


I. In quantum field theory (QFT) one-always considered as
evident that the transition from X -representation of the
theory to its p-representation and vice versa proceeds through
the standard Fourier transform of the field operators

H{X) = éﬁ-fzfe_ipx ¢.(p)d4p . (1.1)
‘?5(9)"{‘2“,;1')"572 feipx¢(x)d4x. (1.2)

The 4—~dimensional %~ and P-spaces, in which ¢(X) and #{(p) are
defined, are either mutually pseudo—Euclidean or Euclidean *,
i.e., do not contain any universal scales of dimension of
length or mass.

However, we can point out such an alternative to (1.1)-
(1.2) transformation, in which =x-~space keeps flat but P-spa-
ce acquires a constant curvature. In the 3-dimensional case
such a "mixed" Fourier transform is rather familiar. It aris-—
es when considering the solutions of the Klein-Gordon equation.
Indeed, if :
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In the Euclidean formulation of the theory.



We see that expans:.ons (1.4)-(1.7) relate the pair of func-~’
tlons HUR x) and 1_5-5_.(0,}() defined in the Euclidean x-space

with the pair of functions f(]py{.p) and f(=1ppl.B) on the
hyperboloid

pg—ﬁz -m?. (1.8)
The "curvature radius" m of the hyperboloid (1.8) plays here
the role of a universal parameter.

One can easily construct a 4-dimensional analog of trans-
formations (1.4)~(1.7)., For this purpose we consider the hy~
persphere in the flat 5-dimensional p-space

o —B% + M¥pZ.m2. (1.9)
From here on the universal constant M is called the fundamen—

tal mass and the quantlty_m..ggJ the fundamental length

Consider now the Fourier 5- 1ntegra1
’ 2
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Kp = |p4i - \/1— —E!-Q: .

Inverting expansions (1.12)-(1.13), we get
Y{p.« )+‘{’(p,-xp) 1
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The obtained 4—dimensional Fourier transforms (1.12)-(1.13)
and (1.14)-(1.15) give rise to a relation of the form

¥(x,0) ¥ip, k)
. AP(x.0) ” (1.16)
1—m~a~}ﬁm qj(p;—KP) .

Thus, in contrast with (1.1)-{1.2) the pseudo-Euclidean X -
- . . *
space becomes associated with the de Sitter p-—space (1.9).

Basic Hypothesis

We assume that QFT will provide an adequate description of
the processes at high emergies (at small distances) if and
only if the tramsition to momentum representation of the field
operators is based on expansions (1.2)=-(1.15).

In this way there naturally arises a new-Lagrangian formula-

tion of QFT, local in terms of ¥(x,0) and i—gégﬁffg.-‘The new
T

Lagrangian contains terms depending on the fundamental length
?,_} ,which do not survive in the limit/f 0 .

o ‘

In the present letter we briefly discuss the corresponding
version of quantum electrodynamics, which we call "QED with
a fundamental length'.

II. The Lagrangian of the new QED (in the Euclidean formu-
lation) is
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*Correspondingly the Euclidean 4~dimensional x —space will
be associated with the following de Sitter p-space

MZD%;-—*PzEa M2 - (1.17)
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Let us explain the notation. Here the electromagnetic poten-
tial is a 5-vector

CAR(D) w fAL(x), AL, | (2.2)
The 5-dimensional field strength Fgp, (20) is defined by/l/:

Fyp(x0) = | ﬁ-tte” AK(x,r»-%}—{K: (" ALK .
(2.3)
K,L =0,1,2,3.4.

Lagrangian (2.1) is invariant with respect to the group of
local gauge transformations '
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As to the structure of the Lagrangian we make the following
remarks:

1. Performing in (2.1) the Euclidean version of the Fourier
transform (1.12)-(1.15) one can pass to momentum representa-
tion. A crucial point is that the momentum 4-space is now de
Sitter space (1.17) with a curvature radius equal to the fun-—
damental mass :

2. Expression (2.1) for £(x) is obtained in the standard
way from the sum of two free Lagrangians, describing the elec-
tromagnetic’l/ and Dirac fields/?/, performing the "minimal™
but 5-dimensional substitution

Oe s Lo sie Ay(x0)
g X J X (2.6)

M=0,1,234.

Therefore, the gauge invariant Lagrangian of the new QED is
constructed as unambiguously as in the ordinary QED.

3. The new gauge group (2.4) is larger than the ordinary
localized U(1) -group. The latter is picked up from (2.4)
if one sets ' '

dA(x.0)
A(X,O)zi -—---(----—--— . ' (2-7)
or

At first sight, the theory based on Lagrangian (2.1) looks
unrenormalizable. However, the wider gauge symmetry of Lagran-
gian (2.1) gives rise to additional Ward identities. The pre—
liminary analysis has shown that this fact seems to ensure
renormalizability of the "QED with the fundamental length".

III. The developed theory of electromagnetic interactions
puts forward a number of specific predictions. We shall dis—
cuss some of them. Using (2.1) one can easily see that the
effective interaction Lagrangian expressed in terms of the
fields W(x,0) and ¥(x0) contains the term

2 ch WS WF e a5 ¥ oMYy
4M 4aM 3.1)
shg = tgp/2.
Hence it follows that: ; iy,
1. P— and CP-symmetry violation takes place 3/ due to the
existence of electric dipole moment of charged particles: d =

-24 3
=§;L.Consequent1y, at leastf £ 10 2 cm/ /.



2. Interaction (3.1) gives an additional contribution to

g—2

(g-z)-anomalyfaiwe can show that -§-~In%2,where m is the

fermion mass. From the data on (g-2) it follows that

0 <2.6-10" 7 em,

muon

3. Interaction (3.1) manifests itself in the reactions
with polarized high-energy particles/4ﬂFor instance, the asym-
metry combination for the process ete™h ete™

B d g g do do .
. (sin’ . +cos -é—.)(a-ﬁm-)1l —(a-(-z—)TT
) oy | (3.2)
{ sin8i=+ 0038?._) (..g.f_: +(_C.l.g..;)
2 2 dg o~ a0 .

in the usual quantum electrodynamics is different from zero

due to the radiation corrections but decreases at large E2
2

as%frﬂnlgﬁ.At the energies of the large eleéctron-positron
m

storage ring accelerator, to be constructed at CERN, the ra-
diation corrections will be negligibly small. Then the main
contribution to the quantity A will come from the new interac~
tion provided the fundamental length varies from 1/300 -
1/1000 (Gev)~1

In conclusion we should like to emphasize that applications
of the Fourier transform (1.12)-(1.15) associated with the
non-Euclidean momentum space result in a local gauge invariant
QED containing the fundamental length f as a new universal
parameter. It is obvious that "QED with fundamental length"
corresponds to new rich physies.

A corresponding formulation of the unified electroweak the—
ory does not confront principle difficulties.
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