





rally when the 1/N -expansion is constructed with the help of
path integrals. As will become clear further o is the split-
ting between energies of the ground and the first excited
states when N tends to infinity.

From eq. (1.2) it is clear that such a parametrization is
really convenient for the investigation of different limits.
When m~ is positive and g varies from 0 to o, effective coup-—
1ing constant A varies from 0 to 1/2 with o varying from m
to &)1/3 .© When m?2 is negative, we have the case of a double-
well potential and A varies from 1/2 to . Introducing the di-
mensionless energy E/w and coordinates x;/vko,we can transform
the radial part of the Hamiltonian (1.1) as follows
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In the limit of large N the ground—state energy is given
by the minimum of the asymptotic potential in (1.3):

EO /’m -~Vns(l'0 ), dVas(rO)/drO-O ,
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V. (r) = D4 .t QR
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and we easiiy find
N perig 2=A

Ty = (N/z)v E() /(IJ '-N—4—:.
Shifting the origin of coordinates to the point of the minimum
(r=fy +X) and redefining the energy Eg/w=Ne we obtain the
Schrodinger equation in the form suitable for calculating, the
subsequent coefficients of the 1/N -expansion. K In this case
the wave function is expanded in powers of N71
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while the energy is expanded in integer powers of 1/N
cmep+ 5 /NS =172 <M/a (1.4)

. ' The next part of this paper contains the formulae for-the
first ¢, of the expansion (1.4), which we have derived in this
way.

2. The galculations give:
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and the ground state energy is expanded as follows
: k
EO/&) =N(0+k§0 (k+1/N . (2.2)

Taking into account the connections\of the first gxcited.level
with the ground-state energy of the oscillators with a diffe-
rent number of components

N+2 (2.3)
E (N,g) =E, (N+2, B-=) .,

it is possible to obtain for Ep an"expansion of the form (2.2)
with ¢} instead of ¢, . The formulae (2.1)—(2.3) then lead to
the expressions
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3. Let us dwell on some properties of the coefficients
€x(A). To find their large-order behaviour, we have qp;lied
the general method of Brezin-Le Guillou-Zinn-Justin’/®/4This
method has already been used for the 1/N-?expansion/4ﬂ where
some of its peculiarities in this specific problem were men-
tioned. The essence of this method lies in calculating the
contribution of the complex saddle point, i.e., the corres-
ponding complex “instantons to the path integral. We want to
stress once more that the suitable choice of the parametriza-
tion enables us to obtain the result in closed form:
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The validity of formulae (3.1) was verified by the comparison
of the asymptotic coefficients with the exact ones obtained
numerically for different valpes of the coupling constant.

Now consider the case of m®> 0 and g - O. Then, reexpanding
(2.1) in powers of g, we find ’ )
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where A(N) are the coefficients of the standard perturbative
expansion, known for arbitrary N yp to k=14 (see, e.g., the
paper by Dolgov, Eletzsky, Popov /3/), Formulae (2.1) for the
coefficients ¢ ()‘)"""6 (A)  enable s to reproduce correct-
ly Ay(N) with k=0, 1, ..., 6.
When A - 0, coefficients e; (N behave as

N -ak)\ [1+0(M]. (3.3)

Conside; the properties of a} .Taking into account that w=m
and A =g/m’,we obtain from (3.3) and (2.2)
N - g .k
Ey/m = -+ Nkél[ak+0(N )](-ﬁ-n—]i=) (3.4)
Comparing (3.4) and (3.2) we see that

because of the fact that A (N) are polynomials in N and AL (0)=
=0.
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Using the exact e;xpresuon for the ground-state energy when -

N =0, found in Ref. %/, we can derive the recurrent equations

for ay
: y . . _
ak+1"'-‘ak(3k"1) -.mEl L S a;= 1/2. (3.6)

These equations can be easily solved numerically, so it
was possible to verify the asymptotic formula (3.5). It is
worth to note that when deriving it, we first took the limit
A-0, and only then the limit k +e. These two limits are non-
commutative. Really, when the limit A+ 0 in the asymptotic
formula (3.1) is taken, we have
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Thus, the permutatlon of the 11m1ts leads to the appearan—
ce of an additional factor (8zAk) % .. It means that in the
region 1<<k <£1/37A it is necessary to use formulae (3.3,
3.5), and the asymptotic formula (3.1) is satlsfactory only
for k >>1/3zA.

4. Consider now the double-well potential, i.e., the case
A+eo. The asymptotic formula (3.1) gives then
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This formula seems to reveal the constant sign nature of
the corresponding series. The reason for thlS is that 4 of
eqs. (3.1) tends to # and sin (k-1/2)6 (D5 pue ie is not
so for all k>>'1.Since 6 ~ 7 (1=3/4 \/A).w_t_len )\-wo; the anglée 6
cannot be'considered equal to z for k~yA and the change of
sign will take place. As a result, the series. in powers of
1/N is Borel-summable for arbitrary values of A.

The exact expressions for ¢, (A) can be used for obtaining
the first terms of the expansion in powers of g for the ener-
gy levels of an N-component oscillator with negative m? (doub-
le-well potential). Changing m? to (-m2) we obtain
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with the coefficients B (N) given by the expregsions:
By =N%/2 —2N +1/2,
— 2
By~ 2 (3N —12N 427/4),
3 4 3 3 :
By=-N*r8N® 4 38N° —216N +505/4,
= (4.3)
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- 55560N  + 1733637 /32 ,
Bg = \/; (534N 6 ~ 6408 N5 - 28335 /2 N*
+ 284220 N® - 7230315/16 N ? -

-: 2958357 /2-N + 115032927 /128).

Note that the coeff1c1ents Bx, introduced above, are equal to
z;Bk) N=0) /(2v2 ) (compare with relations between ay’ and
k
Using (2.3) we can find a similar expansion for the flrst
exc1ted 1eve1 where By (N) appear 1nstead of Bk(N)

Bi =N2/2-3/2,
\/!-: 9
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, — 4 ‘ g2 . .
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B; =8N° —1768N *4 27650 N % - 916731 / 32,
’ e A
B, =\/2 (534N° ~ 92415 /2.N %1 8462805 /16N °-
-65518401 / 128) .

When N =1 all the coefficients By are equal to Bi.,as the
exponentially small splitting of the levels due to quantum-
mechanical tunnelllng cannot be reproduced by the perturbation
theory.

It is worth to mention that the double-well potential 1is
not investigated so completely as the ordinary anharmonic one.
VIn particular, we do not know formulae describing the asympto-

tics of By(\) when k -+~ except for the case N =1 which has been

8

A

studied in Ref. /17, Formulae (4.3) enable us to guess some of
the relations.,

At first, B (N) can be represented as polynomlals in even -
powers of (N—2) from which the relatlon

B (N) = By (4-N) ' (4.5)
follows and, for instance, By(0)=By (4) and By (1)=Bg (3). Then
a straightforward substitution leads to the connectlon between
coefficients of the perturbative series in the cases of the
double-well potential and ordinary anharmonic oscillators:

Br(D) = (-D)¥ 2 -keD /2 5 (9),

) .6

Formulae (4.5, 4.6) are derived by considering the flrst
few terms of -the perturbative series, but the accidental coin-=
cidence,is almost incredible and we can believe in their va-
lidity for all k. We know the asymptotics for Ay(N) and that
By (0)is connected with By of egs. (4.1), so we can obtain the
large~order behaviour of Bk(N) when N =0;.

Br(® =~ By(d) 3 -3.3‘1/2_, 3 /)T (ke1/2),
N . n -

-

3/ 3
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Note that our By(l) are related to Ejof Ref./’/ as follows
Ek (k nJ/2 B (1) ,

so the results of Ref /7/are reproduced correctly. As is known,
the large-order behaviour of B (1) is caused by the contribu-
tion of the instanton—anti-instanton. ‘pair. It would be interes—
ting to find the classic solutions which would lead to the
expressions (4.7).

5. Consider now the summation of the 1/N -series taking as
an example the ground-state energy.- The. problem is to sum the
series



k
f(l/N) z.kzgofk_*_l/N .

(5.1)"
Using the Borel summation method we get
f(1/N) =2 [dt exp(~tD) F(t2/N), : (5.2)
0
where : ‘
F® = 3 X /T (ks1/2). (5.3)

The asymptotic formulae (3.1) enable us to reveal the sin-
gularity structure of the function F in the plane of the Borel
variable X. It is easy to see that the nearest singularities
are located at the points X =*Aexp(*if) which are out of the
integration contour. Then, the integral (5.2) converges and
the series (5.1) is Borel summable. .

To do the numerical calculations one has to continue the
Borel transform F(x) to the whole real axis. To make such a
continuation we use the asymmetric Pade-approximation. Keeping
in mind the exact expressions (2.1) for six coefficients €) s
our repres%Ptation takes the form ' '

‘ 2
< k 1+4d;x +dyx
F(x ~ % ¢ ,x /T(k+1/2) = C
k=) <F

1+b1x+bzx2+b3x3

The results thus obtained are placed in. the Figufe which re-
presents the relative accuracy A=!E g=Eczael/ |Eegac:| as a
function of the potential parameters.
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. Fig. The relative accuracy of the Pade-Borel recon-
Structed ground—statefenergy when seven terms of the
1/N —expansion are taken into account. ‘
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