -—1-55-&-—+(6)/ )a afl . . (2-3)
is the spinor supersymmetric covariant derivative and '
A, (x0=16""®AD, Gx: ). (2.4)

Here 'G(x;0) is an NxN matrix with scalar superfleld elements.
As it has been shown in ref,’”®,X® are generators of - infinite
parametric nonlocal and nonlmear transformations with respect
to which the action is invariant. According to the last trans—
formations the supercurrents (2,1) have Noether character /9,
For the particular sigma models (2.4) can be written also 1n
the form:

AJ: (x;6)=2iln, (x:0)D, 0, (0)-D n (x0)n, (x 6}, (2.5)
for the O(N) sigma model,

A'i:: (x:6) = 2i[Ej (x;0)D_ z(x;6) -Da'ij (x;6) z ‘ (x: 01, (2.6)
for the CPN"lmodels, and

A% (0)- ALV, (oD v, &6 -D v, (x:0v,, (x6)] (2.7)

for the Grassmannian models.

In the quantum case, when A_{x;¢) and ®x0)  are opera-
tor-valued functions, the currents (2.1) as well as the equa-
tions for the generating functions (2.2) are needed to be cor-
rectly determined. For this purpose the nonperturbative method
of supersymmetric opeérator product expansions at short dis-
tances (SOPE) is applied. With this method the singular terms
at short distances of the product of two operators in (2.1)
and (2.2) can be determined nonperturbatively. In our case
when A (x. §) is a conserved spinor supercurrent, i.e.,

D" A (x @) =0 its scale dimension is 1/2. For the function
X“‘)(x #) we restrict ourselves to solutions of eq. (2.2)
with zero scale dimensions. Then we define

18 g x00 =LA, (x50, X3 "0+ [y A) (x,:0), K F s 1,:00 -
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(k)(x 6)_()'51)) x¢ "(x -i-[(yaA)a-(!l:G).,X(k-n(xs-e)l+
+'_(_y5_c)a.(xl-xz;e)i‘?g‘-’(xg;ﬁ-a}, R ’(2_.9)

and X® =0. Here & =v={x4~Xg) %,and A, are given by formulas
(2.4-7) where the classical fields G(x;6) ' are replaced by the
corresponding renormalized quantum fields, C_ (x4 are the
singular ¢ -number functions which will be determined later
from the short distance SOPE. The thus determined current
i " (2.8) and equatiens for generating functioms (2.9) are regular
‘ at X=Xy and consequently the limit x,+X ,whenx X, is space-
like interval, exists there.
The corresponding conserved charges are determmed from-
the. vector components of the spinor supercurrent (2.8). These
currents are given by

TP %) =18, xxF @ e 1AV @G )0 -

(2,10}
| ~C, (&, -5 )X @) ¢ CF @ ~x)xF V=),
3 k=-12,...)
and
v (k=1 . v (k-1 :
d Xs(k)(xi)“‘ d X5 231}-1c#v[A (xr).xa. 232)]+
' ' .1
L€V x,)xs IIx ), & = 1,2,..)
where
(0)
X5 =0.
The corresponding ct;nserved charges. are véiven by
Kk
a®- 1ima§ - km [ ax Jf})(xo.xi).. 2.12)
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It can be chedked that the limit in (2.12) exlsts and the
charges Q%) are conserved, indeed.
From (2.10), (2.11) and {(2,12) it follows that

oG o

consequently, the generating functions for xj+‘mc01nc1dé with
conserved charges.

3. SUPERSYMMETRIC SHORT-DISTANCE OPERATOR—PRODUCT
EXPANSION

Consider the supersymmetric short-distance expan51on of :
the product of two local operators

A O)B(y,0) ~ 2C, (x-y,0)0, .6}, BRI

whereC) are 51ngu1ar (4 ~number functions and.O are-composite
local operators. In the case when fields A(x;¢)" and - B(x; 8)
have isotopic indices, i.e., if they are transformed under
some internal symmetry group G,then C_ are scalar with respect
toG. The singular terms of (3. 1) can Be determined only from
dimensional considerations. In the case under consideration,
when we have a product of one conserved spinor supercurrent
with scale dimension 1/2 and one scalar field X(x;6) with

zero scale dimension, we have

L O Al2g) )12y (4 g, (3.2)

where d,, is the scale dimension of the composite field O_,A
is an a%fltrary parameter and it is taken into account that
the dimension of the anticommuting variable @ is 1/2. Conse-
quently, from (3.2) it follows that the singular terms at
short distances correspond only to the composite (which can
be constructed from A and X ) fields with scale dimensions
~d, =0 and 1/2. The terms with dimension 1/2 give logarithmic
singularity which is cancelled in the charges and consequently
such will not be considered here.

The supersymmetric ¢ -number coefficient function C (xl m
correspondlng to the terms with zero scale dlmen31onal can
be written in the following form

¢, &6} =(y5 D)alny{x], . (3.3)

wherey is a parameter with the dimension of mass and D is
the spinor covariant derivative (2.3). It can be checked that
(3.3) is a conserved spinor, i.e.,

D“Ca=0,
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and is invariant with respect to the supertransformation, i.e.,

(Sa +Sa )Cﬁ(xl—xz 19) =()’5 D)ﬁ{g'y )G (3#+a#)lnplx12'lﬂ= 4] .
Here 322 are the generators of the supertransformations an-
ticommuting with D_. - Ry _

Substituting (3.%) into (3.1) we have

I, (k0 )Xy, 00 = DY) Inprlx | X(x,, ) + (3.4)

- + reg. terms, R
where X is a scalar or pseudoscalar superfield with zero. scale
dimension. From (3.4) for vector component we have )

T () =e 9 Inplx g i g) + S (3.5)

- 7 +'reg. terms, . o
where y(x,) is a pseudoscalar component of X(x, 6). The first
nohtriviai function X is given by the formula

-4
o @
% __i‘dylai(xo.yl). o | (3.6)
Consequently, the l.h.s. of (3.5} is transformed also as a

vector under spice reflections as the r.h.s. The normalization
coefficient in (3.5) has the same value as in paper’% .

4; EXPLICIT FORM OF QUANTUM CONSERVED CHARGES

The explicit form of conserved charges (2,12) to be found
requires the generating function to be derived as a solution
of egs. (2.9). If we find the second charge Q{®, then using .
the commutation relation we are able also to derive and other
conserved charge. From (2,10) it follows that it is necessary
to determine the function x (%) from (2.11). 1t can be chec-
ked that thig function is given by

2)

1 -
x®@= [ ar 870, y& ey, ) - ¥ e Gy L G
where : o ‘
A, =g @O, 6@ + T T @y, pw SR (%>

ig the vector component of the first comserved spimor super-
current A,(x,0) is given by (2.4-7); 8(®) and ¢ (x),respectively,
are scalar and spinor components of chiral superfield 'G(x;0).
Substituting (4.1) into {2.10) we have

2 1
Jf)(xl,32)=[A#(x1),x(3)(x2)]+eFV[AV(xl).C]— |
N-2 ~ @) . ‘ (4.3)
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.‘s'g;bstiturting (4.3) in (2.12) we .have
o 2,8 o : )
| '“-‘«?’i,{“’.;l @y (A, @gux ) 1Ay (xg.3, ). €1 - - |
' - (4.4)

Nog o om RN
-énd : - . ) - ‘ ’
a® . im %tz) ] o _ . (4.5)

The cui?r’é}nt'_ {4.3) and the charge (4.4) have the .same form
as corresponding quantities for ordinary sigma models/1.4/
however, here. in A (x) gimen by (4.2) there is the term do ¢
found from the spinor component of the chiral field. By the
method given in paper/# it can be checked that the charge is

indeed conserved, i.e.,
ad® jax° = 0.

Any of other higher conserved charges can be found from (4.4)
by the multipié commitator. ‘

"5, CONSERVED CHARGES IN TERMS OF ASYMPTOTICAL FIELD

. . k)
From conservation of the charges @ ) if follows that they
do not depend on %3, i.e., they have the same form at any X,.
Then suppose that there exist the asymptotical fields

Courgny X6 with the following components for the O(N)
 sigma fodel :
3 @@, = ® [e’22a% @ + e 2~ 1, (5.1
'3 =T ipreem—— - 3 il J ik ¥ .
) i (ﬁ:t) \/.—m“é—ﬁ p'l ]

. 1 ipx 4+ + ~-ipx -
(¢j(x))in =§—fdp[e ujs (P)bsj (p)+e usj(g)asj(g)]’ (5.2)
(out) _
where M is a dynamically generated mass, and for the spinor
we have the following normalization conditions
+

Y, uF s , C(5.3)
tls yUur, * po.ssr

Substituting (5.1) and (5.2) into (4.4) using (5.3), after
‘some computation (see ’%') and taking the limit we have
g ffg- - cp-a Ia;(p)a;(p'-) -ag‘“(p)a; ®) +
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: - + - + - T+ -
+ 2oV} @ by @) by @b @tay @ 3@ -2, (Pag (D +
(5.4)
+24,(by @ b, (@~ by(@ b, @I +

N-2 _dp  Po*Py. . + .\ = . . o Tt (Vb= () — 1 s
5 fpo In( — Haj(l_))ak(g)-Je—vk+2l_i.0[b]_(g)bk(g) jxli.

The charge (5.4) and higher comserved charges which can be

found by multiple commutators . of . (5 4) can be used for com-
putations of the § matrix (see ref.”? ). :
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