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1 • INTRODUCTION 

In this paper we cal~uiate the one-loop.electrqweak· correc
tions to scattering or annihilation of any two fermion.s with 

spin 1/2 within t-he framework of an extended Weinberg-Salam 
(WS) theory. The paP.er summarizes· our efforts_ of many years 
in this direction/17/.fhe presentation of our final results 
was started in ref. 2 where we gave the total set of for
mulae for all one-loop diagrams necessary for the calculation 
of these corrections. Our main purpose _is to give explicit 
expr_essions for the one-loop amplitudes of the. considered- pro

cesses which are free of all divergences and valid at any 
ene-rgies and momentum transfers. · . 

At the end of 19.79 several groups /s-s/ studying the higher 

order effects in the :WS theory discovered independently rather 
large radiative corrections to vector boson masses which can 
be measured in the nearest futu.re. This would provide the de
sirable test for predictions of the WS theory not only at tree 
but also at the one-loop level. 

This conclusion to a great extent came from the understand~ 
ing of the important role of. the renormalization scheme in 
such calculations. 

It is well known, in the WS theory dealing with Nr fermion 
fields there are Nr+4 ind~pendent constants - Nr fermion mas
ses (m r ), Higgs boson mass (Mx) and three additional parameters 

which should be chosen arbitrary from the following set ot 
parameters: e , g, g'., M w, Mz, sin2ew~e2/g2, R=·cos'tiw, Ac=2Mw/ g. 
h =·M~/2Al?. Various renonnalization schemes differ by ~ speci-' 
fie choice of these independent parameters, specific genera
tion of counterterms, the way of calculations (gauge, regula
rization) and, what is most important, which physical proces
ses are used to fix the renormalized parameters. 

A number of renormalization schemes were studied and tested 
during last years. A scheme wi,th i,nput parameters· e , Mw , Mz , 
Mx. and mr developed in refs. 19•101' is in our opinion un
attractive because the renormalization performed in the 
~t Hooft-Feynman gauge was done off-mass-shell. As a conse
quence, the external lines of some particles give finite non
vanishing contributions after renormalization. 

In refs. 111•121 a scheme with input parameters e ,. · g , Mw , 
Mx. and mr was investigated in the unitary· gauge. We s_ee two 
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shortcomings in such an approach. First, the renormalized on
mass-shell weak constant g contains unphysical infrared and 
mass singularities. To remove them an additional re-
normalization should be applied. In refs./11-131 the process 
w .... f.l. +vf.l.· unmea-sured up to now was used for this purpose. Se
cond, the renormalization of two vector boson masses is per
formed unlikely in this scheme. The pole of the Z -boson pro
pagator is not at the physical mass but at a mass which is 
calculated in the considered perturbation order. 

Two of us/4,14/have developed a modification of this scheme 
using the requirement of zero one-loop corrections .to the to
tal muon lifetime as the first point for the fixation of phy
sical parameters g and M w and the experimentally measured I Hi I 
quantity for sin2e w as the second point. · 

During 1979-1980 two groups of authorslt6,t7lworking in the 
'"t Hooft_;Feynman gauge t"e:sted several renormalization sche'mes 
taking various sets of ·input parameters (either e , Mw , M z 
or g , sinO w , M w ) and various physical proce"sses to fix 'them 
subs~qtiently. The absence of a conventional renormalization 
scheme produces essential disadvantages for comparing results 
and conclusions obtained by different authors. 

From 1980 one can notice a tendency to work in the unique 
on-mass-shell renormalization scheme/7,8,18,,19/ with the input 
parameters e , Mw , M z , Mx. and m f. In this scheme .one has 
only one independent coupl1ng constant, the elect'ric charge e 
for which the usual renormalization condit~on knoWn from QED 
can be easily extended to the WS theory and conventional de
finition at the zero momentum transfer .(Tompson formula) can 
also be adopted. In such a case all expansions in perturbative 
calculations are done in the only constant a which provide 
great advantages at higher order calculations. In the latter 
scheme the renormalization of all masses is done equivalently, 
the renormalized masses being physical particle masses. In 
this scheme the Weinberg parameter- sin2£1 w is equal by defi
nition to 1-M~/ Mi, and its renormalization is defined by 
subtractions on heavy-vector-boson mass-shell. Therefore, one 
can say that it is defined at I q I-M,{7 /. The weak 'charge g 
is also a depending quantity, by definition g=e/sinBw· 

This renormalization scheme, which we consider as a more 
suitable for the higher order calculations in the WS theory, 
is supplemented in this paper by an arbitrary unitary mixing 
of fermion fields.~' Following an approach suggested in ref. /20/ 
we consider mixing matrix elements as finite phenomenological 
parameters which should not be renormalized. As such parame
ters we consid.er also the fractional numbers defining quark 
charges. We introduce a simple matrix form to write down the 
renormalization procedure. 
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Using this renormalization scheme in the unitary gauge desc

ribed in section 2 of this paper, we presen~ in section 3 the 

example of general expressions for one-loop amplitudes of 

scattering or annihilation of any two fermions mediated by 

W-boson. All the calc~lations are done within the dimensional 

regularization schemel2l~As in ref./2/ we keep the most eco

nomical way of exposition of result·~ u.s_ing- as few words- as 

possible. In section 3 each item begins with the figure of 

diagrams contributing to the considered part of the amplitude 

followed by a formula for the counte,rterm and for the corres

ponding self-energy or vertex function. At the end of each · 

item we write down the contribution of diagrams to the form 

factors of the amplitude. Ref~rences to formulae from our pre

ceding •. pap~r121 are indicated by Roman I. 

All other one-loop fermion amplitudes are presented in jour

nal version of this paper. 

2. FERMION MIXING, RENORMALIZATION CONSTANTS 

We consider an extended SU(2)" U(l) theory with arbitrary 

number of left-handed lepton doublets and with the same number 

times three of quark doublets. All right-handed components are 

corresponding singlets. To cancel .Adler anomalies we adopt for 

charges of all qoark doublets(~ )the conventional requirement 
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.l: (Q~+Q~)= 1, 
1== 1 

where i is the colour index. We adopt also 
romagnetic currents do not mix quarks with 

Let f be the column of all fermions 
fU 

r = c rd ) . 

(2. I) 

that weak and elect
different colours. 

(2.2) 

with ru and fd to be columns of all "up" and "down" fermions. 

Let K be an arbitrary unitary mixing lnatrix 

a 0 0 0 ... 

K Kb 0 0 •.• KK+:_ K+K =I, (2. 3) 

0 I a' 0 .•. 

0 0 

mixing for definiteness down-fermions 

r d ~ Krd . . (2. 4) 
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It has· a· quasidiagorial structure _where I a~ I a '•-·. -~ are uni~ matrices acting in sUbspaces (if exist) of nonmi'xed down fer
miens and Kb ,K_b';~.:· are uD.itary subma.trices mixing fermions· 
in separate sub spac-es (e.g • ., _lepton and -quark mixing). 

To obtain the fermion mass term in _.the Lagrangian, it is 
necessary to consider the interaction of ferm.ions wfth the 
scalar doublet before spontaneous br.iaking o.f SU(2)®U(1) sym-metry · 

(2.5) 

Here the matrix element -cij is the Yukawa coupling of ani -th 
left-handed doublet and i -th right-handed singlet with the 
scalar doublet ¢·.In the unitary gauge spontaneous -synnnetry 
.breaking leads to the substitution 

¢ ~ A+x<~ >. 
-..!L. 

(2.6) 

where A</ v:.2 is the vacuum expectation value of rP and X is the 
Higgs boson field. Thus, fermions acquire masses 

X -· -Lrr¢~ -{1+:fHCLMfR+fRM+fL] (2. 7) 

with tbe -following_ mass matrix 

(2.8) 

which is in general nondiagonal. 
We introduce further the fermion-field renormalization matrice-s 

foL~ /Z~rL• (2.9) 

and the fermion mass renormalization matrix Zmf with the di
mension of mass 

Mo~ (/Z;';J-1 Zm ( AR.>-1 . 
f 

(2. I 0) 

Let the renormalized mass term in the Lagrangian contain the 
diagonal mass matrix m f of physical fermion masses 

-fmrf. · (2. II) 

Hence, the mass counterterm is 

- - + -
-(fL Zm,fR+·fRZm,CL-fmcf ]. (2.12) 
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Other renormalization constants are introduced in the fol

lowing manner 

we-Fzww. 

(2.13) 

x~= Fz. x· 
u X 

The renormalizations of the other parameters will be a con

sequence of the above renormalizations. Defining 

(2. 14) 

we derive the renormalization of the parameter R =·oos2ew 

a& .,., 
Similarly, defining 

we obtain the renormalization of the weak charge 

8g -~ BR -11 
- = z (1-,-) -1 

g A 1-R • 

(2.15) 

(2.16) 

(2. 17) 

Within the one-loop approximation we find the following 

set of expressions for the introduced renormalization constants 

3 3 1 
+(-+--)II 

4 8 R 

(2. 18) 
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1 2 3(1-R) 2 2 (2.19) 
+(1-(1-R)IQ I) -m P +-, Q I, 

'M2f 2Rf 
w 

Here m~ and m~ are diagonal matrices of the. fermion mass squa
red, Qr is the diagonal matrix of fermion charges andLn(m~/M~) 
is an N r xN r - diagonal matrix with elements En(m~ /M:). In 
eq. (2.20) ut'':.stands for the contribution of tadpches. By tra
dition we include also the constants coming from bubble diag
rams. Both contributions cancel, however, in all calculated 
below renormalized amplitudes. 

It is seen from eqs. (2.18)-(2.20) that matrices Zm
1 

and 

.,j:ZrRare real and diagonal in the one-loop approximation but 
-+· -it is not the case for the matrix J:Zr~ ..;:z fL· ·In the one-loop 

approximation we can accept / 2o/ that J"'l rL is a hermitian mat

rix. Then 

.fZrL -I ~ ~ ( /ZrJ"ZrL -I). 
Further we write down. the other renormalization constants 

(2. 21) 

'M2w 2 u g341 311.2 =Z M- Zw=-[( -,--N r-- -+ -Trm 1)P+ttW(-1)J .. 
w 16rr2 3 3 2 R M2w (2.22) 

g 2 7 11 1 8 (!-RJ
2 2 

-[(14R------- -- TrQr 
16rr2 3 6R3 R 

(2.23) 
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(2.26) 

8 (1-R) 2 2. 
+-, TrQ1JP +W(-1)-Z(-1)1. 

3 R 
(2.27) 

o g 1 oR 1 g 2 43 1 
- ~-[--(ZA-1)]= --[- --Nr)P-

g 2 1-R 2 16,2 3 3 

2 
2 2 mr R 

- a(1-R) ( 1+2TrQ1 LnM'") + -r:R(W(-1)- Z(-1))]. (2. 28) 

w 
r.:: eg _, 7 1 1 1 8 2 

oJZ.M=-R [(14R-'- -----N 1+-(1-R)TrQ1)P+M(-1)]. 
15,2 3 6 R 3 3 

(2.29) 

g 2 3 1 15 -1 9 -1 -1 
-Zx=-[(3+----rw-9<w--R 'z-

16,,2 2 ,R 4 2 
(2.30) 

g 2 3 I 3 1 2 F 
--[(-3-- -+-<w+ -Trm )P+x (-1)]. 
15,2 2 R 2 M2 r (2.31) 

w 

2 2 2 2 . 
Here rW""Mx I M w and r z =M 1M z· Throughout the calculat1ons we 

have used the simple equl'\:ity Trl Qrl = N1 /2., Explicit equa

tions for finite constants W(-1), WF(-1), Z(-1) , Z~-1), M(-1), 

x (-1) and X·F (-1) are listed in journal version. 
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3. ELECTROWEAK CORRECTIONS TO SCATTERING PROCESSES MEDIATED BY W'F' 

In the tree approximation the scattering (annihilation) of any two fermfons through the W -exchange is described only by one Feynman diagram 

fd u 

: q!< f J I 

fu fd l k 
~ 

with the amplitude 

(3. I) 

cii.~f~-iL(2rr)' 1 X;,Kte. (3.2) Me 8 q2+ Mll., J 
It is convenient to inCiude the one-loop corrections using the representation in terms of form factors 

cc ij kf w 2 1 A A w A2 M;j,kf~C~~[Oa s0a.F1 (q ,S)+I,i2q(1+y5 )s q(1+y5 )F2(q ,8)],(3.3) 
w 

where 

(3.4) 

3.1. W-Boson Self-Energy Function 

+ 
8 

and its Contribution to the Amplitude 

11,2Nt 
r 
i,j:1 

Z.A. 

+ 

W,f1X IX 
+ ~tovWv..+~ 



(3.5) 

(3.6) 

(3.7) 

2 2 
w 2 . ~ 2 1 q 2 4 1 ". q+Mw 2 .3 25 1 ® (q )=1-.[(-·-R2-+~R2..·-R+,....)-+R +-14""- --N1]P. 

16"2 6 M2 3 2 3 M2 2 3 3 
w w (3.9) 

Contributions to form factors: 

w 2 (-i)IIW(q2)-3M~ g2 1 2 n2 3 2 1 
F (q) = -·(Z -1) =-1[(-R ...z....-·-R +-R-

1 q2; M 2 W 16"2 6 M 2 2 2 w w (3.10) 

w 2 
F2 (q ) = 

(3. II) 
2 2 

2 2 g2 2 2 q +M w ·20 1 
· ( q +Mw) =-[ -·-R ----...... -2R -·-+-N ] P-(Z -1) 

16,2 3 M2 3 3 f W ' . w 

where 

2 2 M 2 

Dw( ....!!:.) = [W(....!i:.) -W(-1)] W 
M2 M2 q2+M2 w w w 

(3.12) 

The function W(q2jM~) is given by formula (A. I). 
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3.2. Vert·ex Function and its Contribution to the Amplitude 

. Z. A, X 

';'--r;-,," . ---9--- . 
+ 

~·~·Tw 
(rw(q))R~n=(f'w(q)) .. + c.t., 

P' IJ P· IJ 
(3.13) 

g 1 lig r: r=· c.t. ·= -·~Opf( -
2 

( Zw-1)+-)K+vZu KvZd -KJ 1. 
~2 . g L L J 

(3.14) 

2 2 
g2 1 2 q2 3 2 1 11 1 m i +mj (f'Pw(q))

13
.=-~K .-10 [((--R -+-R --R+- --R--)x 

2v 2 'J 16rr2 P • 6 M2 2 2 6 4 M 2 
w w 

2 2 2 2 ' q +Mw 29 1 1 mi 1 1 m i X--· +2R--+(- --(1-R)I Q. IJ-+(- --(1-R)IQ·I)-)P+ M2 6 4 2 I M2 4 2 J M2 
w w w· 

2 2 2 1 2 q· 5 2 4 1 m .+m · 1 ' 1 m. m · ' +(-R -·-·-R --+-R ...!........l.)-q q(1+y, )+-R..2_l. q q(l-y )]Pl. 6 M2 6 3 4 M2 M2 p 5 2 M4 p 5 · w w w w 
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Functions .J(q2,m2,m2) and K(q2,m2,m2) are defined by formulae 

(1.2.16) and (1.3.4); functions u 1(q 2,mf,m~) andu 2 (q2,mj.m~.) = 

= -U 1 (q2,m~.m~), by formulae (1.3.20), (1.3.21) and (1.3.24), 

(1.3.25); and function u(q2 ,M2),by (1.3.22). Functions V~(q2,M~) 

and V2(q2,M~,M~) are defined by expressions in brackets ~n 

formulae (1.3.1) and (1.3.14). · 

The contribution of this vertex function. to the amplitude 

;-lL(2")4 1 (8 +~)(rw(q))R•n,K+o. 
2~ q4Mw pa M2 P· 'l --.1 a. (3.16) 

is splitted into three parts: 

1. Contributions to form factors 
. 2 2 2 2 

· w 2 g 2 t 1 2 q 2 3 2 1 11 1 m ;+m i q + M w 
F (q) =- [(-.-R -+-R --R+ --·-R-)- + 

1 16"2 6 · M2 2 2 6 4 M2 M2 
w w w 

10 1 1 2 m
2 1 R 

+ R+ -·- -Nr] P- -(1-R)[ 1+2TrQrLn ......1.]+ -·--(W(-1)- Z(-1))-
3 6 3 M2 2 1-R 

w 

2 . ~ 
3 ID· 3 j 

-(1-R)IQ.I (-
2
1n-

1 
+u 1(q2,m2,m2J. ))-(1-R) IQJ I ( -

2 
1n- + 

(3. 17) 

t M2 t M2 
w w 

- (1;RJ21 Q; II Q i ll[V t<q2 .M~l+ : J+R(V 2(q2,M:.M~)+ : Jl+! <Zw-1l. 

W 2 · g 2 2 1 1 
1
q2+ M ~ 10 1 1 

F2 (q )=-[(-R --R+-) 2 +R+-·-·-NrlP+~(Zw-1).· 

16"2 3 2 2 M w 3 6 2 (3, 18) 

2. The factorized pure electromagnetic term with genu~ne 

infrared divergences 

cc 
M 

0ij,k~ 

3. The rest which is not reduced to two form fac.tors 

ij, kr 
c w 

Mo 

(3. 20) 

ll 



w +: 3.3. The second vertex function (r) kf gives the analogous contribution to the amplitude which !an be obtained from the 
previous one by changing mi ""* flk and mj ""*'f-'J· 

(3. 21) 

3.4. Two-particle exchange diagrams 

(see formulae (!.4.2), (!.4.12), (!.4.14), (!.4.23), (!.4.27), 
(1.4.30) and (1.4.32)). 

(3.22) 
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q2-S. ' s· . 2 2 s .. 
+<I> (1+ - 2 ) -<!> (1+ - 2 ) + 21n\1+ ..'!:2! Cnl q- •I +(q2+M 2)x 

M M M S w 
w w w 

(3. 23) 

(3. 24) 

The function w(q 2,M~,M~) is defined by eq. (I.4.6) and 
B(q2,x;M2,1112) by eq. (I.4. 7). Here ·we introduce the notation 

1 2 2 2 2 . 

2 . 2 2 1 .1J!L 1 MCM2 M 1 1 l . 2 2 2 
A(q ,x.y,.M 1 ,M 2)~-[-!nM M·--· -·En-+-·-·L(q ,M 1,M2)-

y 1 2 2 q2 Jll2 2 q2 
2 (3.25) 

1 vi · 2 2 2 2 
'\J (q2 ,x,y;M2) ~..!.Hn=-+(1+ ...M..)Enj l+,JL..i+(l-..!..q +M) C0(q2,x; M 2) ], 

y M2 q2 M2 2 y ( 3 ,26) 

with C(q2,x;M~.M~} andC0 (q2,x;M 2 ) given by eqs. (1.4.9) and 

(1.4.18) respectively. 

2. Factorized electromagnetic term 

cc -a2 . 2 2 . 2 '2 2 2 
M0ij,kE 

16
, 2 1-1 Q i IIQkl [2( -S+mi +i<k) J (-S, m i •i' k)P IR- SK(-S, mi •~'k) + 

(3.27) 
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I.Q ltQ ll 2 2 2 2 2 2 "- 2 2 2 - i k 2(k+mj+~k)J(k ;mj.~k)P1a+(S-q)K(S-q ,mj,~k)-· 

-· :(S-q2)K(S-q 2;mj2.~'i)+4]1, 

where k2 = (pj -pk)2 = S- q2- mf -mf -~~-~l· 
J. The rest, irreduci'Qle to form factors, is equal exactly to the sum of corresponding third-kind contributions-of two vertices with opposite sign, i.e., they cancel each other. We notice that all expressions for two-particle exchange 

diagrams are valid everywhere except for the point q2=-M2. . . . . w 
3.5. Finite amplitude of the reaction. with W -exchange. While summing all contributions to the amplitude we shall separate the pure electromagnetic factorized term containing 

genuin~ infrared divergences. The 'la_tter will cancel at the level of calculation of the reaction cross-section when realphoton brem~strahlung diagrams are involved. 
Summing all contributions to form factors F~ and F2W we observe that all ultraviolet divergences cancel each other. The finite part of the form factor F2W c_ould be neglected, because we work in the region (I.l.I). Finally we are left with the finite part of form factor Ff only where there are cancelled also all nonunitary (incr~asing with q2 faster than (Pn (q2 )) 2 ) terms. 

2 
W 2 " 2 2 2 m r R F (q ,S)=l+-"-f--(1-R)[ 1+2TrQ Ln-l+-IW(-1)-Z(-1)]+ I 16•2 3 , f M2 1-R 

w 

+[-1+-fR·-<1t{([Qi[[Qi[+[Qk[[Qp[)I[Vt(q2,M~)+: I+Dw( q:) + 
· · Mw (3.28) 

-· 2 2 2 3 7 M~ q2 +2R[V2 (q .Mw.Mz) + -l +(1-R)l- -(1+ -)Pn[1 +-I-
2 · 2 q2 · M2 

w 

Here the bar above symbols means that from the cor~espondin? expression ~11 nonunitary terms are- thr.owrl ·o·ut. 
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APPENDIX A 

(see eqs. (!.2.14)-(!.2.16) for functions '-(q2,-Mf.-M:) 

and L(q2;M~ .M~). 

The authors are indebted very much to A.A.Vladimirov~ 
V.M.Dubovik, D.V.Shirkov, M.Mueller-Preussker and D.Ebert 
for helpful discussions, support and critical comments in 
reading manuscript. 
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