


1. The simplest representation of N=2 extended supersymmetry
with ocentral charges, the hypermultiplet (called here for
definiteness the Fayet-Sohnius (FS) multiplet), was studied already
in a number of papers 1=3/ , soknius /2, Stelle and West
investigated 1t in Ne= 2 superspace {x‘",Z , @t ,5&;‘5 with a
central charge coordinate Z . They solved the constraints on the

PS multiplet: —_—
Daii ft’j) =0 , D e d{j) =0 (1.1)

in terms of component fields. Here c& ¢ is an lsosplnor gscalar
superfiel&,‘ﬁbdi,%ﬁki are the splnor derivatives of N=2 supersymmetry
and the Pareutheses mean symmetrization in the SU(2) indlces i,J.
Fayet /1 analyzed the FS—multiplet in terms of on-shell component
fields and on-shell N=) superfields.

In this article we present a solution of the constraints (1.1)
in terms of N=l off-shell superfields, The constraints (1.1) are
considered below as Grassmann analybicity condiflons /4, with respect
to different pairs of the spinor variables, The FS-multlplet is
represented by a palr of N=1 ohiral superfields. We need no speclal
variable for the central charge which is realized as a bilinear
combination of spinor derivatlives. The component results are of oourse'f
identical to those of /27%/

Let us motivate our interest in the F8 multiplet. In the real
superspace approach to N= 1 superﬁravity congtrailnts on the torsion
components have to be postulated 5/ .As was shown by Gates, Stelle
and West 78/ the main meaning of these constraints consists in preser
ving chiral representations of rigld supersymmetry in “curved superspace.
The chiral superfield is defined in the conplex (4.2) superspace.
Indeed, & chiral superfleld is a general scalar complex superfield in
the real {444)—dimensional. superspace {x“‘,e""échonstmined by



Dyl (x,6,8)=0 (1.2)

which is just the Cauchy-Riemarm condition in the senge of /4/. The
solution of (1.2) 1a the flat case 13 given by

w e . m o (1-3)
t[U (x/&,@'): gPO‘J—:I;’) y X =xT- e ¢,

where ? is an arbitrary complex superfield. Definding general
analytic transformations in the gcomplex (4.2) superspace { *3

and ldentifying the imaginary part of XL with the axial gravi—
tational superfield one obtains the geometrical formulation of N=1
supergravity suggested by one of the authors (V.0.) and E.Sokat—
chev /7 (see also / ).+ Being expressed in terms of real
differential superspace geometry this approach solves automatically
the chlrality preserving constraints. Analogous analysis of the
N=2 supergravity by Stelle and West /9/ shows, that in this case
the representations preserved are the 7S multiplet (1.1) as well as
the chiral one. We hope that the solution of constraints (1.2
in the flat case will suggest the choice of an adequate complex
superspace for N=2 supergravity and the corresponding complex
geometry.

The FS multiplet is solved 1n terms of g palr of chiral
N=1 superfields defined on two oomplex (4,2) superspaces. Each
of these superspaces is not SU(2) inveriant, their vector coordina—,
teg transform according to a reduclible representation i & 3
of the SU(2) group. Besides, there is a correlation between the
external SU(2) index of the superfield and the superspace on
which 1t 18 given. This and other exotic preperties of the basis
disoussed need further clarification. However, by analogy with the
N=l case there are the earnest reasons to belleve that this basis
Plays an important role in the N=2 case and may help in searching
for the adequate complex geometry of N=2 supergravity.

2+ Let us first list some baslc defimitions angd notations. We
use two-compcnent formalism. In marifestly SU(2)-covariant form the
N=2 superalgebra reads

(0, 0pY - 2896w 43P
iQdCJQ?"J"IJ — AL &y Ea,az
fag,@”,;ﬁ: -2y sk 21 (s% =-Ep=1 )»

= .
where Q&_ = (Qib)‘r +« The spinor generators transform with respect
to the SU(2) group as follows ( T% are the SU(2) generatora):

(2.1)
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[T%, Quc] = - £ ()% Qe
LT% Q] - & @ Qu”

We begin wilth a general situation, when two central charges are
present (a scalar central charge ~ %+E¢, a pseudoscalar one

L(2-21) ).

The general N=2 superspace 1s defined in the usual way as a
space of left cosets of the N=2 supergroup over the direct product
of the Lorentz and SU(2) groups. The central charges may be
included either in the coset space (then an additional bosonic
coordinate is needed) or in the stablility subgroup. We prefer here
the second possibility, 8o the algebra (2.1) will be implemented
in the real (4.8) N=2 superspace { ™ EL_ ,5&; = (Bf) T }
Usually the manifestly SU(2) covariant symmetric parametrization of
coset spaces is used { see Appendix), As we are interested 1n the
N=1 superfield description of the FS multiplet 1t is more convénient
for us to use a nonsymmetric parametrizatlon, in which one of the
supersymmetries ( esgey the first one) is realized in the standard
N=1 fashlon . The following notation is therefore appropriate:

a T Qat ) Qu= Ruz 9*39#,1,{593

(2.2)

N (2.3)
-~ A —= =~ . = o5 = =
= Ry ) qu= Q4% 5 Gy= B, T4z bhe

An element of cosets in the nonsymmetric parametrization
ia defined as '

€ (x0,8, 7,7)= €'
X8,8,7,7/7
The correspondlng reallzatlon of various symmetry generators and

splnor covariant derivatives can be found either directly or using
the connection with the symmetric parametrization given in Appendix:

- (70)a Qu-= L( - 71 )« 26,2
@ ) 7

2 Sl (2 5).
-t P, Qummig o+ - 25,21
1’%[%_“&(% 57'?/?5]*é[(ewzg)Z—(@@ﬂ*ﬁ)}’T]+T
o~y *Taw ™ ay + 5oz eé.—'mz’r]ﬁl

T - 42[9%'%2“@/& —2%—] $ T (2.6)

x™ €L (&S%GS/ ;(76?4?5))_ (2.8)
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& @ A5 Lor : .
«= D= —E};L(?@)at“'z‘?d? 3 ‘370(5@3.@(;—3-*— L@?},(
? 7 (2.7)
HNe_ a1 2 4. L+ 27 A YY) ;
%&E%&=;ﬂ_‘-§&+t’w¢ ZLZJ‘Z'TJ%Z?E%&,-:*@_‘Z—&"-L(MJ{,
=4
where -r are the matrix parts of the SU(2) generators acting
o the external SU(2) indices of superf}elds. A general group
variation of the N=2 superfiecld dD(x,QL,gu) has the form {external
indices of superfield are suppressed):

Sb-[-esi@i-E P T AZ NP i L ]b oy

£, Ec, PQ > A 7A+ ) am; a"™ being the corresponding group

parameters, v

It is clear from (2.5) that the coordinates x™ B, &%
constitute the standard real N=l superspace with respect to S—-super—
symmetry. The generators -T‘& get additional Z-dependent terms., The
nonsymmetric parametrization was used already in

3. Now we proceed to solving the constraints (1.1)e For this
purpose 1t 1s useful to rewrite (1.1} in the rormanifestly SU(2) —
covariant notation (2.7):

V%b1=0, Vlupe=0, P%$:+ 3¢ =0, Ouaa

%iq;z:@ , 57&4%‘0; 2 % ¢ ‘_‘57&4’1:0-

The next step 1s to perform an appropriate SU(2) rotation in the
external indices of the superfields:

(3)-(3)-4(42%).

In terms of %)t equations (3.1 a,b) take the form

{3.1v)

(D8 +¢ SBZ() =0 (3.30)
(22 -c2%)d-=0 (3.3b)

2% (¢:* 95‘:’):0 (3430)
(55" +E§Z'/)9;”=o (3.4a)



(%ﬁ B 553{) Jz"’ (3441)
EZ SN

Note that in the representation (3.2) the SU(2) generators are given
by v

T 4 )r_cf A (44)
'z} 'l—'- 2 2\
3 ) 2 2 ¢

Let us analyze constmaints (3.3), (3.4). Equations (3.3a,3.4a)
and (3.3b, 3.4b) are just Grasmann Cauchy-Riemann conditions 4/,
which express the analyticlty with respect to f G-iy, _—Jz:_l]

{G-H. Ofwl ‘5 correspondingly. In other words, the super-—
:field ¥1 is analyticsl, 7492 is antianalytiocal, that 1s,they

are reduced to some complex scalar N=1 superfields. Equations
(3.32,0)s (3.4a,1) can be easily solved /47
~

fh (x/s‘,b‘, 7,;? )= e'77'2..7‘77 ¢(7‘3+l{$) v

or

(x,8,9) (3.6)

d, 048,9,9,3) = ¢ 7?*772T ""?%*39)?2”@, 5,

where 2;{ ; %.l( are the ordinary spinor derilvatlves of N=l
supersymmetyy

%0{2 %2!7,:0_
Dy = %417— = *"Wi‘ .

Note that the 0(2) group from /4 coincldes with the 0(2) subgroup
of SU(2) generated by T : the Cauchy-Riemann conditions are separa—
tely covariant under transformations from this subgroup.
The a.dditiona.l equations (3.3¢); (3.4¢) applied to the N=l
superfields tpl ,Lf’z are reduced to the usual chirelity
constraints:

(3.7)

Dul+@) =0 (3.36)
;{(‘?.-—q’z) =0, (3.4€)

v
that is, Y and ‘?_,_ are simply the sum and difference of two
chiral N=1 superfields



“(’a(*@

v —
€ (%,98)- 4 [ €, 0"+20678) - L (- co67, 9]
Normalization :l.n (3.8) is chosen in such a way that

¢ (x,9,8)= b, (x,8,5, t(,z) {y=%=0. -9

So, with the ¥S multiplet two different kinds of Grassmann
analyticity are assoclated: N=2 analyticity and chirality, which
i1s the N=1 analyticity r4/ +« The combined action of these analytici-~
ties 1s s0 restriotive that the highly reducihle N=2 supermultiplet
contained in the N=2 superfilelds 4);, comes down to a palr of chiral
N=l multiplets with highest spin 1/2 %) .

4, The trangformation rules of the superfields Ya , 2
under the central charge varlgtions are fixed by the initial constra—
irts (1.1). It 1s not hard to show using the algebra of spinor
derivatives {which coincldes with (2.1) ) that:

Zd,-49°9 &, oo @

2T4’2=“%%&§9+4 } zﬁ#,d_: _;'_ 3157 4)2 (4.11)
(ZZTH})@:_) =0 _ (4.2)

Combining (4.1), (4.2) with (3.9) yields

= 4 1@ (x%i06"9,8) +i ¢, (" 665, ] .

hx- ﬁj»x

and

Ze=t92¢, , 2te=-£3%q, ()
and '
(Z Zt+a) (:(le) =0, (408)

l1.8e, Z on ¢ and ZT on ¥, are realized bilinearly in
ordinary W=l spinor derivatives, while Z"?z and 27 ¢4 are some

x)
It is interesting to note that the whole set of constralnts

(3.3), (3.4) could be reproduced starting from some 0(2)-analyii-
cal superfield , @and extending then 0(2) to sU(2), The simplest
nontrivial possibility is to allow E»ﬂ to be a compenent of an
isodoublet of the same sort as %i“‘az‘_ (with the opposite

cholce the resulting constraints reduce the superfilelds to
constants), Varying (3.3a) (3.4a) by the sU(2) / 0(2) transforma~
tlons one obtains all the other equations.



new independent chiral superfields. If Z # ezl s then acting
sugcessively by powers of er ZT on Y, and ¢, we shall get

an infinite multiplet of chiral superflelds. This procedure cannot
be interrupted at any finlte step., For instance, by setting 2"‘(2=U
we would get a meaningless comstralnt U"\(z:: 0 { in virtue

of (4.4)). Let us emphasize that we want 4o have finite multlplet.
The only possibility to escape the proliferation of FS multiplets is
to restrict the supersymmetry algebra (2.1) to one central charge
only,l.e.,to put x) .

Z - ZT _ (4.5)

It is clear from (4.3) thet the multiplet { Ya 5 M2 }
18 now closed under the action of central charge:

Z &)——7(%%9) (‘f) (4.6)

or in tems of (Pii(fz :

L4
Z( ‘ff) - 1 (o9 +9$)'C3(30')
Y.

It should be emphasized once more that there 1s no need in
introducing of additional bosonic coordlnate to reallze the
central charge as 1t 1s usually done 7243/ . Instes.d,' ? is
expressed through spinor derivatives while the condltlon (4.4) is
fulfilled identlcally. To prove the last statement we rewrite
equation (4. ‘7) as

Z. \ﬂ g, 2—{— ('Pz (4.8)

(4.7)

where

A =2+ % (92+23).
One can easily see that

Z. 2. = A 2= Z Z5=n-0Tla, (4.9)

where ﬂq]z 1+ 4cu(993‘9+m33) is the projector singling out
superspin 1/2 /10/ « Since superfields ‘ﬂ and ‘-?z contailn
superspin O only, equation (4.4) follows immediately from (4.8),
(4,9).

x)It is sufficient to restrlet oneself by equa.tion (4.5)
since the more general condition Z=¢€®Z1 1s reduced to (4.5)
by chiral U(‘i) transformation Q-r Q""‘A’Q



Now we can represent the transition formulae (3,6) in their
final fomm: . —_ L _
Ef’; 8897 )*e"(?s*fwé_z r7i/i90+58)s [‘h (ke Bl i gy(xn )] (4.10)

v . 3;3)
OOy R et @Mﬂfwh E PN,

Xg"= (xi")f-ﬂ+éer"’§'.

S« In this section we give the explicit form of 6? super-—
symmetry and SU(2) transformations ( § — supersymmetry is reslized
in a standard fashion). The action of the generators on chiral
superfields can be found as follows: at first one has to act on
the superficlds i é by the gemerators in realization (2.5),

2
{2.6) and then put 7:71-0

g,,p,:*ZQJZ?g"L 1)
Q& =-264Z25B&
tL (69-88) +L (o6-28)2
2, A. (5,3.,.@3) +? (66 +89) Z

) -C, (¢ 0)] (4.10)

T

-—J—Z

(5.2)

-]k —-l|<

} N

T =72 + > (é(a 9’ ) 5
with the upper sign corresponding to \?, and the lower one to ‘-Pa_
The differential part of “T> iswdinary Yc transformatiom.
Substituting in these formulae the concrete realization of >
(4.7) and passing to superfields 5%, » in terms of which the
formulae are more compact, we get

% (f)--1 (57 Jalt)

—“\ _ (5.3)
L () ()

T4 (828) reo-52) ()

T2 (t&z)‘: L (932 (00+65) () .

4 —D ¢
U 4 (wre2-82) ()
2
The transformations genera.ted by ‘z_f' G, Q &, T Ml
can be compactly represented by the single formulas



(5.5)

H(8) - (55%) Do ael (1),

where /\(9) 3 ) (\ (Q)T are constant chiral "super:fields" with
the group :pax'ameters as componentas:

Mol= 2 +25% - £ (p"-ig) o0 (5.6)
A@) = _-+2€9+L(55+559 Bd .

Far the sake of completeness we also wrlte down the transfor -
mation laws of the components flelds, It 1s not hard to deduce
from (5.4) the well-known SU(2) structure of this multiplet rel
two scalar isodouvlets A (x) , F:(x) and two isoscalar
spinors \{./ (%) ) % (x) . Supersymmetry and central charge are
realized on theae fields by 2/ :

SAi- 51b+3.Z AR

S ¢ - 20 GE)AT -25E, + NG

S& = 2 p WA +ATF-IAFY .7
Fr = —i(e.32) +iEcpd) - 2ohe

The flelds AC)‘}'}Q) Fl: are contailned in the N=1 chiral
superfields ‘.fh\{a‘ as follows

©, (x2,8)= Aslxe) +OF (Xp) ¥58 Fp(%r)

@, (x,0) = A, (Xe) +8 P (%) — 88 F(%).

‘ 64 In this seotion we establlish an in;'ariant N=1 superfield
free acftion formula for the F3 multiplet and its connection with
the N=2 action formula /22%/

Teking intoe account the complex conjugation rules .
- ¥ - -‘:: (:J' X\
(tec.) - cfj =2 ‘F 4 . .
K * (6.l
(0% = - ¥ | B
one can easily bulld Hermlitean expresslonsz for the kinetic and mass

terms for the FS-multlplet which are manifestly lnvariant undei'
S ~supersymmetxy

(5.8)



S - 4 [dndie [0 87-007]-
A jdqxdv&;[g)(g) ¢y %Y’;‘ + g'(g) ‘f‘z§§ ({’:‘*] (6.2)
S = = 2 (derd?o [Swe-Sm) v.0%] .

(6.3)
The total action ocan be cast, with the help of (4.6) , in the
compact form:

C=CintSon - }; gd“xd'fs [3{9) '91(512 ) — {4, (F+2m) tp‘:] . (6.8)

The superfield equatlons of motlon are Just
(6.5)
(Z2+m)(8)=0
2

After going to fields and integrating over a8 the action (6.4)
takes the familiar foram /2/ :

S- deEQ,,A{a +i(9€’;’1+¢f7¢)-pﬂ:
; ué Iy (646)
Cim (AP roa* 44 Gev-39)

Sohniuvs £ y Sohnius, Stelle and West /3 derived an

actlon formula for FS multiplet in terms of constrained N=2 super—
fields: :

S=2 (aw (380 + 3° :ad) R (6.7

where K‘J 18 a linear selfconjugated N=2 supermultiplet built
out of N=2 superfields /37

Tog= i T8 (F2d) §; @0 d ) [ )1 055 e ey

%,‘ (< l(‘;j)-;o DY e TC‘_-)-), O. ©(6.9)

?

Using (6.9) ome can check that the expressions
(g oo \ )";., c * Lﬁ‘&)m
Dy e (%% -%<§Y < Fe(% 4

are total X" Qderivatives. The proof of supersymmetry and central
charge invariences of (6.7) is based on this fact.

10



The action (6.7} coincides exactly with (6.4), Their identity
ig proved using the equivalent form of (6.7) imvelving integratlon
over the whole N=2 superspace:

St Cundiod s [@E0+TMTT] Ko . (e

where

deo= 2 (do.dg) (407 doY - dte o7

S4lo= £ (61‘;6{,-)(&“"9"') = S(er 3ty) -

The next steps are to pass to the nonsymmetric parametrized
Qs '§* ( see A7), use (4.10) and then integrate over d% d?if

7. Finally we discuss the possibility of interpretation of the
basic equations {(4.10) in analogy with the chiral N =1 superfield
as shifts of superspace cooxdinates, i.e.,as a transition from the
general real basls of N=2 superspace to some complex basls of lower
dimensionality, which is adequate to the FS-multiplet.

Exchanging the exponentials in (4.10) and using the identity

0 ((12+78) Ly 7C- &77) ei('zf:'i; +i5s ) (7.1)
we get ( ___}2
v _ + o —
b= ¢ 1 \é [‘4’1 G ey, (%, 9-_,:)] 7.2
_ Uypyi)Z
ggz 72 4 AL (x5 m) v g, (X%, 53] .
Here

o e - = e —
X4a X"HiO6"G ~Cy oYy —260™7 = X"t g f-j”’f)‘ Or=g+iy  (7.2)
X3 =x —Lao"”'9+u7€""z+2zﬁ‘”'€ =X *'«j z*j 4

x5 -(x3)T, o5 =(ex)T

g “9*‘"? (7u30)

(7030)
w
X = XI)T 97_;, LG‘ )T (7.3d)
and
jmif 9‘:0_“'9_\:(*'91(5-‘“ 5i’ ) ;M i =0 . (7.4



From {7.2); (7+4) one conciudes that the minimal superfield
structure of the FS multiplet is naturally assoclated with four
chiral W=l superspaces witk the crossing~-type complex conjugation
rule: the first chlral superspace is the conjugate of the fourth, the
second of the third. These superspaces are closed oxly under S -
supersymmetry, hoewever, they are correlated with the external index
1 of the superfield @ in such a way that all the other transforms—
tlomns ( (Q —supersymnetry, SU(2), central charge)} do not take =
superfield out of the domain of its definition. In other words, due
to (5.3}, (5.4) the variation of Y| 1s defined on the same
superspace, as tfc itself, This unusual property of basis (7.3)
is 3%1l11 to be understood. It would be important to be able to const—
ruct this basls by purely geometrical reasons. Recall, that
standard chiral N=l superspaces appear when including ome of the
spinor generators as well as the Lorents generators in the little
group 11/ « Besides, the central chérge rele requires g deeper
understanding, the central charge operator is realized as a second
order differential operator and fts actlon does not reduce to
shifts of the }(,9‘,5 coordinates. However, one important cirotme
stance is already clear, which seems to us to be crucial for a future
bure geometrical minimal formulation of N=2 supergraviiy. The mini-
mal formulation of N=2 supergravity 1/ is based on the complexifi-
cation of X'" as suggested by the exlstence of chiral W=l
superspaces: X"™. shift in (1,3) is pure imaginary, Xx™ -
shifts in (7.3) are isotxiplet components (7.4) indicating thus
the fundamental role for the N=2 case of the obJect i?'" YU
which 1s transformed as 4832 of sU(2) and 1z reduced in the
flat 1imit +to s )

W - N m oL

Z Uzﬁé%‘u XM“%? o, (7+5)
The bosonlc coordinates of basis (7.3) are Just components of (7.5),
-725“13 transforms under supersymmetry as follows

G2 Y=~ (5574 915“’3‘), | (7+6)

4 detailed discussion of all these problems will be given
elsewhere,

Ag was mentioned above, in N=2 supergravi}ithe FS-multiplet and
the chiral multiplet are preserved. Sokatchev has achieved
an essentlal progress with chirality preservation. The N=l. superfield
anatomy of the FS multiplet exposed in the present paper will be
useful together with chirality breservation for constructiorn of
adequate geometry of N=2 supergravity. '
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Appendix,. Basic relations of the N=2 superfield formalism in the

symmetric parametrization
in element of left cosets 1s defined as follows:

L (6@ @}E)*)_

~ Lo [,X'Mpw
G (x! 9 v } QK)= 'e
x"P.. c(95+5§+7c?+7&) (1)
= £ v €
Generators of various symmetries and covariant derivatives
in the basis (A.1) are caloulated by standard techmique. They have
manifestly. SU(2) - covariant form:
C = ..( 9;)-:{. - 6uiZ
B L agee= (P \ (82
Wb = -1 &y + @)+ ‘9&_2
faai
a-d a _ A |.< 4 g¥/i~na
T%= z (T) 921' e @)K o5t (&3)

D = - 6(7259_5)‘* -8

_— Y R
= -2y +i6 By +i8Y zT-
5%,
The element (A.l) 1s related to the corresponding element in the
paremetrlzation (2.4) in the following way

- @k

(4a.4)

(A5

k -t (752*?521)
< =K 1y
ap i [oRLwz- 300G 2] (s,
as can easily be seen from Campbell-Hausdorff formula and
super-—

algebra (2,1). The unitary operator K relates the N=2
fiplds and realized on them operators in both parametrizations:

$x,0%8)= IC b (x,6%,8)

%))

(4.8)
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Que=K Qi KT = Que + 651’)5“,@«—2
- K G0 =Tk - g @) 2T (a9)

T kTRt Tt 6T ) a5t ot -
B 2 ‘9‘(&)& &2‘9 &4203 ZTJ(A.J_O)
%,L.‘,-—: K‘gdc‘k‘*:gdﬁ‘i(rf})f&d(z
5&6: KByt BEtiFs )~ 21 D
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