


An actual problem of the modern physics of elementary par-
ticles - the research of the strong interaction proccsses at
high energies is considered in the framework of different ap-
proaches using various models of the structurc of hadrons and
the dynamics of its interactions.

The relativistic models of high ecnergy scattering, based
on the Logunov-Tavkhelidze quasipotential approach, take the
important place among them. Here is essential the hypothesis
about the existence of the local smooth quasipotential, giving
an adequate description of the high energy scattering proces-
ses.

The smoothness of the quasipotential is related to the dy-
namics of two-particle interactions and means that at high
energies the hadrons behave as loose extended objects with
finite dimensions,

The dynamical equation for the scattering amplitude in the
quasi-potential approach permits us to find its leading asymp-
totic term and also corrections to the leading term in diffe-
rent momentum transfer ranges’3/.

As a result, we have the decomposition of the scattering
amplitude in a small parameter - the inverse power of the mo-~
mentum in the c.m.s.

T(s,t):TO(s,t)+T1(s,t)+... (1)

For the scattering of spinless particles the leading term sa-
tisfies the eikonal representation:

T (s) - A2 [a2pdd (1_eX@s))
3
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(2)

where the eikonal phase y is determined by the dynamics of
strong interactions at large distances. It is counnected with
the quasipotential by the relation:

X = -é-. fdz V(s,p,z). (3

The smoothness of the quasipotential provides +he smallness of
corrections ~1/p as compared to the leading _2rm as po.
The eikonal representatlon (2) w1th quasipotentials of the

Gaussian type extensi+ ~ » the experi-



mental data leads to the amplitude which is an entire func-
tion of the momentum transfer, what is not satisfactory in
view of amalytical properties

It can be shown/8/that if the scattering amplltude satis~
fies dispersion relations, the guasipotential can be repre-
sented as a superposition of Yukawa potentials

~jr . o
V(sr) f O(M;S)du, ' c o “a)
‘and' it falls exponentlally with rox.

In the present work we define the quasxpotentlal in the

. framework of a scalar model, u51ng the assumptlon of the exis-

- tence of the central part of a hadron, where the valence quarks
are concentrated,. and taklng into account effects of the me-—
sonic "cloud" - "Mesonic cloud model®.

The obtained form of the quas 1potentlal permits us to
quantitatively reproduce all basic propertles of the hadron
elastic scatterlng at superhigh energles 1n a wide momentum
transfer region.

Let us represent the nucleon as'a central ‘part, where 'the
valence quarks are concentrated /1:8/ ("bare" nucleon), sur-
rounded by the mesonic "cloud". As in work 9 .we will regard
the mesons of one type only.

The simplest diagrams of proton—proton scatter1ng are. shown
in fig.1, where the contrlbutlon of the mesonic "cloud" is ta-
ken into account.

- As a result, for the scattering amplitude we obtain:.

T =M (50 160+l . R ¢

" Here the first term corresponds to the diagram la, ¢; is
the sum of the dlagrams b byc; and ¢2 , the sum of the diag-
rams d,e. = - B o

Forqb1 we have the representatlon:'“

2 d*M (éf.. t) - =
¢ (S,t) = g f »
1 @em* T (g®-M2 u)((k—q)z—m +i9) «p-q)z—m +ie) (6)

= (k+p-q)°.

Using the light front variables Py s Py 59,5 95 Qs 9 =

=q —qz ,q =xkt and 1ntegrat1ng over q_ we obtain
T | ©dfq M (s@=x),t) » :

¢ (50 = E— fasf e TR . ,
. : 3.
' ‘2"). 0 {M2(1—x) ah +xm2][M @ x) +q, +xk+ +2qu ]
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Fig.1. Simplest diagrams of nucleon-nucleon scatterlng,
~ where the contribution of the mesonic ‘“cloud" is taken
_1nto account.

The subsequent lntegratlon over q leads to the representa-
tlon

B ‘ d»a .
@ ( t)- —=M_(s(1-%).t)
! f i § The redm @1 38
where -
BX = 1t M“'(i-x) rmE@I.

%2

Using . the Gauss1an form for the: leadlng terms of nucleon—nucle-
ort and meson-nucleon scattering. amplitudes:
t

: B
M _(st) =isA e PP
PP e s
: Mﬂp(?rt) = iS IA"pre

we can f1nd the elkonal phase which is the two-dimensional Fou-
rier transform of .the amplltude (5). As a result, we have

ko). —xo(p) X, (p) +x2(p}. S ®)

v



where
' --{)2/48,,p
XOIP) = X(O) e B : | 9)

X140 =0fAdAJ (p8) 4, g(a—.t).

' wherec is a constant def1ned by the norma11 if:the

scattering amplltude. Substltutlon of (7) into (10) gives- for -

2.
4( B,,,-;y) -Eyﬁ(x)

x1 )-- f@-:!) f(.ﬁ_l_§= K'o,

By using the saddle—p01nt method one may show that the integ-
ral (11) has the exgonentlal asymptotlc as Soeot

-&’V m2+-—g-—l- : ‘ ’

pa o Hett?

x, ) ’"‘-9-3—8 T R - (12).

The computer integration reveals that at distances of an or-
der of the size of the hadron Begt ~ 0.6 GeV and slowly falls
“with grow1ng energy.

The 1nvest1gat10n of the contribution of the dlagrams d,e
leads for ¢2 with the asymptotic form (12) wherem,»M_. It is
clear that in this case ye"-2 GeV>y o4 and the contrlbutlon
of ¢5 to the eikonal phase is small at large p. Thus,the terms
Xo and xi give the leadlng contrlbutlon to the elkonal phase

(see flg. ).
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Fig.2. The form of eikonal phase obtained.in
model » = T~ = = ~ central part
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for a more accurate investiga-

tion of :the contribution of the.

mesonic "cloud" of the hadron at

_ . _ small p. However, this should

P i 0 ST not change essentially the form
, of the eikonal phase.

.

(10),

@ﬂ(iﬁzl_-- Soan

As a result, we have

The eikonal phase {8) obtained may be well approximated
by ‘the -expression (see flg 2)

‘ —utsyy Frp? , ,
ix(p) = <he. ' | | K

where h, b, 4 are, respectively, the effective interaction con-
stant, the effective radius of the central part of the inter-
action, and the effective mass, and u(s) ~0.6 GeV. .

The quasipotential, describing the interaction of two had-
rons at the ultra high energies and corresponding to the ei-

konal phase (13), can easily be calculated by the relation

v - 2 4 Faxman  ° S aw

wr dr , V;ﬁi?;?

V() = fiﬁﬂiﬁa Ky Q;vfgé+r2). . ' ‘(15) v

Note that the qua31potent1al (15) can be represented as a su-
perp051tlon of Yukawa potentials (4).

: The scattering amplitude can be explicitly calculated'

e r4b¢n%3H¥”
A+bVifpPr Ry e . (16)

T@t)_-si Gm) ' 4L
n=1(n-1) ! (nz i 2)3/2

It is analytic function oft and has root branch—points at

t=p® L, @)%, Br)R..

At large momentum transfers all ‘the terms of the sun (16)

‘have the* same behaviour what does not lead to the appearance

of ‘a large number of the diffraction mlnxma.,

Moreover, the asymptotics of the series (16) is p051t1ve

as A>x, hénce, the number of zeros should be even. It can be

shown that the amplitude (16) at definite values of parameters
has: not zeros at all, So in this case the d1fferent1a1 cross
sectlons ‘have not diffraction structure. ThlS results cannot
be obtained in the’ framework of standard elkonal models (see,
e.g., review /10/y

We have usediﬁ3/the eikonal phase (13), with taklng 1nto
account some inelastic effects, for ana1y31s of the experl-l
mental. data/1°12/ on the elastic proton-proton, scatterlng in
ranges V8> 2 3,4 GeV and Og|t|<14.2 GeVe

The energy dependences of the qua51potent1al parameters

““can be determined by u51ng the’ hypothe51s of geometrlcal

scallng/14/as a result the effectlve mass slowly decreases’
Wlth grow1ng energy,what 1s in, accordance w1th our model
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It is clear from fig.3 that ‘the quasipotential (15) allows

one to quantitatively reproduce all properties of the differen-

tial cross sections in a wide momentum transfer region. Note,
that for p; = 400 GeV 4, =~ 0.53 GeV that corresponds to the
mass obta1ned within the model.

It is interesting to note that the "Mesonic cloud model" is
valid for the case of meson-nucleon scattering. In this case
minimal changes are required which do not influence essential-
ly the shape of the eikonal phase that can be approximated,
as in the nucleon-nucleon case, by the expression (13), and
the effective mass being of the same order ~ 0.6 GeV. _

The. analysis of the ava11ab1e e/per1menta1 data onsp elas-
tic scattering at p; = 200 GeV /16,18/" gives a satlsfactory fit
of the data ( x2/¥2=1.6 with ugy ~ 0.65 see Fig.4). It is
clear from the figure, the model predicts the f1rst diffrac-
tion minimum at |t} ~ 3 GeV

However, the absence of the expenmental 1nformat10n in the
high energy and transfer momentum range in the case .of meson- ’
proton scattering does not allow ome to ‘do the final conclun-—

on about the position of the diffraction minimum. For that it =

e

Fig.4. Calculated differential cross: sec-
10! tions of mp elastic scz}tt}ering atys =
19.4 GeV, 0 - data from/15/ , x =~ data
4 from/16/. '
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Fig.5. The slope B = —d(fn(do/a) is calculated by

the model: a) for =np elastic scattering at 8= 19.4 GeV,
b) for pp elastic scattering aty™® = 23,4 GeV. Data
from paper/18/ at &= 19.4 GeV.

.is necessary to measure the cross sections of the meson-nucle-

on scattering at p; = 400 GeV and {t|> 2 GeV.

"It should be stressed that the "Mesonic cloud model” leads
to the prediction about the smooth decrease of ‘the slope of
the diffraction peak with increasing momentum transfer h1ch
has been confirmed in recent experiments at P = 200 GeV/



& Fig.b. Predictions for the slope for
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The form of the diffraction“peak obtained in the model is con~-
sistent with these exper1menta1 data for #p and pp scattering
(see Fig.5a,b). '

The slope of d1fferent1a1 cross sections in a wide momen-

tum transfer .region is shown in Fig.6. Note that the effective

radius of the central part of the interaction region determin-
ing the behaviour of the scattering amplitude at large momen-
tum transfers grows with energy as yEns. For the proton-pro-
ton scattering at energy5=60 GeV b= 0748 fm, that.ls appro-
ximateély one half of the hadron radius. This result is close
to the radius of "core" of the hadron found in/8/, Thus, Fhe
spinless model of the high energy particle scattering, which
is based on the assumption of the ex1stence of the central part
of a hadron surrounded by the mesonic "cloud" and takes into
account the analytical properties of the scatterlng amplitude,
is proposed here.

The smooth quasipotential obtained permits us to reproduce
quantitatively all known properties of high energy proton-pro-
ron scattering/18/The model leads to the smooth change of the
slope at small’ momentum transfers, and the strongly marked

" diffraction structure at 1. 3<It{< 2 GeVe, and the small slope
of the’ dlfferentlal cross- sect1ons behlnd the second dlffrac—
tion maximum B, = 1. .8 Gev atit] ~ 3-5 GeV2 and the ‘absence of
the subsequent diffraction minima up to’ the transfersltl~15 Gev?®

-~ 8

In the case of the meson-nucleon scattering it allows one
to do the following qualitative predictions: the slope’ of the’
diffraction peak decreases smoothly with 1ncrea51ng|tL there
are the dlffractlon minimum at {t| ‘'~ 3 GeV2 and the wide maxi-
mum -near {t| ~ "4 GeVZ2.The slope behind the second dlffractlon

‘maximum.at{t|~ 5 GeV?® is approximately 1.2 GeV~

Thus;. the- "Mesonic cloud model' allows us:to- do a- un1que
desctlptlon, with the minimum number of free parameters, of

. the hadron-hadron scattering in a wide momentum transfer re-

gion. It is 1mportant to note that in the model the spin ef-
fects may be taken.into account in a natural manner.

The authors ‘express their deep gratltude to VA, Matveev, -

AN, Tavkhelidze for interest in. the work and useful remarks. -

We .thank also A.V.Koudinov for fruitful discussions.

REFERENCES

. Logunov A.A., Tavkhelidze A.N. Nuovo Cim., 1963, 29,
p.380.

2. Alliluyev S.P., Gershtein S. S., Logunov A.A, Phys.Lett.,
1965, 18, p.195; Logunov A. A., Khrustalev 0.A., Particles
and Nucleus. Atomlzdat M., 1970, 1, p.72. ’

3. Garsevanishvili V. R., Matveev V.A., Slepchenko L.A. Par-
ticles and Nuclei. Atomizdat, M., 1970, 1, p.92; Garse-
vanishvili V.R. et al. T™F, 1971 6, p.36.

4, Gleuber R.J. Lectures in Theoret1cal Physics, N.Y., 1959,
v

5. Mestvirishvili M, A., Rcheulishvili G.L. Yad. Fiz., 1970,
11, p.688; Logunov A, A., Metsvirishvili M.A. Phys.Lett,
1967 248, p.620,

6. F111ppov A.T. In: Winter School on Theoret1ca1 Phys1cs
in JINR, v.2, p. 80, Dubna, 1964,

7. Baldin A.M. 1In: Physics of High Energy and Theory of
Elementary Particles. “Naukova Dumka', Kiev, 1967,

8. Islam M.M. Lett. Nuovo Cim., 1975, 14, p.627. :

9. Pamplin J., Kane G.L. Phys.Rev.D., 1975, 11, p.1183,

10. Tsarev V.A. Rapporteur”s talk at the XIX Int Conf. on
High Energy Phys., Tokyo, 1978; Zotov N.P., Rusakov S.V.
Tsarev V.A. Partlcles and Nucleus. Atomlzdat M., 1980,
11, p.1160.

11, Hartman J.L.  Phys. Rev. Lett., 1977, 39, p.975"Conetti S.
et al. Phys.Rev.Lett., 1978, 41, p.924.

12, Bohm A, et.al. Phys.Lett., 1974, 49B, p. 491‘ Nagy E.
et al. Nucl.Phys., 1979, B150,. p.221.



13.
14,
15.
16. .

Goloskokov S.V., KuleshOV'S‘P., Seljugln 0.V, Yad. Flz.,_
1979, 31, p.241, '
Dias. de Deus J., Nuck. Phyu , 1973, B59, p. 231' Buras A. J
Dias de‘Deus J. Nucl. Phys., (1974, B7L p.481.

Akerlof C.W. et al. Phys.Rev., 1976, DI4, p.2864,

Schiz A. et .al. FNAL-PUB 79/81-EXP, Batavia, 1979.

Received by Publlshlng Department
on June 30 1981,



