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1. The simplest representation of N=2 extended supersymrnetry 

with central charges, the hypermultiplet (called here for 

definiteness the Fayet-Sohnius (FS) multiplet), was studied alread~ 

in a number of papers /l-J/ • Sohnius 12{ Stelle and West /J/ 

investigated it inN= 2 superspace {~M~~~eolt ,&c'...~) with a 

central charge coordinate ie • They solved the constraints on the 

FS mul tip.let: 
(1 •. 1) 

in terms of component fields. Here ~ l. is an isospinor scalar 

superfield, ·~-~~~.!(.! .. are the spinor derivatives of N=2 supers;ymmetry 

and the yarentheses mean symmetrization in the SU(2) indices 1,j. 

Fayet /l analyzed the FS-multiplet in terms of on-sh~ll component 

fields and on-shell N=l superfields. 

In this article we present a solution of the constraints (1 •. 1) 

in terms of N=l off-shell superfields. The constraints )1.1) axe 

considered below as Grassmann analyticity conditions / 4 with respect 

to different pairs of the spinor variables. The FS-multip.let is 

represented by a pair of N=l chiral superfields. We need no special 

variable for the central charge which is realized as a bilinear 

combination of spinor derivatives. The component results are of course · 

identical to those of / 2,J/ • . 

Let us motivate our interest in the FS multip.let. In the real 

superspa~e approach to N= 1 super~avity constraints on the torsion 

components have to be postulated 5/ .As was shown by Gates, Stelle 

and West 161 the main meaning of these constraints consists in prese~ 

ving chiral representations of rigid supersymmetry in·curved superspace. 

The chiral superfield is defined in the complex (4,2) superspace. 

Indeed, a chiral superfield is a general scalar complex superfield in 

the real (4,4)-dimensional superspace l )(~I e.(
1
B1i}constrained by 
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which is just the cauchy-Riemann condition in the sense of 141. The 
solution of (1.2) in the flat case is given by 

lfJ Cx,rr,@)= lf'C><~..,&) ) x/''=x"'- illo"'o, 
(l.J) 

where If is an arbitrary complex superfield, Defining general 
analytic transformations in the complex ( 4. 2) super space r )("-...,, (Jti.. 3 
and identifying the imaginary part of x.L »1 with the axial gravi­
tational superfield one obtains the geometrical formulation of N=1 
supergravity suggested by one of the authors (v.o.) and E.Sokat­
chev /?/ (see also /B/ ). Being expressed in terms of real 
differential superspace geometry this approach solves automatically 
the chirality preserving constraints. Analogous analysis of the 
N=2 supergravity by Ste.l.le and West 191 shows, that in this case 
the representations preserved are the FS multiplet (1.1) as well as 
the chiral one. We hope that the solution of constraints (1.1) 
in the flat case wil.l suggest the choice of an adequate complex 
superspace for N=2 supergravity and the corresponding complex 
geometry. 

The FS multiplet is solved in terms of a pair of chiral 
N=l superfie.lds defined on two complex ( 4, 2) superspaces. Each 
of these superspaces is not SU(2) invariant, their vector coordina-, 
tes transform according to a reducible representation { €P 3 
of the SU(2) group. Besides, there is a correlation between the 
external SU(2) index of the superfield and the superspace qn 
which it is given. This and other exotic properties of the basis 
discussed need further clarification. However, by analogy with the 
N~l case there are the earnest reasons to believe that this basis 
playS an important ro.le in the N=2 case and mq help in searching 
for the adequate complex geometry of N=2 supergravity. 

2. Let us first list some basic definitions and notations. We 
use two-component formalism. In manifestly SU(2)-oovariant form the 
N=2 superalgebra reads 

{ Q "'i ) q ~J ~ - :t ~ ~ ( 6'""') ol p, 
i Q~i, Qj>~~ = 

iC<i,Q~J) = 

- ). ' ~ ij <e .. ,, "l 
- J. c ~ 0' E.),.~ Z! t 

(2.1) 

·- . )t 
where Q!J...t. = ( Q ..t.i.. • The spinor generators transform with respect 
to the SU(2) group as follows ( TQ.. are the SU(2) generators): 
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[TQ 1 Qo<,] = -z(rc•),KQ"'>e 

[ T~, Q u'J = ~ 0;•)k' Q:J.IC.. 
{2.2) 

We begin with a general situation, when two central charges are 

present (a scalar central charge"' ':t+l't, a pseudoscalar one 

- t l'2-2t) ), 
The general N=2 superspace is defined in the usual way as a 

space of .left cosets of the N=2 supergroup over the direct product 

of the Lorentz and SU(2) groups. The central charges may be 

included either in the coset space (then an additional bosonic 

coordinate is needed) or in the stability subgroup. We prefer here 

the second possibility, so the algebra (2.1) will be implemented 

1n the real. (4,8) N=2 superspace f X"' 1 6'./ 1 ~ ~ (!9j) t J. 
Usually the manifestly SU(2) covariant symmetric parametrization of 

coset space_s is used (see Appendix). As we are interested_in.the 

N=l superfield description of the FS multiplet it is more conv~nient 

for us to use a nonsymmetric parametrization, in which one of the 

supersymmetries ( e.g., the first one) is realized in the standard 

N=l fashion • The following notation is therefore appropriate: 

<;;._ = Ga.1 
- -!. 
s.~ :; o li 

(2,J) 

1m element of' cosets in the nonsynunetric parametrizati,on 

is defined as 
(2.4) 

The corresponding realization of various symmetry generators and 

spinor covariant derivatives can be found either direct.ly or using 

the connection with the symmetric parametrization given in. Appendix: 

~ .. : '~"' - !1eJ._ Q ~ ~ i,~,_- f:J~) .. -2e,'l. 

S.!l~-i~~ +(rYp)Jc Gu"'-i 0 _, +(fl)k-Jii.ii-rf2.5) 
... e ' 1J'l" 

-i 

T1= He-~+ tk iJz-tie]+ i [(oe•nJ t-{ ~e:-+11 )Z' t) +I 

Tz i [ a A -a o:'-'1 \ l" ::~ -- -- :~tl -2. 
~z; 1~o-b'at+~"~-.,.nz-J+~ .fle-1~)1. + (oo-1i)t- J+i 

> < [ ro · "' -ro - riJ J - > 1 - 2. 9-'~~&- 2(/J'l -~ill&+ z,.,1 -t T (2.6) 
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-~ 
where T are the matrix parts of the SU( 2) generators acting ' 
on the external SU(2) indices of superfields. A general group 
variation of the N=2 superfield 4 (-;.1 &~1 &~e) has the form (external 
indices of superfield are suppressed): 

(2.8) 

' - ~ ' 't .., '"" ~, ~c:, f> )r" 1 rl , a , a being the corresponding group 
parameters-. 

It is clear from (2.5) that the coordinates X"' tt~ g-li 
I I constitute the standard real N~l superspaoe with respect to $-super-

symmetry. The generators T't get additional Z-dependent terms. The 
nonsymmetric parametrization was used already in / 4/ • 

J. Now we proceed to solving the oonstmints (1.1). For this 
purpose 1t is useful to rewrite (1 •. 1) in the nonmanifestly SU(2) -
covariant notation (2.7); 

~" ... q,,=ol 9J~,(cf,=o_, (J.la) 

-6'). ?.l 
"1) J<. <fz= 0 1 'l) Ji. '/'! = 0 I 

(J.lb) 

The next step is to perform an appropriate SU(2) rotation in the external indices of the superfields: 

(t)-7 (~)~Jz(::::j:). (J.2) 

In terms of ~t equations (J.l a, b) take the form 

(<;t;~ +<~t)i=o 
('Z!:- < "b'!._) ~= 0 

v v 
~~ ( ¢1 + ¢,)=0 

(;?J~ +i~~)~A=Q 

4 

(J.Ja) 

(J. Jb) 

(J.Jc) 

(J.4a) 



(~~-~·51)~) 1-.~o 

~~ ( i, -h) ; 0. 

(3.4b) 

(3.4o) 

Note that in the representation (3.2) the SU(2) generators are given 
by v 

j. ('li) 't~ ~ ( -1-1) -q 
T= 'f2 1- c 'f . f2 i -i 

or v 

T <~._ - "'z 
v v rt:<~- (3.5) - 2 rt:• -; 

- a 1 T =- 2. I T = 2 
Let us analyze constraints (J.J), (3.4). E~uations (J.Ja,J.4a) 

and (J.Jb, J.4b) are just Grasmann Cauchy-Riemann conditions / 4/, 
which express the analyticity with respect to f e-t.'{1 9 -Li) 
and f e-+i1

1 
9-tii.~, correspondingly. In other words, the super­

field +1. is analytical, '4> 2 is antianalytioa.l, that is, they 

are reduced to some complex scalar N""l superfields. Equations 
(3.Ja,b), (J.4a,b) can be easl.ly so1ved / 4/ : 

t. ex,&, e' 7,7_) = e-17?:-'jiftt li7'~+fi) ~' (~A e) 
1 - -; •17 z-~-7-,-2t _,(.~+z~J v 
q < ( XIIJI & I 7 I'! = (! I e I r. (~ ,.9, 9) ' 

where ;:z,.,z 1 ~.){ are the ordinary spinor derivatives of N=l 

supersymmetry 

(3.6) 

& (7) .f-1-) 
';t)oi = '.Zi.< /7•o" t7JCI" - Llf'fJ J. (3.7) 

'ZJJ~ = ';ib 0Jt / 'Joo -=-&!.< ..j. i {[;1)!,_ 
Note that the 0(2) group from / 4/ coincides with the 0(2) subgroup 
of SU(2) generated by lr2 : the cauchy-Riemann conditions are separa­
tely covariant under transformations from this subgroup. 

The additional eq_uations (J.Jc.), (J.4e) applied to the N-=:1 
' ' superf1elds \f 1 > (/'2 are reduced to the usual chirality 

constraints: 
(3.3<) 

(3.4~) 

that is, ~1 and ~~ are simply the sum and difference of two 
ch1ral N=l superfields 
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~' c ~,e,e J: ~ [ 'f1 (~"'+c6>f"~e)i J +' ~2 ( •"'- C91l"'e, eJ] 
(J.s) 

~. c~,&,e)= A r <f, ex"'+ t&~~e-> -"If., ( x"'- ol9o"" i9, e)J • 
Normalization in (J.S) is chosen in such a way that 

~c (~1 fJ 1 0)= cl>i (X 1 Ei,O,r 1z) l>z='/=D. 
(J.9) 

So, with the FS multiplet two different kinds of Grassmann 
analyticity are associated: N=2 analyticity and chirality, which 
is the N=l analyticity 14/ • The combined action of these analytici­
ties is so restrictive that the highly reducible N=2 supermultiplet 
contained in the N=2 superfields q>t, comes down to a pair of chiral 
N=l multiplets with highest spin l/2 x) • 

4. The transformation rules of the superfields 'f-i-
1 

'-fa 
under the central charge variations are fixed by the initial constra­
ints (.1.1). It is not hard to show using the algebra of spinor 
derivatives (Which coincides with (2.1) ) that: 

Z ~z:- ~ '.Zl~ 2l 7 q1. (4.la) 

(4.lb) 

and 

(4.2) 

Combining (4.1), (4.2) with (J.9) yields 

z 'f, ~ ~ ~2l <f'z' z:rt'f~~ -i ~~<f~ (4.J) 

and 

i.e., r 
ordinary 

x) 

(zzi-ta)(~~)=o. (4.4) 

on <.f1 and 2 t on "fz are realized bilinearly in 
N=l spinor derivatives., while "i'f2 and ~t<.f::1 are some 

It is interesting to note that the whole set of constraints 
(J.J), (J.4) could be reproduced starting from some 0(2)-analyti­
cal superfield J,1 and extending then 0(2) to SU(2). The simplest 
nontrivial. possibility is to allow ~ 1 to be a component of an 
isodoublet of the same sort as ~~ -ti ~'!,_(with the opposite 
choice the resulting constraints reduce the superfields to 
constants). Varying (J.Ja) (J.4a) by the SU(2) I 0(2) transforma­
tions one obtains all the other equations. 
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'ol. t 
new independent chiral SU);lerfields. If Z f €" 2 , then acting 

successively by powers of ·-z 
1 
2t on Cf1 and ~:z.. we sha~l get 

an infinite multip~et of chiral superfields. This procedure cannot 

be interrupted at a::n;r finite step. For instance, by setting ·rM.\(:1'=0 
we would get a meaningless constraint 0 11 l(l.=:. 0 ( in virtue 

of (4.4)). Let us emphasize that we want to have filtlte multip.let. 

The only possibi.lity to esca:Pe the pro.liferation of FS multiplets is 

to restrict the su)ersymmetry algebra (2.1) to one central 
only,i.e.,to put x : 

It is clear from (4,J) that the multiplet { \f~) 'fz. ) 
is now c.losed under the action of central charge: 

v v 
or in tenns of ¥f J ~2 : v 

z ( ~) ~ 1 (1'1~ +"§2i) 1:} ( ~J 

charge 

(4.5) 

(4.6) 

(4.7) 

It should be emphasized once more that there is no need in 
introducing of additional bosonic coordinate to realize the 

central charge as it is usual.ly done I 2 ' J/ • Instead,· i! is 

expressed through spinor derivatives while the condition (4.4) is 

fulfilled identical.ly_. To prove the last statement we rewrite 

equation (4.7) as 

-zL Y,, = o I z-+ 4'. = a · (4.8) 

where .A(: --) ~ = z ± 'i :ll:tJ+)Z)-31 . 

One can easily see that 

z+ -;z_ ~ -;_?. = ~ '-+ o- o n~;2 , (4.9) 

where n '" = 1 + 1GcC..as:iii·21i~) is the projecto! aingling out 

superspin 1./2 flO/ • Since superfields ~~ and ~"- contain 

superspin 0 only, equation (4.4) follows immed::tately from (4.8), 

(4,9). 

x)It is sufficient to restrict oneself by equation (4.5) 

since the more general condition "Z=e'-rJ."tt is reduced to (4.5) 

by chiral LIC-i) transformation q ~ e-UAQ 
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Now we can represent the transition formulae (J.6) in their 

1;~~,:,;,;~Hi(1~fiJe-.fCt?+ff){.w+E~~[<f1 (x;')9)+i tfz(><':; o>l] (4.10) 

~ - ' ( 1>-";i) •r: --!(: -$) cp.(x,g,e,,,?)= e-• 7 e• W'!? ~, ~ [<f
1
(X;',9) -~<f.{J.i'/J)] c4 .n) 

X/": (X;:' )t- X"'+ iH."'iJ. 
5. In this section we give the explicit form of (? super­

symmetry and SU(2) transformations ( S - supersymmetry is realized 
in a standard fashion). The action of the generators on ohiral 
superfields can be found as fo~lows: at first one has to act on 
the superfie.lds ¢1 , qz. by the generators in realization (Z .5), 
(2.6) and then put 7='1_- 0: 

a~~- ze.~.z 1' 'ill" (5.2) 

Qk:. -2e.~tt:'f':tl.li 
v ,.= T .. ± ~ (90!J-'-Q$) +i (M-@9J1: 

1 2
= -fz-± ~ (fJ:b+efi) + ~ (&e-+eB)i! 

(5.2) 

T> = -T> + 1. fe-~ - I}~) 
2 l 0 

'llll 'l)9 
v v 

with the upper sign corresponding to 'f1 and the lower one to \.f2 . 

the differential part of I> is atdina.ry Q't transformation. 
Substituting in these formulae the concrete realization of Z: 
(4.7) and passing to superfields 'f4 , 'fa. , in terms of which the 
formulae are more compact, we get 

11 (~J=-f ~5"~) fr;f)-&eJ{~·J 
l2 ( ~~) := f (_~~) ( I}IH i~) ( ~Z) 
1; (If, ) ~ ( l ro -"' ) ( <f,) \tt ~ z '1: + 1717J-p- e-Cl>B fz 1 2 

The transformations generated by -:z 
1 

Q.,~.. 
1 

Q 4
1 

T J I 
can be compactly represented by the single fo~ula: 

8 
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(5.4) 



(5.5) 

where 1\le),;:. (e)= r\ (9) t are constant chiral •superfields• with 

the group parameters as components: 

i\fgl= ~ + u'o - i (f -iy') '* (5,6) 

t1r§) = ~ + 2 ~9 +~ 01+'Jtj eg · 

For the sake of completeness we also write down the transfer -
mation laws of the components fields, It is not hard to deduce 
from (5,4) the well-known SU(2) structure of this multiplet /Z/ 
two scalar isodouhlets A i. (x.) , t=" ~ (x.} and two isoscalar 

spinors f ()<.) ~(X} • Supersymmetry anci central charge are 
realized on th~se fields by /Z/ : 

'b A,="'*+ ~,::e -"A 1=, 
'S t: - 2~ (1~JA' -2 ,•r, + ~Afj:;€) 
<;; -;i = 2 i (z '?')A. + :u:. f'- L,\(']f ~) 

~Fk = -<(«K?/:i) +i(f>~{) -)lot\'< 

The fie.lds A C.: )l}t) ~) 1= ~ are contained in the N=l chiral 

superfields \.f1. 
1 
tf~ as follows 

't\ (x; ,e)= A,Cx~)+e~(X.J+.t>6> FzN><) 

<f2 ( xt' 1 6') = Az (h) -+ & f l'I·Ll - IJ{} f1(XJ.) · 

(5.7) 

(5,8) 

6, In this section we establish an invariant N=l su~erf1eld 
free action formula for the FS multiplet and its connection with 
the N=2· action formula 12, 31 • 

Taking into account the com~lex conjugation rules 

('f'J* = 'f~:, z'J 'f"J 

('fi)* ~- 'ft (6,,1) 

one can eas:Uy build Hermitean expressions for the kinetic and mass 
terms for the FS-multip.let which are manifestly invariant under 
$ -su:persymmetry 
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<; ~<<•=- ~ f d"x J4e- [ <f, 'f-/ -'fz ·c'] = 

= i fd"xd'I1Hr~>'f"w'f:+ b'reJrz.~~r:] 
S.,w., =- •; Sa•xJ'o Ut&J if,~~-r'r&) 'fdz*] 

The total action can be cast, with the help of (4.6) , in the 
compact form: 

(6.2) 

(6.3) 

S'-S'".:A.....r -~\d'rxJ•P[~tgJ~.(l+2~or)<f':- Qrii)<f, (2 .. o..)rt]. (6.4) 

The superfie.ld equations of motion are just 

(6.5) 

After going to fields and integrating over d& the action (6.4) 
takes the familiar form 121 _: , 

S = J tl'x l '0, A{i/k +i ( oc1X-+ -r~:r)- F< F"'-

- im [ A,l="~l+ !=.:A"''.,.~ (a('f- ,;t~)J J (6.6) 

So~us /2/ , Sohnius, Stelle and West /J/ derived an 
action formula for FS mul.ti.p.let in terms of conStrained N=-2 super­
fields: 

(6.7) 

where Kt.) is a linear selfconjugated N=2 supermultip.let bu:tlt 
out of N=2 auperfields /J/ 

1C,r 'n. W+z .. )~:+~/?'·z,.,)~:] ;\'t' ,;)L 'Kr'j. ~'e,,. k"., 
'"' ~ ICij = l<'jt 

(6.6) 

r- ~ - r.-
't),. (~< k\) =o ~ !J ~ k' <j)- 0 · 

(6.9) 

Using (6.9) one can check that the expressions 

'2
1
,e ($<'iJ-'b<!b.i)'K>•j) 'JJ~e(~<ii-~'S•) ~j 

are total X""" derivatives. Th~ proof o:r su:persymmetry and central 
charge 1nvar1anoes o:f (6.7) is based on this fact. 
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The action (6.7) coincides exactly with (6.4). Their identity 

is proved using the equivalent form of (6.7) involving integration 

over the whole N=2 superspace: 

where 

J"u" j'l. (?e,J.9J(Je1J.e')- d.<(J d 77 

~4(o!~ ~ (e.:oJ)(e-Jtl') = fttJJ fr7J 
12 

(6.7') 

The next steps are to pass to the. nonsymmetric parametrized 

~t~+~ (see A.7), use (4.10) and then integrate over d,1.if 1 rl~i[ 
1. Finally we discuss the possibility of interpretation of the 

basic equations ( 4.10) in analogy ovi th the chiral N :::1 superfie.ld 

as shifts of superspace coordinates, i.e.,as a transition from the 

general real basis of N=2 superspace to some complex basis of lower 

dimensionality, which is adequate to the FS-multiplet. 

Exchanging the exponentials in (4.10) and using the identity 

e ,;(~:b-+'i)l)~ ec~-p~- eJ1'll e'C'Z,3 +~'1,) 

Here 
M "" ' itt- ' l'k- t'Ln 1\1- lo1 J' l+l 1 m~ - - -
xr~ x +<~>f £1-crff' t -<~rr z = x H rj z j 15T=tH·i~ 

xjox"'-il9ff'"'i"~•y""'[+2t""'e =Jr"'+{"hf"} i f!I~61uz 

x'T,;o(x'JJ)t
1 

6'~=(9II)T 

x'£v=(l\~)t 1 ~=(6<1)t 
and 

J .... s = f) (<f"'e-:. f" fiKG"~ gL 

ll 

(7.1) 

(7. 2) 

(7 .Ja) 

(7 .Jb) 

(7.Jc) 

(7 .Jd) 

(7 .4) 



From (7.3), (7.4) one concludes that the minLmal superfield 
structure of the FS multiplet is naturally associated with four 
chiral N=l superspaces with the crossing-type complex conjugation 
rule: the first chiral superspace is the conjugate of the fourth, the 
second of the third. These superspaces are closed only ~er S -
supersyrnmetry, however, they are correlated with the external index 
i of the superfie.ld !.fl~ in such a way that all the other transforma­
tions ( ~ -supersymmetry, SU(2), central charge) do not take a 
superfie.ld out of the domain of its definition. In other words, due 
to (5.J), (5.4) the variation of ~~ is defined on the same 
superspaoe, as tft itself. This unusual property of basis (7.J) 
is still to be understood. It would be important to be able to const­
ruct this basis by purely geometrical reasons. Recall, that 
standard chiral N=.l superspaces appear when including one of the 
spinor generators as well as the Lorentz generators in the .little 
group /~l/ • Besides, the central c~rge role requires a deeper 
understanding, the central charge operator is realized as a second 
order differential operator and its action does not reduce to 
shifts of the X

1
s19 coordinates. However, one important circum­

stance is already c.lear, which seems to us to be crucial for a future 
pure geometrical minimal formulation of N=2 supergravity. The mi~ 
mal :f'o:rmulation of N=.l supergravi ty / 7 I is based on the complex:tfi­
cation of X l41 as suggested by the existence of chiral N=l 
superspaces: x~"'~- shift in (.l.J) is pure imaginary. x~ 
shifts in (7.J) are isotrip.let components (7.4) indicating thus 
the fundamental role for the N=2 case of the object ~'" LJ 
which is transformed as ~EF !> of SU(2) and is reduced in the 
flat Um:1t to : 

7 "' ci ' · ,., ;_ "''J. (7.5) Co ~ ~ ~ £"! '1-. - Z ~ ' 
The bosonic coordinates of basis (7.3) are ju~t components of (7.5) 1 ~"" g transforms under supersyrmnetry as follows 

c;, :Zo""' ~J= - < ( l '.s-~ e j + ej o"' J '). (7.6) 

A detailed discussion of all these problems wil.l be given 
elsewhere. 

As was mentioned above, in N=2 supergravi~y the FS-multiplet 
the chiral multiplet are preserved. Sokatohev fl.Z/ has achieved 

and 

an essential progress with chirality preservation. The N~ superfield 
anatomy of the FS multiplet exposed in the present paper will be 
useful together with chirality preservation for construction of 
adequate geometry of N=2 supergravity. 
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Appendix. Basic re.lati ons of the N=2 supe rfield formalism in the 
symmetric parametrization 

An element of left cosets is defined as follows: 

r- ~x~P~ ~ (B~Gi.-t &~,QL) 
G(x,e"J!K)~e. e = 

d"P,. i(9S+~S +7!{+'f1}) 
2 € . {! 

(A,l) 

Generators of various symmetries and covariant derivatives 

in the basis (A •. l) are calculated by standard technique. They have 

manifest.ly SU(2) - covariant fortl: 

r-Q.,· : c ~ . - ( r-~ev ... - eo(;_ l 
' ~e"' r (A,2) 

71~~.' =- i rr>_, + (&'1h + ~i ~ -t '\' ~e <i' 
' 

'T-a., -Ta + 1 e~r<:•) £'P.e ti ~«'/-r;•) e& 
I ?., I. "'19 2, ~ K '()~e (A,J) 

~ "' !:1 -; ' ~"'; ~ - . - o( e; "' - "e"'-i? 
11J17"'' 

<.b.;;. c = - 2_!1 + i fl;il);, + i 19-./ ?t 
~& i 

(A,4) 

The element (A.l) is related to the corresponding element in the 

parametrization (2, 4) in the following way 

as can easily be seen from Campbell-Hausdorff formula and 

algebra (2,.1). The un:i.tary operator }(' relates the N=2 

(A,5) 

(A,6 ) 

super-

fields and realized on them operators in both parametrizations: 

(A.7) 

I" 

0 = (A, B) 
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cX,;Z= J,(' C\i.li /ct = Q._~ ;- tc'JiKO~r:? 

Q /J. "~ I<' ({ .~/ )(li = 'Q !it - gt<~ fc~,/? t 

~ ,..... 
-v"'~~ K':t7.~~Jct= 9~.:-c('L')Tt!-~"z 

ZJ ~;. '-~ k J7 "'- K' -t = :§ l t i e: ') 6:'),/ r t 
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