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I. In this paper we report the results obtained while in­
vestigating the l;N -expansion in the problem of quantum-me­
chanical anharmonic oscillator. This problem has already been 
discussed by a number of authors (see, e.g., Ref/ 1- 31) , who 
have obtained the first three terms of the expansion (up to 
the order 1/ N ). Here we present the first seven terms of the 
expansion for the energy ground and first excited levels. 

The large-order behaviour of the 1/N -expansion coefficients 
has been studied by Brezin and Hikami/ 4/.Applying the same 
method we use such a parametrization of the Hamiltonian that 
enables us to find the solution in a closed analytical form. 

The asymptotic series obtained are quasialternating in 
sign: they differ from proper alternating ones by an oscilla­
ting factor. For arbitrary values of the coupling constant 
and the sign of the mass squared these series are Borel sum­
mable, and to sum them we apply the Pade-Borel method. The 
comparison of the energies thus obtained with the exact values 
calculated numerically at computer demonstrates a rather good 
accordance. 

let us consider the Hamiltonian 
N 2 N N 

1~2 m~2 rr~22 

So, 

H ,. ...,. · "'J Pi + -- ..., X · + ..:.. ( ..., X · ) '- ,_ 2 i-1 1 N i-1 1 (I.I) 

confining ourselves to the case of the quartic anharmonicity, 
though this method can be easily generalized. In the Hamilto­
nian (I. I) there are two parameters with the dimension of 
energy ( m and g113 ) which define the energy scale for two 
different limits ( g ➔ O and g-+ oo ) • It is convenient to intro-
duce such a parameter with the dimension of energy (we denote 
it by w ), that would fix the energy scale for arbitrary 
values of g. Then the ratio E/w ~ill be a function of dimensi­
onless coupling constant A .g /w ~only. W~ define w by the fol­
lowing relations 

2; 2 3 m w - 1-2A, A,-g /w . (1.2) 

Similar relations for the effec7i1e mass and the coupling 
constant have been used by Caswell s with the only difference 
in the numerical coefficients. 

It seems that the relations (1.2) have been introduced ad 
hoQ, but we would like to stress, that they appear quite natu-
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rally when the 1/N -expansion is constructed with the help of 
path integrals. As will become clear further w is the split­
ting between energies of the ground and the first excited 
states when N tends to infinity. 

From eq. (1.2) it is clear that such a parametrization is 
really convenient for the investigation of different limits. 
When m2 is positive and g varies from 0 to oo, effective coup­
ling constant A varies from 0 to l /2 with w varying fr'om m 
to (2g) 1/ 3 • · When m2 is negative, we have the case of a double­
well potential and A varies from 1/2 to oo. Introducing the di­
mensionless energy E/ w and coordinates xi/ J;,,' ,we can transform 
the radial part of the Hamiltonian (I.I) as follows 

2 
1 d (N-l)(N-3) · 1-2>. 2 A 4 

H • -- -"2'"• + ---2-, + -·r +--r . (1.3) 
2 dr Sr 2 N . 

In the _limit of large N the ground-state energy is given 
by the minimum of the asymptotic potential in (1.3): 

Eo/w •. Va
8
(r0 ), dVa 8 (r 0)/dr 0 .0, 

N 2 1-2>. 2 A 4 
V (r). __., + -·r +-·r 

as 8r 2 2 N 

and we easily find 
Jiiii'i' 2-A ro • (N/2), E0 /w -N--;r•. 

Shifting the origin of coordinates to the point of the minimum 
(r -ro +x) and redefining the energy Eo/w=N£ we obtain the 
Schrodinger equation in the form suitable for calculating the 
subsequent coefficients of the 1/N -expansion .. In this case 
the wave function is expanded in powers of N-112 

-k/2 / ½ 2 
1/f ,.tf,o (l+k:l ifik N . ), .tfro "'[4(1+>.) /11

2P 8 exp[-(1+A) X ] 

while the energy is expanded in integer powers of 1/N 
k . 

ex c 0 + k.:i ck/N , c 0 -1/~ -A/4. (l.4) 

·The next part of this paper contains the formulae fo~ the 
first ck of the expansion (1.4), which we have derived in this 
way. 

2. The calculations give: 
2-A 

f O "' -;-·. 

½ 
c 1 ,. (1 +A) -1. 

2 

f 2 ~ 
A ' . 
-· [ ~ ½ ( l+A) 2 4 + 3 - 3 ( 1 +A) • ] ' 

A 2 27 2 39 ½ 27 2 
£3•·-•[-,-.\ +6>.+-•+(1+>.) (-,\ + 

(l+A) 5 2 2 16. 

45 39 + --.\- -)] • 
4 2 

f4 ~ 
A 

3 
595 3 269 2 

41 
6025 

-- [ -·A ·-, --·A - -•A+ 270 -
(l+A) 7 64 16 16 

,..(1+>.)½ ( ~,\
2 

- ~,,\ +270)], 
16 2 

c ... _L[_ ~.>.4+1.?~-,\3- 235509_).2_ 
5 (1+>..) 10 16 32 32 

69789 41433 11, 59931 4 67089 3 
---,\ + ---- + (l+A) (----A - --- A -8 8 1024 64 

_ _8~~3_1,\ 2 + ~,\ ~.)], 
8 32 16 

• 
€6 -

2-_ [ ~~~ A 5 _ 18403621 A 4 + ~~ A 3 + 
(1+>..) 12 4096 , 1024 32 

+ 238245>. 2- ~~A+ 121104 -(1+.\)% 
32 . 

(2. l) 
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X ( ..:_918357 ,,\ 4 _ ~~~,\ 3 + 6406191 ,,\ 2 _, 

1024 128 16 

7385751_,\ + 121104) ] , 
- 16~ 

and the ground state energy is expanded as follows 
k 

Eo/eu .. N£0 + k~ fk+I/N . 
(2. 2) 

Taking into account the connections of the first excited level 
with the ground-state energy of the oscillators with a diffe­
rent number of components 

N+2 
E

1
(N,g) ... E

0 
(N+2, g - ) , (2.3) 

N 
it is possible to obtain for E1 an expansion of the form (2. 2) 
with f k instead of £ k. The formulae (2. I)- (2. 3) then lead to 
the expressions 

·, 
, 2-,\ 

l =- ---0 4 ' 

, ½ fl .. (l+,\)' 

c2 a 

,\ 3 . '', 
-- [ :.., __ ,\ + 2 + ( l+A) (2..\-t )], 
(1+,\) 2 . 4 

,\ ,2 \~ 165 2 57 9 
f' = ----( l+A) (-, -.\ + -A -,--), 

3 (1+..\)5 16 4 2 

, 
f 4 ,.. 

,\3 333 3 2707 2 5713 · 
--· [-,-A + -A - --A +89 -
(l+,\) 7 . 64 16, 16 

½ 3 2 63 59 
-(1+,\) (4,\ -57,\ - -A + -) ] , 

2 2 

f, .. L-,<l+,\)½ c£.i§.!..,\ 4 
+ ~~,\ 

3 

5 (l+A) 10 1024 64 

4 

- ~~~ ,\ 2 + 2:::.:53!..,\ -· ~.) ' 
8 16, 8 

f, .. -~,[ _ ~~-,\5 + 19485563 ,\ 4 _, 2606457 ,\3 + 6 (l+,\) 12 4096. 1024 16, 

+ -~~~,\ 2 _ 58693~-,\ + ~ + (l+,\). ½ 
16 32 4 

X (24,\S - 3~,\ 4 + .!~..\.J+ ~,\ 2 + 
2 2 8 

+ ..:2~,\ - ~.)]. 
4 8 

3. Let us dwell on some properties of the coefficients 
fk(,\). To find their large-order behaviour, we have apglied 
the general method of Brezin-Le Guillou-Zinn-Justin/61.This 
method has already been used for the 1/N-expansion/4~ where 
some of its peculiarities in this specific problem were men­
tioned. The essence of this method lies in calculating the 
contribution of the complex saddle point, i.e., the corres­
ponding complex·instantons to the path integral. We want to 
stress once more that the suitable choice of the parametriza­
tion enables us to obtain the result in closed form: 

.. 
4 (l+,\) 7/ 4 k+I r(k-1/2) . 

fk(,\) ~ --- -------- (-1) --------,sm(k-1/2)0 
k➔ oo 173/2 (f"f;°,\-1-l)2 Ak-1/2 

A ,. ( Z 2 +rr 2 / 4) 1~ 0 "' arc cos ( Z /A) , 
(3. I) 

1-2,\ % 1+(1 + ,\) ½ 
Z • -(l+,\) +Pn -------•· 

3,\ ,\½ 

The validity of formulae (3.1) was verified by the comparison 
of the asymptotic coefficients with the exact ones obtained 
numerically for different values of the coupling constant. 

Now consider the case of m2>. 0 and g ➔ O. Then, reexpanding 
(2. I) in powers of g, we find 
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N g k 
E0 /m .. -+lAk(N)(-,), 

2 k .. I Nm3 (3. 2) 

where Ak(N) are the coefficients of the standard perturbative 
expansion, known for arbitrary N µp to k =14 (see, e.g., the 
paper by Dolgov, Eletzsky, Popov 131). Formulae (2.1) for the 
coefficients l O ( ,\), ••• , l 6 ( ,\) enable us to reproduce correct­
ly Ak(N) with k =O, I, ••• , 6. 

When ,\ ➔ O, coefficients ck(,\) behave as 
k 

lk(,\) • uk,\ [1 + 0 (,\)]. (3.3) 

Consider the properties of ak .Taking into account that w::::,m 
and ,\ ::::g/m3 ,we obtain from (3.3) and (2.2) 

N , g k 
E0 /m • -,+ N kl

1
[uk + O(N )](-

3
) . (3.4) 

2 • Nm 
Comparing (3.4) and (3.2) we see that 

uk • lim Ak (N) /N 
N ➔O 

because of the fact that Ak (N) are polynomials in N and A k (0)= 
=O. 

Since 

, k+I 6 N/2 k 
Ak(N) k- (-1) • ----T(k + N/2)3 

➔oo 11 r(N /2) 

we have when N ➔ 0 

Uk k::;oc 
(-1)~ 3k J' (k) . 
21r (3.5) 

Using the exact ~xpression for the ground-state energy when 
N =O, found in Ref.131 , we can derive the recurrent equations 
for uk 

k 

uk+l'"' -uk(3k-l) - l umuk+l-m' 
mxl u l • 1/2. (3. 6) 

These equations can be easily solved numerically, so it 
was possible to verify the asymptotic formula (3.5). It is 
worth to note that when deriving it, we first took the limit 
.\➔o, and only then the limit k ➔ oc, These two limits are non­

commutative. Really, when the limit A ➔ 0 in the asymptotic 
formula (3. I) is taken, we have 

6 

, r-' (-l)k+I k k 
lk(,\) ~ y'31r,\ [ --,3 T'(k+l/2)] ,\ ~ 

A➔ i, 211 

~ /31r.\k [ (-l?+~ 3 k r(k)] ,\ k. 
21r 

/',) l ; ' . ' '' ~ ( 

,, 
I' 
f1i 

!i, 

i 

{i} 
l 
I ,, 

Thus, the permutation of the limits leads to the appearan­
ce of an additional factor (31r.\k) ½ • It means that in the 
region l<<k <::.l/31r,\ it is necessary to use formulae (3.3, 
3.5), and the asymptotic formula (3.1) is satisfactory only 
for k >>1/311.\. 

4. Consider now the double-well potential, i.e., the case 
A➔oo. The asymptotic formula (3. I) gives then 

l (,\) f3 ,\ I...,k/2 
k ,\:;,,,,. k . ' 

4 q· 3 k 
f3k~ _, If~,(-) r(k-1/2). 

k➔oa 11 3 11 2 

(4. I) 

0 

This formula· seems to reveal the constant sign nature of 
the corresponding series. The reason for this is that O of 
eqs. (3.1) tends to 11 and sin (k-i/2) 0 ➔ (-l)k+I. But it is not 
so for all k >>·1. Since 0 ~ 11 (1~3/4 ,J.\). when A➔ oc; the angle 0 
cannot be' considered equal to 11 for k~,JX- and the change of 
sign will take place. As a result, the series in powers of 
1/N is Borel-summable for arbitrary values of,\. 

The exact expressions for lk(,\) can be used for obtaining 
the first terms of the expansion in powers of g t:'or the ener­
gy levels of an N-component oscillator with negative m2 (doub­
le-well potential). Changing m2 to (-m2 ) we obtain 

m3 l ~ k 
E o / m .. -N -- + -=-'· + l Bk (N) ( ....s.--) 

16g 12 · kal Nm3 
\ . 

(4 .2) 

with the coefficients Bk(N)given by the expressions: 

2 B1 • N / 2 - 2N + 1/2, 

- 2 
B 2 - v 2 ( 3N -12N + 27 /4), 

· 4 3 3 
B 3 • -N + SN + 38N - 216N + 595/4, 

(4.3) 

B4 • ,/2(-33N \ 264N 
3 

+ 99/2 •N2-2310N + 59931/32). 

6 5 · 4 3. 2 
B 5 -SN -96N-1288N +12864N-12862N -
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- 55560N + .1733637 /32 , 

B5 .. /;' (534N 6 
- 6408N 5 - 28335 / 2· N4 + 

+ 284220 N3 
- 7230315 / 1& N 2 -

- 2958357 / 2•N + 115032927 / 128) . 

Note that the coill,icients /3k,introduced above, are equal to 
4Bk_i(N.0} / (2 .j 2) k (compare with relations between ak and 
Ak). 
· Using (2.3) we can find a similar expansion for the first 

excited level, where B((N) appear instead of Bk(N): 

Bi -N
2 
/2- 3/2, 

,..., 2 
B; .,. v 2 (3N - 21/ 4), 

B~ --N 4 +62N2 -333/4, 
(4. 4) 

, ,-, 4 2 
B4 • v'2 (-33N + 1683.12-N -30885/32), 

B5 = 8N6 -1768N 4 + 27650 N 2 - 916731 / 32, 

, r"' 6 4 2 B
6 

.. ,12 (534N - 92415 /2,N + 8462805 /16•N -

-,65518 4011128) . 

When N =I all the coefficients Bk are equal to Bk,as the 
exponentially small splitting of the levels due to quantum­
mechanical tunnelling cannot be reproduced by the perturbation 
theory. 

It is worth to mention that the double-well potential is 
not investigated so completely as the ordinary anharmonic one. 
In particular, we do not know formulae describing the asympto­
tics of Bk(N) when k ➔"" except for the case N =I which has been 
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studied in Ref./7/, Formulae (4.3) enable us to guess some of 
the relations. 

At first, Bk(N) can be represented as polynomials in even 
powers of (N-2),from which the relation · 

Bk (N) =- Bk (4-N} (4.5) 

follows and, for instance, Bk(0). Bk (4) and Bk(O-Bk (3). Then 
a straizhtforward substitution leads to the connection between 
coefficients of the perturbative series in the cases of the 
double-well potential and ordinary anharmonic oscillators: 

Bk(l),. (-l)k 2 -(k+Il/2 Ak(2) • 

Bk(2) ,.(-1)k2(k+l) / 2 Ak(l). 
0 (4. 6) 

Formulae (4.5, 4.6) are derived .by considering the first 
few ter~s of the perturbative series, but the accidental coin­
cidence,is almost incredible and we can believe in their va­
lidity for all k. We know the asymptotics for A k (N) an_d that 
Bk(0)is connected with/3k of eqs. (4.1), so we can obtain the 
large-order behaviour of Bk (N) when N .o; ... ,·4: 

Bk(0) • Bk(4) ~ -~'£"!;,: (3 /2/r (k+l/2), 
k ➔ oo 312 

TT 

3 ·/2 3 k 
Bk(l) =Bk(3) ~ - --,( -=·) f'(k+l), 

k ➔ oo TT ,./ 2 · (4. 7) 

2 13 -•k 
Bk (2) ~ .- --

1
-, ( 3 ./2) f' (k+l/2). · 

k ➔"' 3 2 
TT 

Note that our Bk (1) are related to Ek of Ref /
7 
/ as foliows 

Ek• 2 (k-ll'./2 Bk (1) ' 

so the results of Ref _/7 / are reproduced cor~ectly. As is known, 
the large-order behaviour of B k (1) is caused by the contribu­
tion of the instanton-anti-instanton pair. It would be interes­
ting to find the classic solutions which would lead to .the 
expressions (4.7). 

5. Consider now the summati~n of the 1/N -series taking as 
an example the ground-state energy~-The.problem is to sum the 
series 
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k 
f (1 / N) .. l ck+I / N . 

k,..o 

Using the Borel suIIlIIlation method we get 

f (1/ N) = 2 f dt exp (-t 2) F (t 2/N). 
0 

where 
k F(x) • 2, ck 1x /r(k+l/2). 

k.O + . 

(5. 1) 

(5.2) 

(5 .3) 

The asymptotic formulae (3.IJ enable us to reveal the sin­
gularity structure of the function Fin the plane of the Borel 
variablex. It is easy to see that the nearest singularities 
are located at the points x .. ±A exp(±i0) which are out of the 
integration contour. Then, the integral (5.2) converges and 
the series (5. 1) is Borel summable. 

To do the numerical calculations one has to continue the 
Borel transform F(x) to the whole real axis. To make such a 
continuation we use the asymmetric Pade-approximation. Keeping 
in mind the exact expressions (2.1) for six coefficients ck, 
our representation takes the form · 

5 .k . 

F(x) - l ck 1x /r(k+l/2) 
k.O + . 

1+d 1 x +d 2 x 2 

=- C -----------
1 + b 1 x +b 2 x2 +b 3 x 3 

The results thus obtained are placed in.the Fig~re which re­
presents the relative accuracy Ii .. ! E O -Eexactl / I Eexact I as a 
function of the potential parameters • 
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&__ The relative accuracy of the Parle-Borel recon­
structed ground-state energy when seven terms of the 
1/N -expansion are taken into account. 
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