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An actua l problem of the mode rn physi c s o f el ementar y par 
ticl e s - the research of the strong inte r ac ti on proccssPs a t 
high energies is consid e red in the fr amework of di ffr rcnt ap
proaches using various models of the s tru c t ure of had r ons and 
the dynamics of its interactions. 

The relativistic models of high ener gy sca t te ri ng , based 
on the Logunov-Tavkhelidze quasip otenti a l appr oach, t ake the 
important place among them. He re is essen ti a l the hypothes i s 
about the exist ence of the local smooth quas ipo t ent ia l, g i ving 
an adequate description of the high ene r gy scatt e rin g proces
ses. 

The smoothness o f the quasipotenti a l i s r e l a t e d to the dy
nami c s of two-particle interactions and means th a t at hi gh 
energies the hadrons behave as loose extended obj ect s with 
finite dimensions. 

The dynamical equation for the scattering amp l itud e in thP 
quas i-potential approach permits us to find its l eaqin g asymp
t o tic term and also corrections t o the l e ading term in diffe
r ent momentum transfer ranges l 3 / . 

As a result, we have the decompositi on of the s ca ttering 
amplitude in a small parameter - the inve r se powe r of the mo
mentum in the c.m.s. 

T (s,t) = T0 (s,t) + T 
1 

(s,t) + ... (I) 

For the scattering of spinless particles the leading term sa
tisfies the eikonal representation: 

where the eikonal phase x is determined by the dynamics of 
strong interactions at large distances. It is connected with 
the quasipotential by the relation: 

X = 1.. f dz V(s,p, z). (3) 
s 

The smoothness of the quasipotential provides the smallness of 
corrections -1/p as compared to the leading erm as p ➔ oo, 

The eikonal representation (2) with quasipotentials of the 
Gaussian type extensively __ !-,lSef:L ~;:\rli!;!X . to aDfil,Y(le the experi-
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mPntal data leads to the amplitude which is an entire func
tion of the momentum transfer, wh~t is not satisfactory in 
view of analytical properties Isl. 

It can be shown/6/that if the scattering amplitude satis
fies dispersion relations, the quasipotential can be repre
sented as a superposition of Yukawa potentials 

""- e-µr A . 

- V(s,r) = J -- a(p.~s) dµ, ·t4) r . /LO . . 

and it falls exponentially with r :....oo. 
In the present work we define the quasi.potential in the 

framework of a scalar model, using the assumption of the exis
tence of the central part ·of Ji hadron;. where the valence -quarks 
are concentrated, and taking into account effects of the me
sonic "cloud" - "Mesonic cloud model''. 

The obtained form of the quasipotential permits us to 
quantitatively reproduce all basic properties of the hadron 
elastic scattering at superhigh energies in a wide momentum 
transfer region. . 

Let us represent the nucleon as· a central 'part, where ·the 
valence quarks are concentrated /7 ;s/ ("bare" nucleon), sur
rounded by the mesonic "cloud". As in work /9/, we wi_ll regard 
the mesons of one type only. . 

The simplest diagrams of proton-proton scattering ·are shown 
in fig.I, where the contribution of the mesonic "cloud" is ta
ken into account. 

As a result, for the scattering amplitude we obtain: 

·T(s,t) = MPP(s,t) +¢1(s,t) +¢2(s,t). (5) 

Here the first term ~orresponds to the diagram~. ¢1 is 
the sum of the diagrams b,c; and ¢ 2 , the sum of the diag-
rams d,e. · · · · · 

For ¢ 1 we have the representation:-:· 
4 ·, L . • . d M (s .. ,t) 

¢ (s,t) = f rr , 
1 (2rr)4 (q2-M2+i£) ((k-q) 2_m2+it) ((p-q)2 -m2+it) (6) 

s' = (k+p-q)2 • 

Using the light front variables pi , Pz ; qi, q_, 4-i
= q ±q , q =Xk+ and integrating over q we obtain 

0 z J. -

. 2 1 d2 qi M (s(l'-x),t) 
~ fdxf . rrp -

4± = 

¢ (s,t) 
1 

(2")
3 0 

{ M2(r.:..x)2_:+qi+xm2:I[ M2(t-x/+qi+~+~
2 

+2x~<I_i_] 

2 

' ;' 
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Fig.I. Simplest dfagrams of nucleon-nucleon scattering, 
where the contribution of the mesonic ucloud'.' is taken 
into account. 

The subsequent integration over q leads to the representa-
• . . ,.I. 

t1.on 
. -- i g2 • 1: d X t . eta 
¢,1(s,t) =-f-~ (s(l-x),t) r 

8rr2.. o. x P 6- [ f3 (x} +a (1-x}.621 
(7) 

where 
. r [ 2 2 2 

f3 (x) "." 7" MP (1-x) + m,, (x) J. 
Usfng ,the Gaussian form for the leading terms of nucleon-nucle
on and meson-nucleon scattering amplitudes: 

B t 
M f s t) = is A e PP pp • pp • 

· M :(s,t) = is A '·e itpt 
• ITp .•. . . 1Tp 

we can find the eikonal phase which is the two-dimensional Fou
rier,t.ransform of;the ampli~_ude (5). As a result, we have 

x.(p),=xo(p) +,X1(~) .+.X2(P} • (8) 

3 



where 

XiP) = )((0) 
-p2/4 B"_p 

e 

Xi.JP) ... of AM.Jo (pA) 4>1~2(.s-,t):,._. 

(9) 

(JO) 

where c is a constant d~f!n~-~ by. tne:no~{fiii'iori of the 
scattering amplitude. Substitµ_tion of (H into (JO) gives for 

. - e2 . . 
xt(p) = -:-f ~dxfcadf;> e· __ 4~~'1:' ~-,21/J(~>~o(2P(xj ~l. OU 

. . O. . •,O.,.rrp._._ , ·:·· · .. _;, ... ,_;,c · .. _·., .-' · 

By using the 
ral (JI) has 

Xi (p) -Le 
pS 

saddle~pointmethod one may· shaw that 
the e~onential asymptotic as ·s ➔ oo: 

,, . y2 
.:.2P ,J m2+-=ii.. ....L 

" m; P2 _ 
8
,,-µettP 

the integ-

(12) 

The computer integration reveals that at distances of an or
der of the size of the hadron µ 8 rr ~ 0.6 GeV and slow~f falls 
with growing energy. . ·· · · ' · 

The investigation of the contribution of. the diagrams d,e 
leads for cp2 with the asymptotic form (I 2) where m"➔MP. It 7:'s" 
clear that in this case _µ~re- 2 GeV> µ 

8
•11 · and the contribution 

of cp2 to the eikonal phase is small at large p. Thus, the t~rms 
Xo and x1 give the l![!ll_ding contribution to .t.he eikon.al_ phase 
(see~). · 
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Fig.2. The form of eikonal phase obtained'.in 
model ----- , .- - .. - - , . - ciantral, part 
(diagram a)), xx~x~xxxxxx~ - peripherical 
part (diagrams, b), c)), -· -·-•-' - periphe
rica.I part. (diagrams d), e)), 
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Note th~t;-the form factor of 
the hadron should be taken into 
account in the -diagrams fig.I 
for a more accurate investiga
tion.of the contribution of the 
mesonic "cloud" of the hadron at 
small p. However, this should 
not change essentially the· form 
of the eikonal phase. 
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The eikonal phase {8) obtained may be well approximated 
by the expression (see -fig.2) 

-µ<s1 v tl!+p 2 

ix(p) = -·he. (13) 

where h, h. µ are, respectively, the effective interaction con
stant, the effective radius of the central part of the inter
action, and the effective mass, and µ(s) - 0.6 GeV. 

The quasipotential, describing the interaction of two had
rons at the ultra high energies and corresponding to the ei
konal phase (13), can easily be calculated .by the relation 

V(r) = k _g__ f "'1/ ;y(1/) dTJ 
trr ur z ./~ 

(} 
(14) 

V 7/ - r 
As a result, we have 

V(r) = 2isµh Ko (11 V b2+r2). 
11 

( 15) 

Note that the quasipotential (15) can be represented as a su
perposition of Yukawa potentials (4). 

-The· -scattering amplitude can be explicitly calculated:' 

. oo . • , •., __ ,_ .:.b V n2µ2+t,.2 ·, 

.!..T(s,t) =-s :£ .i::!!L - ; -/- (1+by'n2µ 2+t,.2 ) e . (16) 
i n=l (n-1) ! (~/+fi)3 2 

It is analytic -function oft and has root branch-points at 
t=µ2 , (2µ)2, (3µ)2 •..• 

At large momentum transfers all the terms of the sum (16) 
have the'saine behaviour what does not lead to the appearance 
of a large number of the diffract'ion minima. 

Moreover, the asymptotics of the series (16) is positive 
as :~ ➔ oo, hence, the number of zeros should.be even. It can be 
shown that the-amplitude (16) at definite values of param~ters 
has riot zeros at all. So in this case the differential cross 
sections have not diffraction structure. This re;tilts cannot 
be obtained in the framework of standard eikonal ~odels (see, 
e.g., review/10/).·. ' · _ · ,, . 

We have used /lsfthe eikonai phase (I 3), with taking into 
account some inelastic effects, for analysis of the experi~ 
mental, data /10,l2/ ori t:he elastic proton~proton scatterG1g, in 
ranges Fs2- 2 3,4 GeV and 0sltl::;14~2 GeV2. . · _ ,, · , 

The energy dependences of the quasipotential param~te~s 
•. can be determined by 'using' the· hypothe~is qf geom~tr~.cal 
-scaring /14~as a resul i: the effective mass. slow~y Aecrea:3es 
with growing energy:what 'is in accordance ifith ·our mc;,del. 

' , ~ -- ', ' 

5 



.. 
> 
Cl) 

Fig~3. Calculated differential cr_oss sec

tions (I -Fs=27.~; II -Fs= 52.8 GeV) C) 
..... 
D 
E 

-"O ..... 
b 

"O 

1;5 

of proton-proton elastic scattering. Da
ta x - from paper /12/, □ - from paperltt/. 
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It is clear from fig.3 that the quasipotential (15) allows 
one to quantitatively reproduce all properties of the differen
tial cross sections in a wide momentum transfer region. Note, 
that for PL= 400 GeV µ ~ 0,53 GeV that corresponds to the 
mass obtained within the model. 

It is interesting to note that the ''Mesonic cloud model" is 
valid for the case of meson-nucleon scattering. In this case 
minimal changes are required which do not influence essential
ly the shape of the eikonal phase that can be approximat~d, 
as in the nucleon-nucleon case, by the expression (13), and 
the effective mass being of the same order - 0,6 GeV. 

The analysis of the available. exyerimental data on"-P elas
tic scattering at PL= 200 GeV /t&,16/ gives a satisfactory fit 
of the data ( x2 fx2==1,6 with µ. tt - 0,65 see Fig.4). It is 
clear from the figure, the mod:l predicts the first diffrac-
tion minimum at It I - 3 GeV . 

However, the absence of the experimental information in the 
high energy and transfer momentum range in the case of ~son
proton scattering ·does not allow one ,to do the final co'i1clusi
on about the position of the diffraction minimum. For that it 
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Fig.4. Calculated differential cross·sec
tions of. rp elastic sca.ttering atV = 
19.4 GeV, ·o - data fromlt5/, x - data 
from/to/. 

2 3 

:;" 

! 
mT .f \_i4 
C/110 + 

+ . 
8 

6 
ll5 111 IGl¥21 (l2 

5 
ltl !Gev 21 

o.i. 0.6 ltlGe'I 

Fig.5, The slope B = ...!L..(fn ( du /dt)) is calculated by 
dt 

the model: a) for "P elastic scattering at rs= 19. 4 GeV, 
b) for pp elastic scattering atV""!' = 23,4 GeV. Data 
from paper1101 at VT= 19.4 GeV. 

. is necessary to measure the cross sections of the meson-nucle
on scattering at PL= 400 GeV and !ti> 2 GeV. 

It should be stressed that the ''Mesonic cloud model" leads 
to the prediction about .the smooth decrease of the slope of 
the diffraction peak with increasing momentum transfer 1hii;:h 
has been confirmed in recent experiments at PL= 200 GeV '167. 
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The form of the diffraction peak obtained-in the model is con
sistent with these experimental data for rrp and pp scattering 
(see Fig.5a,b). ' 

The slope of differential cross sections in a wide momen
tum transfer. region is shown in Fig.6. Note that the. effective 
radius of the central part of the interaction region determin
ing the behaviour of the scattering amplitude at large momen
tum transfers grows with energy as Jrn's . For the proton-pro
ton scattering at energy ,J"s=60 GeV b = O'' 48 fm, that is appro
ximately one lialf of the hadron radius. This result is close 
to the radius of "core" of the hadron found in Isl. Thus, the 
spinless model of the high energy particle scattering, which 
is based on the assumption of the existence of the central part 
of a hadron surrounded by the mesonic "cloud" and takes into 
account the analytical properties of __ the scatt~ring amplitude, 
is proposed here. 

The smooth quasipotential obtained permits us to reproduce 
quantitatively all known properties of high energy proton-pro
ron scattering/tS~The model leads to the smooth change of the 
slope at small· momentum transfer·s, ~nd the strongly marked 
diffraction 'structure at 1.3.$I tl-$ 2 GeV2, and the ,small slope 
of the differential' cross-secHoris behind the second-diffrac
tion m~ximum B2 = L8_.GeV at _I if --: 3:-5 G°eV 2 .a~d t~e abs.epc~ _of 2 
the subsequent diffraction minima up to the transfers It!- 15 GeV. 

': 8 

./ 

In the case of the meson-nucleon scattering it allows one 
to do the following ·qualitative predictions: the slope of the , 
diffraction peak decreases smoothly with increasing I tj, there 
are the diffraction minimum at I ti - 3 GeV2 and the wide maxi
mum near It! - 4 GeV2.The slope behind ·the second diffraction 
maximum at I ti - 5 GeV 2 is· approximately 1.2 Gev-2•. _ 

Tlius, .th~- ''Mesonic cloud model" allows us, to do a-unique 
description, with. the minimum number of free parameters;·of 
the hadron-hadron scattering in a wide momentum transfer re
gion. It is important to note that in the model the spin ef
fects may be taken into account in a natural manner. 

·. The ,aqthors =express their deep gratitude to-V-.A.Matveev, 
A.N~ Tavkhelidze for interest in ,the work and useful remarks.· 
We .thank alao A.V.Koudinov for fruitful discussions. 
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