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I. INTRODUCTION 

In the ordinary , canoni cal ~uantum mechanics the op e rators 
of the Cart esian coordinates q 1 , ••• , q

0 
and momenta p 

1
, ••• , pA

0
, 

corres ponding to a classi cal system with a Hamiltonian 
n 

H = I p 2 / 2m . + U(q , ... , q ) 
j = 1 I I 1 n ( I ) 

s a tisfy the canoni cal connnutation relations (CCR) 

I q . . pk] = it nJk 
I Al A ] I A A ] 

q j , qk = pj , pk = O. (2) 

Th e quantum canoni ca l variables q
1

, ... , qn, p
1

, . . . , Pn pos-
sess some int e r esting a lgebraical f eature s. First of all, the 
linear envel ope of the s e operators and the unity is a Lie al­
gebra, the He isenbe r g algebra. On the other hand, the position 
and momentum operators have also well defined Lie superalgeb­
rai ca l prope rti e s name ly they constitute a basis in the odd 
pa rt of th e orthosympl ectic Li e Superalgebra (LS) B(O,n) ·- osp(1,2n) 
and ge ne r a t e it /2 ' (in a Li e -superalgebraical sence ). More pre­
c i se l y , pi and q1 , i ~ l ..... n , generat e one parti cular infi-
n i r e-dimensiona l irredu c ibl e r epresentation of B(O, n), whi ch 
may be ca ll ed a Heisenb e r g r epresentati on. Thus, the canonical 
qu an ti za ti on may be vi ewed a s a mapping 

(3) 

of the c l assical canoni ca l variabl e s onto a set of ope rators 
qi ,p . th a t gene r a t e the He isenberg r e pre sentation of the 
LS Btd. n). ln vi ew of th is property it is natural t o aks whether 
the r e exi s t s a l og i ca lly a dmis s ible s cheme o f quantization, 
ba s ed on o the r r epresent a t ions of the position and momentum 
ope r a t ors. The answe r i s nega tive for p

1
,q . being gene rators 

of t he He i senbe r g Li e al gebra (2), since the1 latter has no 
othe r (non-equiva l ent) r epresentati ons. If, however, a r e ­
present a ti on means a r epre s entation of p. and q. conside r ed 

I I as gene r a to r s o f t he LS B(O , n), then one can wn t e down se -
ve r a l non-equiva l ent r epresentati ons. The latte r stems f r om 
t he obse rvat i on tha t to every irreducibl e r epre senta ti on of 
B(O, n ) t he r e co rres pond s an irreduc ibl e r epresentati on of 
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the generating algebra operators Pi · and q 1 and vice versa. 
The representa~ions o!_ B(O, n) were recently classified.,31.This 
LS (and hence pi and qi ) has infinitely many nonequivalent 
representations. The more important question is whether all 
or some of these representations can lead to a selfconsistent 
quantization. 

Before studying this possibility, however, one has to give 
f~rst of all an independent definition of the concept ·of (non­
canonical) quantization, since, moreover, ·the word·,11quantiza­
tion" is used at present with different meaning 14,'. The defi­
nition of a quantization we follow is actually due to Wig-
ner 151, who has shown that within a more general frame of this 
concept the one-dimensional harmonic oscillator can be quan­
tized in several non-canonical ways. In Sec.II we review the 
Wigner approach and show that the different possibilities for 
qua~tizini he h~s found are in fact different representat~ons 
of p and q considered as generators of one and the same Lie 
superalgebra, the algebra B(O, 1) • The Wigrler quantization of 
the one-dimensional .oscillator was studied in Ref.6 and re-· 
cently in great details in Refs. 7,8 and 9. 

The Lie-superalgebraical generalization of the results of 
Wigner to the case of the n '"'.'dimensional oscillator is ob­
vious and one. ·easely concludes that the ·quantization can be 
performed according to.different representati-ons of the LS 
B(O, n). 

A particular feature. of the Wigner quantization is its 
dependence on the dynamics,• on the form of the Hamiltonian. 
The results for the harrrionic:oscillator cannot be applied, 
for instance, to quantize a particle in a Coulomb-field. Be­
cause of the close connection of the approach of Wigner with 
the simple Lie superalgebra B(O, n) ,one' may call the quantiza­
tion, adopted in Ref.5, a B-quantization. 

In the present paper we give atiother example· of a non-cano­
nical. quantization, which is not, however, B -quantization. 
We consider a system of two non-relativistic point particles, 
interacting via harmonic.potential. Assuming ·that the centre 
of mass variables are quantized in a canonical way and connm.ite 
with the internal variables, we reduce in the usual way the 
problem to a three-dimensional harmonic oscillator·for the in­
ternal degrees of freedom (Sec.III A). In Sec. III B we study 
a non-canonical quantization for a more general, n-dimensional 
oscillator. The main algebraical background of the approach 
considered in this paper is of Lie-superalgebraical nature. 
The quantization is performed via a mapping of the classical 
variables _q 1, ... ,qn, p 1 , ... ,pn onto position and momentum ope-
rators ~ A A A h (d · ff · · q 1 , ... ,qn, p 1 , ... ,pn tat generate i erent irre-
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ducible representations of) another simple LS, namely the al­
gebra A(O, n-1) ss.s1(1,n). Therefore, this quantization may be c·a1..:. 
led A-quantization. It turns out that the energy of the oscil­
lator one can have at most n+l. different values. In the case 
of the two-particle system (Sec. III C) the Hamiltonian com­
mutes with the relative distance operator, which has no more 
than 4 different eigenvalues. Therefore the particles are 
confined. On the other hand, the relative coordinates do not 
commute and therefore the particles cannot be.localized on the 
allowed spheres. For the representations we consider the ·.or­
bital momentum of the system can be only O or I. , 

if) 

IL WIGNER QUANTIZATION OF A HARMONIC OSCILLATOR 

_ In 1927 Ehrenfest1101 has shown (on an example of one'"'.'par­
ticle quantum system with Hamiltonian H = p2 /2 + d(q) ) that 
the equations of motion of the classical mechanics, the Ha­
miltonian equations, considered as operator equations in the 
Heisenberg picture, namely 

afi A afi 
p =- --k A • aq k 

A 

qk = -A.-
apk 

. : '(4) 

are consequence 
ger equation 

of the quantum equat'ions, e.g. ~r the Schrodin:.. 
~.;} ; . -" ' ; ' 

-4, iJrjJ A 

in- =Hrµ at 
or, ~quivalentlyl;bf 
berg repres~ntatiori) 

the Heis~nberg equations (in the Heisen-

A 

Pk =-frpk; 111J, 
A • 

q 
l A A 

k=-t°[qk, H] (5)' 

The inverse also holds, (5):is a cons~quence of (4). To estab­
lish.the equivalence of (4) and (5) it is enough to use the 
equal time canonical commutation relation~, 

[pj,qk]=-i 
[ qi • q j] = [pi , p J] = O • 

(6) 

In 1950 Wigner inverted the problem ask.ing,~hether the con­
dition (6) is also a necessary one, i.e., whether the eqs. (4) 
and (5) are equivalent if and only if the CCR (6) hold. The 
equations for the possible AP· and q. are obtained from (4) 

I I and (5) 

afi · i A A afi i A A 

-A-= i;C pk ,HJ, -A- =- t"[qk ,H ]. 
aqk . apk 

(7) 

3 



For any solution of eqs. (7) with respect to Pt and qi the eqs. 
(4) and (5) are equivalent. The question of Wigner was•whether 
the only solution was given with the canonical operators (6). 
On.an example of one-dimensional harmonic oscillator with Ha­
miltonian 

..... 1 ,.. ,.. 
H=-(p2+q2) 

2 
(8) 

he has shown that. this is not the case, so that the "classi­
cal" eqs. (4) and the quantum eqs. (5) are .consequence of each 
other for several non-canonical operators p and q. In view of 
this it is logically justified to ascribe physical meaning to 
any solution~ ,qi of (7) as to position and momentum ope­
rators and to study the properties of tQe corresponding gene­
ralized quantum mechanics. Thus, by a quantization of a clas­
sical system we shall understand a mapping 

41-➔ qi, pi ➔ Pi' i=1, ... ,n, (9) 

which replaces the classical -eang_nicAal variables qi ,'pi by 
position and momentum operators A qi ,pi ,.in the above genera­
lized sence. The properties of qi and pi will depend in ge­
neral on the Hamiltonian (I), i.e., on the potential U(q1, .. ,,qn), 
Hence, the quantization under consideration is not of· a g~o­
metrical origin, but rather of a dynamical one. Therefore, 
we refer to it as to a dynamical quantization. 

The irreducible inequivalent representations of p and q 
fourid in Ref.5 are labelled by one continuous pa'rameter E 0 ; 

the corresponding representation spaces W(Eo) are ihfinite­
dimensional. If JE0 ;n>, n= 1,2, ... is a basis .in W(E0).then. 

qjE 0 ;n>=:xn-l,n jE 0 ;n-1>+xn,n+llE 0 ,n+l>, 

pJEo ;n> = -ixn:..1, n lEo;n-~>+'ix n, n+1 l Eo, n+'l >,' 

where· 

x n,n+t = (E 0 + n/2)1/2 

X n,n+t =(n/2+ 1/2)1/2 

for even n 

for odd .n. 

(IO) 

Only in the case E O = 1/2 the operators p and q satisfy the 
CCR (6). Otherwise they do not generate any finite-dimensio­
bal Lie algebra. It turns out, however, that p and.q generate 
a finite-dimensional Lie superalgeb'ra. To establish this it 
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is convenient to introduce the creation({=+) and annihila­
tion((=-) operators (CAO's), 

/: 1 A A 

a"' = -=(q -i{p). 
y2 

Then 

"' 1 I + -1 H =2 a ,a 

and the CAO's transform the basis vectors as ·follows 

a- IE 0 ;2n> =(2n) 112 IE 0 ;2n-1>, 
e 

a-lE
0

;2n+1> =(2n+2E 0 )
112 fE

0
;2n>, 

a+ [E 0 ;2n> = (2n + 2E 0) 112 I E 0 ; 2n +1>, 

a+IE 0 ;2n+1> =(2n+2) 112 IE 0 ; 2n+2>. 

(J-1) 

()2) 

(13) 

By a straightforward computation one shows that in any repre­
sentation space W(E 0 ) the operators a+ and a- satisfy one and 
the same relations 

[laf,a77 I, a£]= (£-~)a71 + (,-17faf. (14) 

Here and throughout the paper f, 71 , £ , a =± or ±1;[ x,y]=;x~yx 
andlx,yl=xy+yx. From (14) one also derives 

[Ia f . a 71 I, la£ , a O ll = (c - f) I a T/ • a O l + 

fa- 71£ ~c 
+ (c - 71)1a . a I + (o - f}I a • a I + (o - T/ )I a , a l . 

( 15) 

Therefore, the linear envelope B of the operators a±, (a± ) 2 
and_ la+ ,a -1 is a Lie superalgebra with a+ ,a - as a basis 
in the odd part B1 and a three-dimensional even subalgebra 

. + 2 - 2 + -,1 B0 =hn.env.l(a) ,(a ) , la ,a , (16) 

which is isomorphic to the Lie algebra sp(2) = sl(2). dne can 
check.that Bis isomorphic to the 5-dimensional orthosymplectic 
LS osp(l,2) ~ B(0,1). Thus, the representations (10) of p and q, 
found by Wigner, define a class of infinite-dimensional irre­
ducible representations of the LS B(0, 1). To every such repre­
sentation there corresponds a selfconsistent generalization of 
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the ordinary quantization of the oscillator with momentum 
and position operators, that·arenot unitarily equivalent 'to 

· the canonical p an q. · '· · · ·· 
Consider now n non-interacting oscillators with a Hamil-

tonian 
A n 1 A2 
H = ~ (-p + 

J=2 2mj J 

2 m• wi A2) 
J --"-q . 
2 j 

In terms of the CAO's 

t mk<uk 1/2 A • + -112 A 

a k = ( ~ ) q k - it (2m kw k n) p k 

the eqs. (7) read 
n w . 1i /: wk 1i /: 
~ -

1 
- [l a -I; , a - ~a., ] = t-- a., , t = ± , , 

i= 1 2 l i k 2 k 

(17) 

(I 8) 

(I 9) 

One (among several other) solution of eqs •. (19) is given 
with operators, which are straightforward generalization of 
the relation (14), 

t 11 £ 11 ( ) t [la. ,a. I, ak] =(£-t)B 1ka .+ £-71 a 1 • (20) 
, l J . ,· I 

These operators are well known in the quantum field theory •. 
They were introduced by Green1111 as a possible· generaliz'1ti~ri 
of the statistics of the integer-spin fields and are called 
para.Bose operators. The latter,' considered as odd 'elements, 
generate a LS 1121 

1. It I 11 ·t IJ'·. k-1 . . 1: -+I 1n. env. a 
1 

, a J , a k 1, J, - , •.. , n, ., , 71, £ - - , (21) 

which is isomorphic to the simple LS B(O;n) 111. Hence, one can 
quantize n classical oscillators with Hamiltonian (17), using 
,those representations of B(O, n), for which Pi and qi are 
hermitian operators, If, in addition, one requires the ground 
state to be non-degenerate, then one has to consider only the 
Fock representations of the paraBose operators. The latter are 
labelled by one positive integer, the order of the statis­
tics 113 ,141.The.representations with degenerate ground states 
were studied in Ref.IS. 

We conclude that the Wigner quantization is actually a quan­
tization with paraBose operators. _Therefore, it_ is generaliz­
ing the quantum mechanics along the same line as the paraBose 
statistics extends the quantum field theory (or, may.be, the 
other way around, since the paper of Wigner was published ear-
lier). · 
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III, DYNAMICAL QUANTIZATION OF TWO POINT PARTICLES 
INTERACTING VIA HARMONIC POTENTIAL 

A. Reduction of the Problem 

Consider in the frame of the non-relativistic mechanics 
two point particles with masses m 1 and m2 and a Hamiltonian 

1 ➔ 1 ➔ ➔ ➔ 
8 tot =2m1rf+2mi~+U(lr1 -r2I>- (22) 

Introduce the centre of mass (CM) coordinates 
➔ ➔ 

➔ ml r 1 + m 2·r 2 ➔ ➔ ➔ " 

R = --"------, r = r_1 -r 2 (23) 
m1+m2 

and let µ➔ and m be the total and the reduced masses; P=µfl. 
and P=mr be the total momentum and the internal (the con-
• ➔) ➔ I ➔ ➔ I h h . Jugate tor momentum, resp.; r= r 1-~ 2 .T en t e energy is 
a sum of the CM-energy H

0
m and the internal' energy H, 

8 tot = H cm+ H, 

where 
p2 

H 
cm 2µ 

p2 
H = - + U(r) . 

2m 
Similarly, the.angular momentum 

➔ ➔ ➔ 

M "'M ·+M 
tot cm 

with 

M = Rx P, 
-cm 

➔ ➔ ➔ 

M = rx p 

(24) 

(25) 

(26) 

(27) 

According to the definition we have accepted, to quantize the 
system means to find simultaneous solutions of .the Hamilto-➔ 
nian e➔quaJions, replacing in them the classical variables ~. 
P . r, p by operators, i.e;, 

~ 
A 

p 

➔ 

A 

p 

att tot ! aii tot 
R=---.t aR 

aAtot 
➔ a; 

➔ 

A 

r 

;t 
aP 

afi tot 
➔ 

ap 
and. of the Heisenberg equations 

.. ➔ 
""' i ,,. ""' P=--[P,H ], 

h · tot 

➔ 

~ i ;t ... 
R =- -[R, H J, 
. h tot 

(28) 

(29) 

(30) 
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➔ 
➔ ➔ • ➔ ➔ i ,._ A - i A ,._ 

"'f [ P, H tot], r = - f;"[ r, H tot ] · 
;> ,.. 
p (31) 

➔ ➔ ➔ ➔ 

The operators R , P , ; _, p should ~e determined to be solu­
tion of the above eqs. (28-31). By Htot we denote the opera­
tor, obtained from the classical Hamiltonian Htot after the 
replacement 

➔ ➔ ➔ ➔ 

cii. P, ;, p) ➔ ca. r. ; , p) (32) 

Independently of the dynamics, the eqs. (28-31) are satisfied 
with canonical operators. We wish to study some other, dyna­
mically-dependent solutions. Our purpose is not the investi­
gation of the class of all possible operators (32), that sa­
tisfy the eqs. (28-31). On the contrary, we shall restrict 
ourselves only .. to solutions, which are closely connected to 
the Lie superalgebra from the class .A {for the internal va­
riables). To this end we first assume that the CM-observables 
can be measured simultaneously with the internal observables. 
Thus, we accept 

Assumption I. The CM-variables commute with the internal 
variables, i.e., 

➔➔ ➔➔ ➔➔ ➔➔ 

CR. ;1 = c ii, ;1 = c i>. ;1 = c i>, ;1 = o (33) 

Under this assumption the quantization equations resolve into 
two independent groups. The first one, consisting of ~qs. (28) 
and (30), depends only _pn the CM-coordinate operator R and 
the momentum operator P. At this point we make the 

Assumption 2. The centre of mass 
are quantized in a canonical way, 

c Rj .Pk]= iBojk, 

[ R. , Rk] = [ P. , F\] = 0 . · 
J . J 

Thus, we are left with the equations 

coordinates and momenta 

(34) · 

l aA :. aH 
p = - -.,.- , r = -::;r, (35) 
➔ a; ➔ c1J5 ➔ 
,: I ➔ " ,_ i " "] (36) P=--[p"H] r=--[r,H 

h ' ' h 
. ~ ... . 

for the operators r and p, which follow from eqs. (29), (31) 
and (33). 

The eqs. (35) and (36) coincide with the Hamiltonian and 
the Heisenberg equations of one particle with a Hamiltonian 
H = p 2/2 + U(r). Thus, the problem we are left with is to quan-
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tize one point particle moving in a central potential U(r). We 
shall consider as an example a dynamical quantization only for 
the case of a harmonic potential, 

mw .a 2 
U(r) = - I r. . (37) 

2 i= 1 l 

In the next Sec.III B we quantize dynamically the more gene­
ral n-dimensional oscillator. 

B. A-Quantization of n-Dimensional Harmonic Oscillator 

Consider an n-dimensional harmonic oscillator with a Ha­
miltonian 

n 1 2 mw 2 2 
H= I (-2 P1 + -2-ri) 

i= 1 m 

To quantize it we have. to replace 
coordinates (r 1 , ... ,rn,P 1, .... ,pn) 
p1 , ... :pn), _which should satisfy 
equations (1=1, ... ,n) 

f> i = -mw2fi 
,.. 
r i = 

pi 
m 

and the Heisenberg equations . ,.. i "' ,.., 
Pi=- -=r;tPi ,H·t 

,.. r _ i [Ao ,.. 
i --I° ri ,H]. 

(38) 

the canonical phase-space 
by operators (r\ , ... ,rn, 

the operator Hamiltonian 

(39) 

(40) 

Eliminating the time derivatives, one concludes that the "clas­
sical" and the quantum equations (39) and (40) can be compci­
tible only if 

,.. ,.. . ·t 2" [H, pk]=I mw rk, 

,.. ,.. ·il1 ,.. (4 I) 
[H,rk] =---pk. 

m 

For simplicity we introduce in place of r i' pi' i = 1, ... ,n new 
operators 

~ [ (n-l)mw
1

112,.. . { n-1 
1
112 ,.. 

a k = ' ' r k + I~ --+- pk , 4n · 4mwn 
(42) 

which will be called also creation(~=+) and annihilation(~=-) 
operators (CAO's). In terms of these operators the Hamilto­
nian (38) and the compatibility conditions (41) read 
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fl Ct>h ~ ta+ a- I , 
-- .. 1 '·1 n -1 1= 1 

(43) 

n + - {; {; I [la 1 ,a 1 I, ak] =-{;(n-1)ak. 
1= 1 

(44) 

+ + 
As a solution of the eqs. (44) we choose operators a1, ... , a~, 

satisfying the relations 

[I + -1 + ] 8 + 8 + 
a 1 • a J ' a k = Jk a 1 - 1J a k 

[la:,a~I, a:] =-8 1kaJ +8 1j ak, (45) 

la i, a~ I = I a~, aj I = 0. 

These operators were introduced and studied in Refs. 16 and 
I 7. We review shortly some of thei_r properties. The CAO' s (45) 
constitute a basis in the odd part of the special linear Lie 
superalgebra :A(O,n-1) ssl(l, n).The generators 

I + - I · · 1 e 1j = a 1 , aj , 1,J= , ••• ,n (46) 

span a basis in the even part, which is isomorphic to the ge­
neral linear Lie algebra gl(n). To underline the link between 
the LS A(O,n-1) and the operators (45) we call the latter A­
operators and the corresponding quantization - an A-quantiza­
tion. 

To write down explicit formulae for the matrix elements 
of the A-operators is the same problem as to give explicit 
expressions for the generators of the LS A(O,n-1). At present 
such formulae do not exist for any (and even for any classi~ 
fied 3 ) representation •. In Ref. 17 we have studied a class of 
irreducible representations, which were obtained with the usu­
al. for the quantum theory Fock space technique. These,. Fock 
representations are labelled by one non-negative integer, the 
order of the statistics p=0,1,2, ... As an orthonormed basis in 
the irreducible representation space W(n;p) one can choose 
the vectors 

· -1/2 n 1/2 + 8 1 + 8 n 
lp;01, ... ,0 )=(pl) ((p- I 0 1)J) (a ) ... (a ) I 0>, 

· n 1= 1 1 n 
(47) 

. n 
wher~_0 1=0;1 and

1
~

1
0 1Sp. 

The CAO's transform the basis vectors according to 

·io 

8 1+ ... +@k-1 
- ' 1/2 ,. . 

akj .•. ,ek, ... )=f\(-1) (p-~01+1) , ... ,0k-1, ... ), 
l 

, ; . . · (48) 
8 1+ ... +@k-l 112, . 

a~ 1 ... ,0k,,;,.)=(1-0,k.~(-1) · . (p-r 01) t .. ,,0k +1, ... ), 

The rest· of the generators (46) can be· computed from _(46)" ea­
sily. One can check 'that.within any Fock space the herinitiari 
conjugate of a 1 equals at, (ai )*=a 1 ,so that r 1 and'; P· are 
hermitian operators. The Hamiltonian (43) "is diagonal i~ the 
basis (47). To show this, call the vector jp;0 1 ,,..,0n)~W(n,p) 
an' m-state and denote it as lp;m>'if I01=m. Then'fr6m (43) ·o I . ,,,,. 

and (48) one obtains 
; 

HI p; m.> = Emlp;m>, (49) 

where 

wt 
E = -- (np - nm+ m ),. 

m n-1 · · 
(50) 

Since m can ruri only the values 0,1, ... , min (n,p), the energy 
of the n-dimensional oscil_lator with order of' the statis-
tics p has min (n, p) different values. The dimension of the 
subspace Wm(n;p) of all m-states is 

dim Wm(n;p) = (.~ ), (51) 

so that the different (linearly indepen'dent) states with ener­
gy Em are (fii ) . In particular the state I p;O> with the highest 
energy is non-degenerate. A given ground state jp;min(n,p)> 
is non-degenerate only if p :::_ n. 

We recall that all considerations ('re in the Heisenberg 
picture. The·CAO's depend on time, ·a. (t), and they have to sa­
tisfy also the Hamiltonian equations

1
(39), which in terms of 

the CAO's read · 

,{; {; 
ak (t) =-i{;Ct>ak (t). (52) 

Hence, 

a; (t) = exp(~i{;wt) a{ (0) (53) 

and, if the defining relations (45) for the A-operators hold­
at a certain time t = 0, i.e., for a}= af (0), then they hold as 
equal time relations for any other time t.One easily checks 
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that the Heisenberg equations 

. •{ fcu n [I + - I { ] a k (t) = --
1 

I a J (t) , a j (t) , ak (t) (54) 
n - J= 1 , 

agree at any time with the Hamiltonain equations·(52). 
From (53) it follows that the generators (46) of gl(n), 

i.e., of the even part of A(0.n -1) are preseryed quantities. 
Since the .m-subspaces Wm(n;p) are invariant and irreducible 
under gl(n)p 

eiJ lp;m> G- W-m(n;p}, 

the corresponding group 'GL(n) is an invariance group of the 
Hamiltonian. In the same time the odd generators are shifting 
the energy so that starting with a given energy state one can 
obtain a state with any other energy from the spectrum of H. 
Therefore, the LS A(O, n-1) appear as a spectrum generating 
algebra of the n -dimensional oscillator. 

C. Quantization of the Two ~article System 

We shall apply the r~sult:s of the previous section to quan­
tize the internal motion of the two particle system with po­
tential (37). · li;i this case n= 3 and in terms of the A-opera­
tors 

a~ = (2t)-112 (mw) 112 r. +i{(2m,,,tr112"p 
k k k (55) 

the internal Hamiltonian reads 

" · 1 ~2 mw ;:2 wt 3 + _ 
H=-P +•-r =-I la ,a. I 

2m 2 2 i= 1 i I 
(56) 

~or the operator of the squared distapce between the particles 
r2=f {+ ri +r i and the squared interna,l momentum ~2= Pi+Pi +p: 
one obtains 

;! 1i 3 
r 2=-I la:,a':"l 

2mwi=1 1 1 
. (57) 

➔ ~ 3 
" 2 _ mw-h ~ I + - f (58) p --- k a. ,a . 

21=131 i 

The operator .Ita;,a':"lis element from the centre of g1(3) and 
➔1=1 1 ➔ · 

therefore H, ; 2 and p 2 cornrnu te with each other and with any 
other element from the universal enveloping algebra of gl(3). 

The linear envelope of the components of the orbital momen­
tum (27) 
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_,.. ih + -
Mk = 2 £7 m c kfm I a f , a rn 1 (59) 

gives (as a real algebra) the algebra so(3). Remark that, cont­
rary to the canonical case, the momentum is measured in units 
h/2. The square of the momentum 

;;:2 t 2 2. + - + -
M = - I (c n) la . , a k lla k' a j l (60) 

2 i,j,k J J 

is the Casimir operator of so(3) and hence all operators 
➔ ➔ ➔ 

,.. -2 "2 -2 "" 
H, r , p , M , M -3 0 (6 I) 

commute with each other and can be measured simultaneously. If 
I p;k> is a k -state in a representation with order of the sta­
tistic p,tlien 

" · wli · HI _p; k> = - (,3p - 2k) \ p; k > 
2 . 

➔ t 
r 2 Jp;k> = -(3p-2k)lp:k> 
· 2mw 

i 2!p;k> = rn;\ap-2k) l~;k> 
➔ 

M2 !p;k>,= o fork ,,,,o,3 . t 2 . 
';.i,--'-fork=l,2. 
.. • 2,' ! ... 

(62) 

There is only one state, the state ]p;O ;0,0) corresponding 
to the maximum distance between the particles and the maximum 
of the internal energy 

:Jtip 112 
r =(--) , 

max. 2mw · 
E _ 3 + 

max - 2 wnp. (63) 

This stat~ cerries momentum zero. if' p ~i3, then. Ip; 1,1, i) is 
a ground.state; it is non:..degenerate, with zero momentum and 
corresponds to the minimal distance and en~rgi 

3b(p-2) 112 3 -,. 
r .=( 

2 
) , E. =-wn(p-2). 

mm mw mm 2· 
(64) 

If, however, p= I or 2, then the ground.state ii degenerate; 
there are different states with the same energy and momentum·) 
(in units 1i/2 ) • F<_>r. all possible irreducible representations 
of the LS A(0,2), i.~!, fot a £ixed order 6£ the.statistics p 
the distance between the particles is restricted·from above, 
the particles are confined. 
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The circumstance that the internal distance can be measured 
simultaneously with the energy does not contradict the.uncer­
tainty relation. The operator of every coordinate can be dia­
gonalized. Since_, however, the Cartesian coordinates do not 
commute with each other, they cannot be diagonalized all to­
gether. Thus, the two particles·are moving as the enos of a_ 
stick with a certain length, which orientation in the space· 
cannot be localized. 

·we have considered a very restricted class of representa­
tions of f and P, corresponding to the Fock representations 
of the generalizecl creation and annihilation operators (55}. 
Since the Hamiltonian and the relative distance are elements 
from the center of the even subalgebra gl(i3),. in the ar~itra­
ry representation of A(O, 2) the eigenvalue of H (resp. r 2 ) 

will be the ~ame within every g1(3) multiplet. Therefor;, 
the spect'~um of~ H and 12 will be finite also in the general 
case (if r and p are hermitian operators) and in fact will 
have no more than four different values. The momentum can be 
arbitrary with integer and half-integer values'within one· re-
presentation of ·A(0,2). . 

The realization of➔ the creation and annihi.lation operators 
(and hence of $ and r ) within the same Lie superalgebra is 
not unique. In Ref. 18 we have considered another realization 
in the framework of the quantum field theory, leading to in­
finite-dimensional Fock representations. 

I would like to thank Professor H.D.Doebnei for the va­
luable discussions and suggestions he made and also for the 
warm hospitality at the Institute ofTheoreticai Physics 
in,Clausthal-Zellerfeld. 
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