


1. In terms of the model independent point-like one-partic-
le sources emitting unpolarized particles with spin j, the den-
sity of emission probability of two identical particles with
4-momenta Py and Py in space—time points X 1=(fi st1) and x2=(€, to)
is given by . :

W(p, .pp) = 1 +b(P,), , (0
b(p,Py) = ggcos(gx) . - (2)

Here q= pl_p 2 x'=xl"x L] .'=%t"a; . and g “(—1) 2 /N(]) ' N(.l) iS
the number of spin states: N(j)=2j+1 if the particle mass

m# 0;N(§)=2 if m=0 and j>0 (e.g., for photons). Eq. (2) ref-
lects the influence of Bose— or Fermi-statisties on identical
particle correlations. It allows one to estimate space-time
dimensions of multiparticle emission region. The corresponding
method, generalizing the idea of the well-known Brown-Twiss
interferometer in astrophysics/hihas been elaborated by Kopy-
lov and Podgoretsky’2:4/ and also by Cocconi /%’ and is succes—
sfully applied in a number of experimental papers.

However, eq. (2) does not allow for the effect of final-
state interaction of identical particles. In general aspect,
the final-state interaction was first discussed by Watson /%
and Higda1/7/.Later on various manifestations of this effect
have been considered by many authors. A consistent method
allowing for the final-state interaction was developed by
Baldin /89 in a study of the near threshold pion photopro-
duction on deuterium. It is important that, as in the case of"
Bose— or Fermi-statistics effect, the final-state interaction
depends on space-time dimensions of particle emission regionk*,

The final-state interaction is absent for photons. Simple
estimates show that its contributicn is small for at—or # = -
correlations, but it dominates in nucleon ones. Below we pre-—
sent analytical expressions for the correlation function
"b(p,,py) of arbitrary particles with m#0(like or unlike, char-
ped or neutral) allowing for their final-state interaction. .

* A dependence of such a kind was already pointed ocut by
Baldin and Lebedev’/19/ in the case of slow pion photoproduction
on nuclei.



Following refs.”!'® we assume

the particles emitted by inde-
+ pendent one-particle point-
like sources (presumably, it
is a reasonable approximation
. in the case of multiparticle
Fig.l. processes).The influence of

final-state interaction in
terms of such a model was discussed previously by Kopylov 711/
for pions (he allowed only for real intermediate states in
the diagram of Fig. 1) and by Foonin’!2/ for nonrelativistic
protons. .

For a moment we assume that the production mechanism, as
well as the particle interaction, is spin-independent. The
function b{p;,p5) can be then expressed through non—-symmetri-
zed Bethe-Salpeter amplitude Ppips (X1 . X, )/ﬁgrresponding to
a given interaction potential (see, e.g.,
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“where (j+1) A2+ 1) is the fraction of two-particle states
with even and j/A2j+1) with odd summary spin for integer j or
the opposite for half-integer j.At equal emission times t*
and t}y in the two-particle rest frame the amplitude ¢; . xlfxz),
considered as a function of x; and %, coincides With
the usual wave function of two interacting particles having
the asymptotics corresponding to the superposition of blane
and converging spherical wave 714/ 1Ip fact, the approximation
ti=t% was used by Koonin when calculating the correlation
function of two nonrelativistic protons’!®/. Later on we requi-
re no special limitations on the emission times t} and t}
and also on particle pair velocity in the rest frame of par-
ticle sources. -

For noninteracting particles the amplitude is given by the
* =1p1x4 —ippx
) ] ¢'P1pg(x1’x2)=e PlemFe¥e
=e-1p(x1+x2)e-iq;/g’ where p=(p;+py)/2. It is seen that in

this case the formula (3) yvields the correlation function (2).

The emission amplitude for interacting particles (see Fig. 1)

is given by . ax/

(gxy) = PR IR gy, )

rz

preduct of plane waves:
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where f(pq.,Ps .k, 2P - &) is the nonsymmetrized scattering
amplitude analytically continued to the unphysical region. We
consider such small relative particle momenta that the contri-
bution of s -wave interaction is dominant. Provided that the
intrinsic range @ of the interaction potential is smaller than
the distance r* between the emission points in the two-par-
ticle rest frame, we can put f(py,Pg.x 2P-«)= fek*) (see also
discussion of eq. (A.9) in Appendix) and take the amplitude
f out of the integral im eq. (5):

¢p1p2(x) = f(k*)'i’plpz(x) . : (6)
Here k* is the momentum of oneof the particles in their c.m.s.:

218, (k¥ .

k- —a%/2 «/pP-m?, p2emf /4 f*)=(e”00 () 1)kt
is the nonsymmetrized s-wave scattering amplitude® and
‘¢p1p2(x) is given by eq. (A.1) in Appendix. The integration
in this formula can be performed in the approximation of small
relative momenta of the particles in their c.m.s. (k*<<m).
The result is given in (A.8). ‘ ‘

From eqs. (3-6) it follows that the correlation function
takes the form

b(pppz)=b0(P1.P2)+bi(P1-92), (7)
where
by (by, Py ) = 8geos(ax) (8)

is the contribution of Bose— or Fermi-statistics.effect and
bi(pl,p2) appears due to final state s-wave interaction:

b, (pl,p2)=giilf(k*)diplpz(x)la +‘2Re[f(k*wplpz(xncos(qx/z)}, e

gi=1+gWWhen polarized (aligned) particles are emitted, the spin
factors g,=(-1)%/@j+1) and g, in egs. (8-9) should be
changed for gomS_E pg= 2 Pg and g,=1+8,~2 3 pgllere
Sm . even ° S—odd " | e . S—even '

pS:E:pSm is the normalized emission probability of identical

m
particles with nearly equal momenta p,=Py - P in a state with
summary spin S:pg m are the elements of the two-particle

¥ The corresponding scattering amplitude for identical par—
ticles in a state with summary spin $:is equal to [ 1+(-1)511k».
The cross sections of elastic scattering of two unpola-
rized identical particles is given by aﬂ=4w(14-g0)]f(k*)12.



spin density matrix in the 8, m —“representation. If the par-
ticles are emitted independently with the same one-particle
sPin density matrix P(1y» then 5:5(1) ® 3(1) and goa(-—l)z’SpEz .
In the pase of practical intereft, when nucleons with polari-
zation P are produced, we have p(1)=(1+PU)/2 and g,-—(1+P%)/2,
g,=(1-P®/2. Ve see that the contribution of s ~wave inte-
raction of two identical nucleons to the correlation function
goes to zero at P-1 (identical nucleons with parallel spins
cammot be in the s -wave state). Whem the final-state interac-
tion is spin-dependent, the ampilitudes f(k*) can be different
in states with different summary spin. The generalization of
egs. (3-6) and (9) is quite transparent. In particular, the
function b; takes the form

b ®1py)=2 £ p (0ENE 1% 2Re[5 GO (9lcos(qn/2)).

$—even® PyPy Py Py (10)

Note that ps=(2S+1)K2j+1)2 if the production mechanism does
not depend on spin projections.

2. The correlation function (7) should be averaged over
a space-time distribution of particle sources. The result is
denoted as follows:

B(g,p) =<by(p;.p, > +<bi(py.p, > =B, (@) +B(q.p). (1

Below we comsider in detail the correlations of two unpolari-
zed neutrons. According to eq, (8), we have

BO(Q.P)E—~;~<cos(qx)>. (12)

Using formula (6) also inside the range of the interaction
potential, eq. (9) yields

B.(gp) = -él-{}f(k*) f?<iq>p1p2(x)12> + 2Rel f(k*)<¢p1péx)cos%§>] I (13)

The nn-interaction amplitude in the effective range approxi~
mation is of the form’14/ :

I 2 ot
f(k*) —-("f—- + -éﬂdok* wlk*) . (}4)

According to the experimental data (see, e.g.,/lsf), the scat-

tering length f, and the effective radius dy are equal to
17 fm * and 2.7 fm, respectively, ‘

The neutron emission points are assumed to be independent
and distributed according to the Gaussian law

% The data on neutron-proton scattering yield the singlet
scattering length equal to 23.7 fm/}4/ Such a violation of iso-
topic invariance is not yet completely clarified.
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1 2 2 2 2 .2 2
Wiz, x,) = — exp[—(r1+r2)/2r0—(t1+t2)/2r0].

15
(217)4rgr20 (15)
The distribution of x=x;-%, is given by
W(z) = —— el — - — ). (16)
(4m¥rgrg 4r dr§

Eqs. (15-16) should be considered only as a convenient way to
introduce space—time parameters of the particle production
region. The mean—square radius and emission time are equal to
V3ry and ry, respectively (the mean—square space and time
distance between the emission points are vZ times larger).
Note that the parameters 2r,,r, in refs. 735/ and \/'Q'ro, \/_2_r0
in ref.’1® have been used as space-time characteristics of
particle production. The averaging in (12) according to the.
distribution (16) yields the familiar Gaussian transform

Bo(q,p) =—4-exp(-r5d®-rgag) - (17)
Using the azimuthal symmetry of the functions W(x) in (16)
and @, , (x) with respect to the particle pair velocity v
the intelglaation over the azimuthal angle in eg. (13) can be
performed:

1 "
B, (q.p) =?f2anderrLdtW(x){]f(k*)(nplpz(x)lz + e
+ 2Relf(k®) @ p1p2(X)] Tq (—;— gt pleosbg o (ry = vt) /2viy,

where L and T denote the vector components parallel and per-
pendicular to the direction of the velocity v;Jy is the Bessel
function. ‘
We note that in the case of spherically symmetrical distri-
bution of the emission points the correlation function B(g, p)
depends only on three variables dr.qg and v (the variables q
and k* are given by q;=q,/v and 4x* 2=-q2=q7 +q%/¥EV ¥;
y = (1—V2)‘1/2 is the particle pair Lorentz factor). In the
general case it also depends on the directions of the vectors
v and qp which, in principle, can be used to determine the
form of the particle production region /3-5/ 1£ this region mo-
ves with beforehand unknown velocity v,,this parameter will
enter into eqs. (17-18) through the Lorentz transformation of
4-momenta q and p into the rest frame of particle sources.
Analysis of eqs. (18) and (A.8) shows and calculaticns
confirm it that for small enough k*(k*<<m and k*<<m10/f0) the
function @, Dz(x) can be approximated by formula (A.5) pro—
vided that the condition ypru/r0>>m-1 is fulfilled; here



p=(RevE B2 In fact, this condition is fulfilled in
many realistic cases of meutron production due to the small
reverse neutron mass (m '=0,2 fm). Inserting (A.5) into eq. (18)
and integrating over t* (see (A.2)), we obtain

B, (a.p) - *\7_12 —— [y drpdrt exp(r2/arZ o re By 2R
dymrcv p
0
£12 eik*r* 1 (19)
x [ e + Re(f--;* )J0 (~2—qTr T)cos(qor’i/2yv)] .

whe * =2 4yrx2)1/2
re I (rT+rL )

Eqs. (18-19) yield upper estimates of the functionm ‘B, as the
relation(6),together with (A.8),0r (A.5),overestimates 1¢plp2(x)!—”
ZIQ&E* 9] for r*<d. It is interesting that the correction
to eq. (19) can be found without knowledge of the explicit
form of qSE»*(?*) inside the range of nuclear forces {a similar
method has been used by Baldin’/%%/ ¢o calculate matrix ele-
ments for the near threshold pion photoproduction on deute-
rium). Using the simple relation which follows from the effec—
tive radius theory/16-18/

ik*r* R - 5 -

-'-l-—f[ifﬁ—-- + c()s("l:"‘r*)[2 ~lgs, %) + cos(k"';”‘)lz]dB * =

47 r* k
' (20)
<2 L _recly) T LigRg

2k*  Gk* f 2

we obtain in the first order of dg/rg
B; (@,p)=[ expres.(19)] - —L_ g2 dg/yprZ. (21)

Actually, formula (21) unraerestimates the function B, .Howe-
ver, forr, > 1.5 fr the relative etrror is quite small apd rapid-
ly decreases with increasing ry (see fig. 2)}* Formula (21)
is unreliable for Iy 51 fm when the function B; is almost enti—
rely determined by the behaviour of the neutron wave funtion
inside the range of the interaction potential and is sensitive
to the potential form, ;

At k*=0 the integration in (19) can be performad and eq. (21)
yields 2

Byop =i L Ul 1 %0,,, 1 geoy. (22)

! o4 o1y 2yE Iy V7

% For the square well potential the correction to eq. (21)
can be approximated as AB(q,p)=(d,/8.6:5) 3|f12/ypr0 . For
r02}.5 fm ABi/Bi<5%.
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Fig.2. The function B™ (0,p).Cur- %@
ves 1 and 4 have been calculated
according to egqs. (19) and (22),
respectively. Curves 2 and 3 cor-
respond to the exponential and

square well potentials, respecti- 5e
vely. The scattering length is =
equal to 17 fm and the effective g
radius 2.7 fm. ‘ e

Too1ftm V=03

Here
1 20,
A= Ta.rcsin(u),
(23) 15
coLnlr¥ w2 X /rehgg.
2u l1-u P
— u
.
A=C=1at v+0, A=—,C=In(2y 1+_g~)- & .
2 1'0 1 15,5(#") 2 25 3

for y>>1 and A=r/2, C= In(@yvrg frg) if vrg>>rp . .
We note that for small particle velocities, whemyp Zrpthe
function B(q.p) becomes insensitive to the parameter rp(see

figs. 3,4).In this case
-1 2.2
B, (@p)= > exp{-4k*2r 2 ),

(24)
2 do Ref ' Imf e
B. (q,p) =llf-l-(1~ 1 )+ F,(2k*r )- ——F_ (2k*1r ),
! 4 12 ENEE D V7T, t O)_2r0 2 0
122 F 4 2z 2 272)° 1 —22
where F,  (z) =29 [ e dx=1 - =+ '(37'52' . Fa(z) =_z_(1_e ).

[+]
For two neutrons with 2k*r051 the function B; in (24) can be
approximated by )

B _ f(k*) 2 .22
; (@p) =B (0.p) ] f(0)-| exp{-dk* re),
r2=r§[1_‘_.5__r_°_/(1+_‘£__..r£’____1__f_0;)}_‘ o T (25)

3yw fo V7 fo 2y7 To

We see that for small particle velocities the correlation
function B(gqp) depends only on the momentum l;*é‘-gL\/—q2 and
this dependence is determined by the scattering amplitude amd
the parameter.r . . : : -

It. should: be pointed out that the effect of final-state -
interaction .becomes stronger with decreasing space—~time dimen-
sions. of the production region. For r, and 7o of about 2~
3 fm the contribution of final-state jinteraction to the neut-

7
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Fig.3. The function BY" (0.p) Fig.4. The energy dependence
calculated according to eq. of the function BT" (0,p);
(22); 1y =17 fm, dg =2,7 fm. ¥V = p/m.

ron correlation function at small (g is several tens as large
as the contribution of Fermi-statistics effect; see the cur-
ves in figs. 3-6 calculated according to formulae (21-22). The
final-state interaction is unessential in the case of large
distances between particle sources or large emission time,
e.8., in the case of neutron. evaporation by excited heavy
nuclei 19/ (if r)~3 fm and vy ~10% fm, the ratio B;/B g is about
2% at 'q =0). Note that the role of final-state interaction be-
comes less important also with increasing neutron energy

(fig. 4); in the ultrarelativistic case B, (0.p) ~1/.

As can be seen from fig, 5 , the q-dependence of the func-
tion B;(q,p) at small|q] is mainly determined by the neutron
scattering amplitude (due to the large neutron scattering
length). Besides, even at v =0.3 the k** —dependence of the
ratio B (q.p) /|t&*) [2 is approximated by the exponential
_in eq. (25) (dashed line in fig. 5) with a relative error
smaller than 10% for Ek*r_o <1 <(note that q2T=-4k*2at 9 =0).

It should be noted that for polarized neutrons the peak
of the correlation function at q=0 can diminish or even turn
into a dip. We recall that in the case of independent neutron
emission with polarization P the functiong By and B; in eqs
(17) and (18) should be multiplied by (1+P%) and (1-B2), respec-
tively.

8
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~ B(G,P)

o1
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' 005
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Fig.5. The functions Eﬁn(q,p) Fig.6. The neutron—neutron
BT | ¢ £|2 and -B}"(a,p) and neutron—proton correla-
calculated according te eqs. tion functions.

(21) and (17)}. The dashed °
line corresponds to the ap-
proximate formula (25).

We thus see that two-neutron correlatioms can be used to
determine space-time dimensions of their production region on—
ly if the final-state interaction is correctly taken into ac~
count; the formulae of refs.’2% cannot be directly applied
here.

3, The final-state interaction turns out to be essential
also for the correlations of two neutral kaons (the experi-
mental data and theoretical discussion of the latter see in
refs. /20,21, Provided that K°- and K ° -mesons are emitted
by independent point-like sources, the correlation function

K°E° . . : _ : A o
B 8 s of two K2 -mesons differs from the neutron one only
by the spin factors (see (8-9)). Thus, Bﬁsxs = <cos(gx) >
describes the effect of Bose-statistics for spin-zero partiec-

N K°K° , . : L 0y
les/21,. and B s © is given by eqs. (13) or (18-19) mul-
tiplied by 4 with the scattering amplitude approximated by



R (0 i?{f(o)/(1+k*f(0}) 10w Dy

Here £© =1.7 fm corresponds to the $* ~contribution with
isospin T =0 and ‘Y =0.84 fm - to the & —contribution with

T=1 (see’?2), The correction term in eq. (212 %s small as
: K. X
Ref=0; see eq. (20). According to (22), B;% 80,p) =

=A$f|2/ypr0, where |{f| =1.27 fm and 1g Ajg—- We see that for

p ~1 fm and not too Yarge y ~factors the contributions of
final-state interaction and Bose-statistics effect to the cor-
relation function become comparable.

The correlation functions for other identical spin-zero
particles have a similar structure, in particular:, for two
neutral or charged pions (provided that the Coulomb interac-
tion can be neglected, i.e., for k*>mm_/137=3 MeV/c; see
Section 5). Experimental data and theoretical calculations
give the nta(xo7°) —scattering length equal to ~ -0.03(01) fm/?%.
According to formula (22) multiplied by 4, the contribution
of final-state interaction to the 7tz%(»°°) —correlation
function is smaller than 7%(23%) for tg =1 fm*®. Therefore it
is possible to determine space-time dimensions of charged pion
production region taking into account only the Bose~-statistics
effect (see refs. /2°5/ ) provided that yp > 1 fm.

4. Final-state interaction has an influence alse on the
correlations of nonidentical particles. In this case it is
convenient to consider the symmetrized correlation function

b= —;-[b(pl'pg) ¥ b(pg,pl 1. Then for the spin-independent
interaction '
_ 2
b=| f¢p1p2(x)| + 2Re| f¢p1p2 (x)] cos (qx/2), (26)

* Formulae (19), (21-22) are reliable under the condition
y,oi:(}/‘r(,>>m-1 - As m;l =1.4 fm, this condition is not always
fulfilled for space-time dimensions of ~ 1 fm in contrast to
the case of nucleons or kaons. E.g., at rg=75 =1 fm and
v =0.3 formula (22) leads to a -207 overestimation of the
function BT (0,p). Note that in the realistic cases the terms
in egqs. (21-22) proportional to ™" |2 are very small (the
effective radius of the two-pion interaction is determined

by the p -meson mass: do=2m"p‘1 =0.5 fm).

16



i.e., the correlation function is entirely determined by the
function b;(by=0). In the general case, when the s-wave
final-state interaction of particles with spimsiy and }p de-—
pends on their summary spin, and the particles are produced
with normalized probability pg in a state with summary spin 8

Sa 2 S : :
b= Epsﬂf ¢p1p§x}[ + 2Rel ¢ <Dp1p2(x)]cos.(qx/2)}. €27)

If the production process does not depend on the particle
spin projections, pg=(28+1)/(2j{+1)(2j5+ 1). In particular,
the proton-peutron correlation function averaged over the dis— '
tribution of the sources of unpolarized nucleons is of the

form :

B (q, p) ='—}1_,—£ B®q.p) + 35 (q,p)], (28)

where the functions B® (a,p), $=0, 1 corresponding to the
contributions of singlet and triplet spin states are given by
eqs. (13}, (18) gr (19), (21-22). The np -scattering length
and the effective radius of np-interactions in the singlet
(triplet) state appearing in eq. (l4) are equal to 23.7 fm
and 2.7 fm (5.4 fm and 1.7 fm), respectively 14/ pg is seen
from fig. 6, the neutron—proton correlations are slightly
weaker than the ones of two neutromns. .

Note that in the case of independent neutron and proton
production with polarizations Pp and Py, the functions B©®

and BD in (28) should be multiplied by(1-BgPp) and (1+3-P.P,)

respectively. ‘
According to eq. (26), the n*r” -correlation function is
given by (18) or (19), (21-22) multiplied by 2 with the wte™ -
+ - .
scattering amplitude equal to fg' =-§;f(g:0)+%f(g=2)-‘:0.2 fm

at g =0"2% For slow =tr™ -pairs (pgm} andry~1 fm we have

B’T+Tr 0, p) ~ 0.25. Thus, n*s ™ - pairs can be used as a back-
round in a study of charged-like pion correlations’#% pro-
vided that the dimensioms of the pion production region are
large enough (yp > 1-2 fm).

5. It is well-known that the contribution of Coulomb inte-
raction is determined by the factor

AP ko 2

c k*a

2z S =3 ;
17, (29
- [exp(* k*ac) 13 H
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where a, is the Bohr radius and the sign +(-) corresponds to
repulsion (attraction). The factor 8, (k*) is essentially dif-
ferent from 1 only for k*a /27 < 10 For particles with unit
charges and equal masses ac ¥me?; for protons a, =57.5 fm,
We thus see that the higher is the particle mass the wider is
the region of momenta k* where the Coulomb interaction is
important,

Assuming again that the intrinsic range of the strong in-
teraction potentlal is smaller than the distance between the
emission points in the particle c.m. s.; we can find the ex-
plicit expression for the amplitude ¢p1p2(x1,x2) " in eq. (3)

allowing for both the Coulomb interaction and the s —wave
short-range interaction of identical partlcles, see eqs. (4)
and (A.9-11). For equal emission times in the two~particle
rest frame this expression coincides with the solution of
Schroedinger equation outside the range of strong interaction
‘having the asymptotics corresponding to the superposition of
plane and diverging spherical wave distorted by the Coulomb
interaction (see eq. (A.13)).

In the realistic cases the distance between emission p01nts
is small as compared to the Bohr radius. In such an approxl—
mation the expression for the amplitude ¢p v, (%4,Xp) is essen-

tially simplified (see eq. (A,15)) and the correlatlon func-
tion takes the form

B(q,p) = A, (&*) [1+By(a,p) +B, (a.p)] -1, \ (30)

where the functions By and B; should be calculated according
to egs. (8) and (10-11). The scattering amplitude for neutral
particles should be replaced here by the effective amplitude
f k" or fS(k*), renormalized by Coulomb interaction, and
the function @ PPy (z) by

0L @ =0, @ +i@Y &M -1) sk, 31)
2
In the case of two protons the functions By{(q, p) and B, (q.p)

are given by eqs. (I2) and (13) with the effective amplltude

£, (k*) =[ﬁ' +§;d0k*2- bk - s e ™, (32)

where f, =7.77 fm, dy =2.77 fm and the function h(zx) takes the
form

. 1 00 1 .
-l s L cimx, C=05T2.... (33)
b(x) x2 p=1 n(n?.ex2)

12



If the emission points are distributed according to the Gauss
law (see (16)), the functiom B, is given by eq. {(17) and the

function B, , under the conditiomns mypry/rg>> 1, k* <<m,
k*<<mrg/ry, by eqs. (19), (21) modified by fk*)~f (k%)
and (Dplpz (x) » Q;lpz(X) . As is shown in Appendlx (see

{A.16}), the correction term, proportiomal to the effective
radius 4./ connected with the behaviour of the wave function
inside the range of the strong interactiom potential is cor-
rectly taken intc account by modified eqs. (19), (21).

It is eclear from eq. {(30) that the correlation function
tends to the value B=-1 when g+ 0 (due to Coulomb repulsion).
The joint effect of Coulomb and short-range forces leads to
" a peak in the correlation function, which, in contrast to the
case of neutral particles, is shifted to gq+#0 (k* =2n/ac =
=21.6 MeV/c, see fig. 7).

Eq. (30), together with (12~ 13) and (A.8), represents the
analytical solution of the problem taking account of relativis-
tic effects and nonequal emission times in the two-particle
c.m.s. (if they appear to be essential). Previously the cor-
responding calculatlons for nonrelativistic protons have been
done by Koonin’1® (see alsc experimental papers /2425 ). Our
calculations atvry =0, 1y =1.4~2.8 fm yield the cross section
{c-1+B) in the peak smaller by ~20%Z than that in ref /187
It should be noted that the use of the approximation 1*<<a,
(see (A.14)) lowers the peak cross—-section by about 10(20)7
for 145 =2(3) fm. Nevertheless, our approach makes it possible
to look over, with enough accuracy, the analytlcal dependence
of two-proton correlation function on the space—time parame-

ters and does not requlre a large
computer time.

In conclusion we note that the '
s ~wave approximation for the strong
final-gtate interaction is quite
reliable for k* 50 MeV/cj; the contri-
bution of higher orbital angular
momenta to the two—nucdlecn cross
sections is less than 1Z.

Rputsfm

Tr1fm Va3
G0

.

81g.P)

=

Fig.7: The protor-proton correlation
functlons calculated accordlng to
formulae (29)-(33); fo =7.77 fm,
af® =2.77 fm.
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APPENRDIX

According to eq. (5), the function fIJI; Py (%) introduced in eq.
(6) is of the form

8m/k*&m? expli (v k* Zrm3tts ot* *_’*)]dsh'*dx*
(I) (X) =

PPy iem) (f 2R *2m 2 10)] (2 KFErm? —c })2 2 %2 m2+10]

(A. 1)
Heret* and t* are the space and time components of the &4-

vector x={x,t} in the two-particle rest frame. They are rela-
' and ¢t in the rest frame of the particle sources

ted tor
by the Lorentz transformation

T _ 7 * o - . - -
B =t 1) v —vt), t*eylt VI, (A.2)

Here V= E/po is the particle pair velocity, y=(1-v2)"1/2 is
the Lorentz factor, ry(ry) 1s the component of the vector r
longitudinal (transverse) to V. After integrating over the
energy variable x} and over the angles of the vector i*, we
get

Qplp ® =— Fxsmm* f(1+‘/E tm? )exx)[—r(xﬂc2+m2~\/k*2+m2)lt"1]—

2mr* oo k2k*240 k24m?
[ x*2, o2 {A.3)
-1~ k% m Yexpl-i(Vx % m 2o k*RemRY e Ndx ,
K + m2
where r*=(?2 p r*2) and k=|k*|. For k*<<m the formula (A.3)
ylelds :
1 7 «sinkr* , k2 k*2
O ()= exp(—i [t*[}dx . (A.4)
PiPe nr*..{., k2 —k*2-i0 - 2m
For equal emission times in the c.m.s. of particles (t*=o0,
t=vr,) ‘Dp1p (x}) coincides with the diverging spherical wave:
_ ik *r* ® .
¢p1p xX) = e /r (A.5)

In the case of arbitrary t* it is convenient to transform
(A.4) into the form
ik*r ¥
e ‘
P (K = ———— e = rf(fyit*ndf - (A.6)
ik
e ik™r

L
fe"‘ LR {GATLIDY: I8
B S X
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where

o s BB
B o8N = = [ eT explei SoEI | dk =
27 e
4.7
LTS 2. )
-t (1—1)exph( "‘ 7wy
2|t %]
From here
i dep ke . I
(x)w'fi'-‘f——r——+i.(1—1){e“‘*' [C (z )+i8 (z )] + (A.8)
Pi"z r* o * 1 - 1=
1k°’i'

[C,(z,)+i8 (2]l
where z, \f (t* ¢ —k—j—t-L) and C ((z) 8, () are the Fresnel

t*i
integrals: C,(z)+iS,(2) _\/ fe’y dy. If z_>>1,8,=0;=1/2 and

(A.8) is reduced to the spherlcal wave (A.5). If \/_m r¥<< 1,

the function ®p,py(x) is close to zero for arbltrary k* ~-values.
We can present the function (5) also in the form of 3- di-
mensional integral

bpp, 07 fop, O e - 10" ha’f (A.9)
where e_‘ *1 +<;‘>—»1= (r) satlsfles the corresponding Schroedin-
ger equation, 1;5-»*(1') f(k“‘)elk T/t outside the range of
strong interaction. EThe function g, |t*]} . represents a 3-
dimensional analog of the function (7, [t*] in eq. {(A.7):

. L, 2 - '*2 5
g [t ) m—te [T explei SR e a% R -
(2r)? 2m
(8.10)
Bk .
8 mlt*| 2m 2|t*|

gr’,0) =83a"). In the s-wave approximation the formulae (A.9)-
(A.10) yield the previous result (6)-(A.8) neglecting the
deviation of the function qSE* (?) from the diverging wave at
r<d. It is clear that forr*<d the function ¢p,p(X) at arbit-
rary t* -values is determined by the behaviour of qbi"*(r") in—
side the range of strong interaction. To estimate the cor-
responding correction to the function B, in (18}, we can use
the square well potential and put for r<d '

Doy ) = ! [f(k*)eik*d SinKr + (sink*d. sinKr— sinKd -sin k*r)]
k sinKd I k*r

15



where K= (Kg +k*%)'"% and Ky =n/2d, 4 2 dy (for neutrons Ky =
=110.4 MeV and d=0.983d, 726/), Presumably, such a correc-

tion is only weakly dependent on the potential form if
d/rg <2 see fig. 2 yn4q eqs. (20)-(21) corresponding to the
approximation ‘t* —g,

For two charged particles with k*< 2r/a, the scattering
amplitude cannot be taken out of the integral in eq. (5). In
this case it is convenient to use the representation (A.9)-
(A.10). Outside the range of the strong interaction the
function ¢p, () is determined by the well-known Coulomb wave
functions; for particles with equal charges (see, e.g.,
refs, 789/ ), :

- e 'Sc —'**-, i >
gﬁ**(r):\/ﬁx(*')el“ [elkrF(— : o1, ik*r + k*r)) + (A1)
k c . *ac
i - -
. 821 [e] _1 ) G ]-—e_ik*;
21k * A%
Here 88= argl'(1 + i/k*a ) is the Coulomb phase correspon-—

ding to zero orbital angular momentum, 8y 1is the additional
s ~wave phase shift due to short range forces, F is the con-
fluent hypergeometric function and G is the combination of
confluent hypergeometric functions:

c
me——— ik Fr— In2k*r +8 o ) i i
= (+) k*a. G(1+ , —, 2ik*1) .
G=va, e ( k*a, k*a,

The function 'G(g, B, z) is defined in$d of ref./“‘/; see also

ref. 27 For k*r>1 G=1. The phase shift 8,(k*) is determined
by the equation 14/ '
2i8,
=i ={[.?1_+l~d0k*2—h(k*ac )1/ 8%) _ikxyt (a.12)
k* . f

where A(é') (k*) and h(k* a,) are given by (29) and (32), respec-—
tively.

In the approximation of equal emission times in the two—
particle rest frame (at [t*]<<mr*?®) )¢p1p2(x)=qsz* t*). 1In

this case the amp}itudexpplpzis given by g{;plpz(xl,xz) =

; -> e

+ ik .
=e1p(X1 x g} [ ik r+¢l?*(;.*)} and at k*r*>>1 has the asymptotics
NPT

ip(xf—xzb{e k*a,

In(k*T*+ Xk *-;*)

sbpipz(xl,xz) Ze x (A, 13)
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1 -
X[1+ ]+

ik*2a2 R¥T*r kM%)

in 2k *r¥

' ik *r¥-
2150 -1 215% e ag
e ] .
2§k * ¥
Here f. 7—8) 1is the amplltude of Coulomb scattering, ¢ 1is
the angle between k* and T*. :
The expression for the amplitude xpp by (x,%,) is essen-

tially simplified when r*/a, <<1. In this®case

+ [;c (m—0) +

F=1, G = cosk*r* 4+ iA(:) sink¥r* (A.14)
and eqs. {4), (A.9)-(A.11) yield

() 8% (128} iqx/2 c
wpipéxl, Y= AT e [¢ Y% +fc(k*)¢plpe(x)L (A.15)

-1 1

where f . (k*)= i .
2ik * A("') (k*)
C

coincides with eq. (32)

and <i> (x) is given by eq. (31). Eq. (30) immediately fol-
lows from {(A.15) and the definition (3) of the correlation
-function.

The correction to the correlation functlon connected with

s *
the deviation of the "true" wave functlon e T +d Py D) in-
side the range of stromg interaction from the Coulomb one

"lk 3 +$ P (T), given by eq. (A.11), can be taken into ac-

‘ count in a similar way as in the case of two neutral partic-

les. According to the effective radius theory 718718/ there
is the integral relation analogous to edq. (20):
1 N ST S k*r 2.8 ‘
Z—ﬂwggﬂ+e“‘| ~lpa, @ e T P10 - (A.16)
v .

D an e, @) /2.

From (A.16) it follows that the function B(g,p} in eq. (30)
includes the correction term proportional to the effectlve
radius (see eq. (21)).
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