


I. INTRODUCTION

In the ordinary, canonical guantum mechanics the operators
of the Cartesian coordinates Qq e Qg and momenta Pyseens Py
corresponding to a classical system with a Hamiltonian

n
= 2/
H = igl pi,2mi +IKq1,.”,qn) (1
satisfy the canonical commutation relations (CCR)

9. .p.1=ihs

(6, .p] = ko, (2)
lqj.qk]:ij,pk]rO.

The quantum canonical variables Qq, s 4, s Py,en P, POS-

sess some interesting algebraical features. First of all, the
linear envelope of these operators and the unity is a Lie al-
gebra, the Heisenberg algebra. On the other hand, the position
and momentum operators have also well defined Lie superalgeb-
raical properties namely they constitute a basis in the odd
part of the orthosymplectic Lie Superalgebra (LS) B(0,n)--osp(1,2n)
and generate it 2 (in a Lie-superalgebraical sence). More pre-
cisely, p;, and q],1 1,....n, generate one particular infi-
nite-dimensional 1rreduc1b1e representation of B(0,n), which
may be called a Heisenberg representation. Thus, the canonical
quantization may be viewed as a mapping

q; 4, . p,r*ﬁ. , i=-1,...,n (3)

of the classical canonical variables onto a set of operators
q. that generate the Heisenberg representatlon of the
LS BHB!U In view of this property it is natural to aks whether
there exists a logically admissible scheme of quantization,
based on other representations of the pogition and momentum
operators. The answer is negative for Pi.q, being generators
of the Heisenberg Lie algebra (2), since the latter has no
other (non-equivalent) representations. If, however, a re-
presentation means a representation of P, and ¢, considered
as generators of the LS B(0,n), then one can write down se-—
veral non-equivalent representations. The latteir items from
the observation that to every irreducible representation of
B(0,n) there corresponds an irreducible representation of
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the generatlng algebra operators P and 4 and v1ce‘versa.
The representations of B(0,n) were recently classified '8/ This
LS (and hence P; and ql ) has infinitely many nonequivalent
representations. The more important question is whether all
or some of these representations can lead to a selfconsistent
quantization.

Before studying this possibility, however, one has to glve
first of all an 1ndependent definition of the: concept ‘of (non-
canonlcal) quantization, since, moreover,-the word quant12a-~
tion" is used at present with. different meaning "4/, The defi=-
nition of a quantization we follow is actually due to Wig-
ner /%’ who has shown that within a more general frame of this
concept the one—-dimensional harmonic oscillator can be quan-
tized in several non-canonical ways. In Sec.Il we review the
Wigner approach and show that the different possibilities for
quantlZlng he has found are in fact different representations
of p and q considered as generators of one and the same Lie
superalgebra, the algebra B(0,1). The W1gner quantization of
the one-dimensional .oscillator was studied-in Ref.6 and re-’
cently in great details in Refs..7,8-and ‘9.

The Lie-superalgebraical generalization of the results of
Wigner to the case of the n -dimensional-oscillator is ob-
vious and one ‘easely concludes that ther:quantization can be
performed accord1ng to differént representatlons of the LS
B(O n) S [ S

A particular feature of the Wigner quantization is its
dependence om the dynamics,:on the form of the Hamiltonian.
The results for the harmonic:oscillator cannot be applied,
for instance, to quantize a particle in a Coulomb-field. Be-
cause of the close connection of the approach of Wigner with
the simple Lie superalgebra B(0,n),one may call the quantiza- .
tlon, adopted in Ref.5, 'a B—quantlzatlon.

‘In the present paper we glve another example of a non-cano-
nicali quantization, which is not, however, B-quantization.

We consider a system of two non-relativistic point particles,
interacting via harmonic potentlal Assuming that the centre
of mass variables are quantized in a canonical way ‘and commute
with the internal variables, we reduce in the usual way the
problem to a three-dimensional harmonic oscillator ‘for the in-
ternal degrees of freedom (Sec.III A).-In Sec. IIT B we study

‘a2 non-canonical quantization for a more general, n-dimensional”

oscillator. The main algebraical background of the approach
considered in this paper is of Lie- superalgebralcal nature,
The quantization is performed via a mapplng of the classical
variables Qyr s Qs Pyseens Py onto position and momentum ope-
rators §, S P S N that generate (different irre-

o

ducible representations of) another. 51mp1e LS, namely the al-
gebra A(0, n-1) =sl(1,n). Therefore, this quantization may be cal~
led ‘A-quantization. It turns out that the energy of the oscil-
lator one can have at most n+1. different values. In the case
of the two-particle system (Sec. III C) the Hamiltonian ‘com—
mutes with the relative distance operator, which has no.more
than 4 different eigenvalues. Therefore the particles are
confined. On the other hand, the relative coordinates do not
commute and therefore ‘the particles cannot be . localized on the
allowed spheres. For the representations we consider the or-—
bital momentum of the system can be only 0 or 1. = = T
D - .

IT. WIGNER QUANTIZATION OF A HARMONIC OSCILLATOR

"In 1927 Ehrenfest/IO/has shown (on-an example of one—par—
t1c1e quantum system with Hamiltonian H= p2/2 + (@ ) that
the equations of motion of the classical mechan1cs, the Ha-
miltonian equations, considered as operator equations in the
Heisenberg picture, namely

/ dH . A of S e
pk == b Gy = T o R €D

9qy Dy "
are consequence of the quantum equatlons, e. 8. the Schrodln—
ger equatlon »

lt-——==H¢ - . fifg‘hf v o lu: lu‘,fj;‘

or, equlvalently; ‘of the Helsenberg equatlons (1n the Helsen—
berg representatlon) .

.
~

pk“}TIDR,»H],UQ;‘%[E,‘,ﬁ]. BN ¢))

The inverse also holds, (5)'is a consequence of (4). To estab-
lish .the equivalence of (4) and (5) it 1s enough to use the
equal time canonical commutation relatlons,

[p;.q,)=~i |

la;,q;l=Ip;.pyl=0.

In 1950 Wigner inverted the problem asking, whether the con-
dition (6) is also a necessary one, i.e., whether the eqs. (4)

and (5) are equivalent if and only if the CCR (6) hold. The
equations for the p0551b1e p and q are obtained from 4)

(6)

~and (5) ' . v : .
o % N N YEA S e
aqk apk ’ :



For any. solution of egs. .(7) with respect to I‘;i and c;i the eqs.

(4) and (5) are equivalent. The question of Wigner was whether
the only solution was given.with the canonical operators (6).
On _an example of one-dimensional harmonic oscillator with Ha-
miltonian :

- 262+ d%) ' - (®)
he has shown that.this is not the caee, so that the "classi~-

cal" eqs. (4) and the quantum eqs. (5) are:.consequence of each

other for several non-canonical operators p andc’i In view of
this it 1is loglcally justified to ascribe physical meaning to
any solution pl .ql of (7) as to position and momentum ope-
rators and to study the properties of the.corresponding gene-
ralized quantum mechanics. Thus, by a quantization of a clas-
sical system we shall understand a mapping ‘

q;~q;, D;-P;, i=1,.,n, T C9)
which replaces the classical cangnical variables q; »'P; by

position and momentum operators_q,.p; ,in the-above genera-
lized sence. The properties of g, and p; will depend in ge-

neral on the Hamiltonian (1), i.e., on the potent1a1 U(ql, Gn) -

Hence, the quant1zat10n under consideration is not of a geo-
‘metrical origin, but rather of a dynamical one. Therefore,
we refer to it as to a dynamical quantization. '

The irreducible 1nequ1va1ent representations ofp and q
found in Ref.5 are labelled by one continuous parameter Eg;
the corresponding representation spaces W(Eg) are ‘infinite-
dimensional. If |Eg ;n> n=1,2,...is a-basis in W(Eg) then

qlEO,n,=xn “t.n {Eoi;n.—1>+xn'n+1lE0,‘nf1>, v
: ' . . ’ - T ; (lo)
BIE g in> = -k [Bgin=1>41x 1y [ By s>,
where’

X o ne = (Eg+0/2)172

nnt for even n

Xnnet =(0/2+1/2)172

Only in the case E;=1/2 the operators p and a satisfy the
CCR (6). Otherwise they do not generate any finite-dimensio-
bal Lie algebra. It turns out, however, thatp andq generate
a finite-dimensional Lie superalgebra. To establish this it

for odd .n.

4:

e g

is convenient to introduce the creation (¢=+) and annihila-
tion (£=-) operators (CAO’s), ’

E_ 1~ A C . -
as = ——(q - .
\/.é_(q ‘1§p) -
Then :
i =-1§¥a+ ,a"} ‘ e (12)

»and_the CAO’s transform the basis vectors as ‘follows
a~ IEO :2n>=(2n) 172 IEq i2n-1>,
@

a—'|E0;2n+1>=(2n+2E0‘)'1/2|E0;2n>, (13)

Cat|Eg ;20> =@n+2E )2 [E 21>,
at|Egifn+1> =@+ 2% |Eg; 2+ 2>,
By a straightforward computation one shows that in-any repre-

sentation space W(E;) the operators at and a” satisfy one and
the same relations ‘

Ffaf,a”l,a‘]=(e—§)a" +(¢-17)'a‘f. N ¢ 1))

Here and throughout the paper ¢, 7, ¢, d =% or *1;[xyl=xy-yx
andlfx,yl=xy+yx. From (14) one also derives
TUafal a8l 0 a(-o1aT,a%

{: ’

(15)

wle-pta® .2 16 otaT,a JrG-ntatat .

’I‘herefore, the linear envelope B of the operators a— (a¥)2
and fa‘*t,a~} is a Lie superalgebra with at,a” as a ‘basis
in the odd part B, and a three-dimensional even subalgebra

Bo=lin.env.¥(a) ,(@7)%, tat,a" 4}, (16)

which is 1somorph1c to the Lie algebra sp(2) =sl(2). One can
check that ‘B is isomorphic to the 5-dimensional orthosymplectic
LS osp(l, 2)_ B(0,1) . Thus, the representations (10) of P and §,

found by Wigner, define a class of infinite~dimensional irre-
ducible representations of the LS B(0,1). To every such repre-
sentation there corresponds a selfconsistent generalization of
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the ordlnary quantlzatlon of the oscillator with momentum
and’ position operators, that are’ not un1tar11y equlvalent ‘to

‘ the canonical § an q .
Consider now n non-interacting osc111ators w1th a Hamil-

tonian

~ 1 ,
f-3 (2 B} g2
j=2  2m, Py + =P an
In terms of the CAOQ’s
m a) 1/2 - ~ : - '
af = (L k 'h k) @, -igemo o2, (18)

the eqs. (7) read

ﬂ

' o h
[ta%,ajhadl-g—E—al, £-2x. (19)
1—1 2 2 k

One (among several other) solution of eqs.. (19) is given
with operators, which are stralghtforward generalization of
the relation (14), : P .

{{aif,an.}’ ak]=(E—§)81kanj+(€—n)aé". . \ (20)

These operators are well known in ‘the quantum f1e1d theory.lv
They were introduced by Green/11/ as a possible generalization
of the statistics of the integer—-spin fields and are called
parabose operators. The latter, considered as odd elements,
generate a Ls’ ‘

lin. env. {afi .{az ,aEk Hij k=1,..,0; &, 9, e= %1, 21

. . . . . RV VA
which is isomorphic to the simple LS B(0,n)""’. Hence, one can
quantize n classical oscillators with Hamiltonian (17), using
those representations of B(0,n), for which p; and gq; are
hermitian operators. If, in addition, one requires the ground
state to be non—degenerate, then one has to consider only the
Fock representations of the paraBose operators. ‘The latter are
labelled by one positive integer, the order of the statis-
tics 713,14/ The representations with degenerate ground states
were studled in Ref.15.

We conclude that the Wigner quantization is actually a quan-
tization with paraBose operators. Therefore, it is generaliz-
-ing the quantum mechanics along the same line as the paraBose
" statistics extends the quantum field theory (or, may be, the
other way around, since the paper of Wigner was published ear-
lier). - '

III. DYNAMICAL QUANTIZATION OF TWO POINT PARTICLES
INTERACTING VIA HARMONIC POTENTIAL

A, Reductlon of the Problem

Consider in the frame of the non—relat1v1st1c mechanics
two point particles with masses my and my and a Hamiltonian

-
.

1 3, 1
H“‘_" =5 my P+ smyr 2+U(lr —-r D. (22)

Introduce the centre of mass (CM) coordinates

N
> mr+mr R -
S R of o 2 T _

-:;:::;;———— » T=r4~T, (23)

and let y*and m be the total and the reduced masses; B = #R
and  p= mr be the total momentum and the internal (the con-
jugate to T ) momentum, resp.; r—lr —r2|Then the energy is
a sqm.of the CM-energy H, and the 1nterna1' energy H,

Hg =H gp+ H, 4)

where ' !
p2 - PR :

Hoa= g H=gg + U0 @
Similarly, the_angular momentum
v th=Mcm“+M ' : B - (26)
with ‘ S . '

M -RxB, H=Txp. ‘r C@n

-cm

According to the definition we have accepted, to quantize the
system means to find simultaneous solutions of the Hamilto-,

_nian equatlons, replacing in them the c1a331ca1 variables R

» P by operators, i.e.,

’

2 ol ) =
tot - tot o

P=e—g— R=—, (28)
JR aP ' ‘

?  of z of

e e
ar )

and. of the Helsenberg equatlons
[ L v i » i
B---[PH L R- h[R.Hm], (30)



p=-30nd ) F=-%-[?.ﬁ 1. €1))

The operators k, P, r ,p should be determined to be solu-

“tion of the above egqs. (28-31). By H,, we denote the opera-

tor, obtained from the classical Hamiltonian H,,, after the
replacement
(R, B, T, )»('fi,P.r,p). (32)

Independently of the dynamics, the eqs. (28-31) are satisfied
with canonical operators. We wish to study some other, dyna-
mically-dependent solutions. Our purpose is not the investi-
gation of the class of all possible operators (32), that sa-
tisfy the eqs. (28-31). On the contrary, we shall restrict
ourselves only to solutions, which are closely connected to
the Lie superalgebra from the class A (for the internal va-
riablés). To this end we first assume that the CM-observables
can be measured simultaneously with the internal observables.
Thus, we accept

Assumption 1. The CM-variables commute with the internal
variables, i.e., :

-

C[R,T1=[R,pl =[P, T1=[P,pl=0. , (33)

Under this assumption the quantization equations resolve into
two independent. groups. The first one, consisting of eqs. (28)
and- (30), depends only on the CM-coordinate operator R and
the momentum operator P. At this point we make the

Assumption 2. The centre of mass coordinates and momenta
are quantized in a canonical way,
[R, B l=ihs,, , " ‘ .
K : : v C(34)
[R R]—[P P]—O o C 3
Thus, we are left with the equations

> >

(R B O B B € )
2 ar e ap - .
e~ AL T - . 09

for the operators'? and ; which follow from egs. (29), (31)
and (33).

The eqs. (35) and (36) coincide: w1th the Hamiltondian and
the Helsenberg equations of one particle with a Hamiltonian

fi- p2/24-U(r) Thus, the problem we are left with is to quan-
: ‘ 1

8

], P

tize one point particle moving in a central potential U(r).We
shall consider as an example a dynamical quantization only for
the case of a harmonic potential,

3
m : .
U@ = __2“’_=z 12, (37)

In the pnext Sec.III B we quantize dynamically the more gene-—
ral n-dimensional oscillator.

B. A-Quantization of n-Dimensional Harmonic Oscillator

Consider an n-dimensional hdrmonic oscillator with a Ha-
miltonian

n 2 2 .
H= 3 (o=p{+—=—17) . (38)

To quantize it we have to replace the canonical phase-space

coordinates (fy,....fp,Py,.e-e,P p) by operators. (fy,..,fp.,

51, ,p ), which should satlsfy the operator Hamiltonian
equatlons i=1,...,n) . 5
5‘ o 2a ~ pi - (39)
i = mo®r, , ry= e

and the Heisenberg equations

' Bi=——%{$i,ﬁi, ;i =-—-%;[Fi,ﬁ]. ; (40)

Eliminating the time derivatives, one concludes that the 'clas-
sical” and the quantum equations (39) and (40) can be compa-
tible only if

[H p 1=ihme?r Lo

- ih - W
(Hyryl= --%;-p K : ’ “o

. - . 3 . o ~ 2 V
For simplicity we introduce in place of r,p;, i=1,..,n new
operators ’ ‘

' (n-1) ~ n- -
aé - [.l‘ﬂ_ii’]“'? Criel 1" By SRR 7))

which will be called also creation (f=+)and annihilation (¢=-)
operators (CAO’s). In terms of these operators the Hamilto~
nian (38) and the compatibility conditions (41) read

ERS



oh

fi - 5 tal a7 1, o (43)
n-13=1 - B
12 [!ai, ajl,a f]——f(n—l)af. (44)
As a solution of the eqs. (44) we choose operators al,...,a+
satisfying the relations
+ -~ +1_ +_ +
[{a 103 }s ak] _SJk a] 8ij al
[la:.a"j}, all ==, a7 +8, a, (45)

These operators were introduced and studied in Refs. 16 .and
17. We review shortly some of their properties. The CAO’s (45)
constitute a basis in the odd part of the special linear Lie
superalgebra :A(0,n-1) =sl(1, n)The generators

elj ={ai+, a}- ¥, _i,j =1,...,n ) . (46)

span a basis in the even part, which is isomorphic to the ge-

neral linear Lie algebra g(n). To underline the link between
the LS ‘A(0,n-1) and the operators (45) we call the latter A-

operators and the corresponding quantization - an A-quantlza—
tion.

To write down explicit formulae for the matrix elements
“of the A-operators is the same problem as to give explicit
expressions for the generators of the LS A(0,n-1). At present
such formulae do not exist for any (and even for any classi-
f1ed ) representation.. In Ref,17 we have. studied a class of
irreducible representations, which were obtained with the usu-~
al, for the quantum theory Fock space technique. These,. Fock
representations are labelled by one non-negative integer, the
order of the statistics p=0,1,2,... As an orthonormed basis in
the irreducible representatlon space W(n; p) one can choose
the vectors o

' n e
LR IR ) 1% -z @1)01’%;) o1 (a;;) o>, @)

 where 0, =01 and 2‘. 91_

The CAO" s transform the basis vectors according to

10

O +etO . L .
»ak]...,@)k ,u-) =®k(_1) (p—'z@ ) l k:‘l, uo) .
@ +. +6, o (48)
a;:x.., i) =(1=0) ) (p-z@)) 2\.,c~)k+1,.)

The rest’ of’ the gen‘efators (46) ¢an be:compﬁted from (46) ea-

sily. One’ can check ‘that’ w1th1n any Fock space_the herm1t1an

conjugate of aj] equals a.l R (a )*—al ,50 that 1'l and” p are’

hermitian operators The Hamlltonlan (43) 'is diagonal 1n the

basis (47). To show this, call the vector Ip 01,..,04)C W(n,p)

an m-state and denote 1t as [pym> if E@i Then from (43)
Ee]

and (48) omne obtams

H[p; m> = mlp;m), : e . : vy ‘(49’)'
where

E == (p-nm+m). . - : L (50)»

m= -7 @ A I

Since m can run only the 'values 0.,1,..., mm(n,p) the e’néréy

‘of the n-dimensional oscillator w1th order of the statis—

tics p has min (n,p) different values. The dimension of the
subspace W _(n;p) of all m-states is

dimW_(n;p) = (.ﬁ, ), | : . ) o (’51)

so that the different (linearly independent) states with ener-
gy Epare () .In particular the state |p;0> with the highest
energy is non-degenerate A given ground state | p; min (n, p) >

is non-degenerate only if p>n. :

~ We recall that all con51derat10ns éare in the Heisenberg
picture. The CAO’s depend on time, (t). and they have to sa-
tisfy also the Hamiltonian equations (39), wh1ch 1n terms of
the CAQ’s read :

il =-it0ad ). , - (52)
Hence,
akE(t) = exp(~ifwt) ai 0) ) » . ' (53)

and, if the defining relations (45) for the A—operators hold-
at a certain time t=0, i.e., for aEf _af (0), then they hold as
equal time relations for any other time t One easily checks

11



that the Heisenberg .equations

‘f(t) (t) a;ml, af(t)] , (54)

agree at any time w1th the Ham11tona1n equat1ons (52).

From (53). it follows that the generators (46) of g},
i.e., of the even part of A(0,n-1) are preserved quantities.
Since the m-subspaces W_(n;p) are invariant and 1rreduc1b1e
under’ gl(n)..

ey [p,m> & Wy(nip),

the corresponding group 'GL(n) is an invariance group of the
Hamiltonian. In the same time the odd generators are shifting
the energy so that starting with a given energy state one can
"obtain a state with any other energy from the spectrum of H.
Therefore, the LS A(0,n-1) appear as a spectrum generating
algebra of the n -dimensional oscillator.

c. Quantlzatlon of the Two Particle System

We shall apply the results of the previous section to quan-
tize the internal motion of. the two particle system with po-
tential (37). In this case n=3 and in terms of the A-opera-
tors '

oy @a V2T sigenohy %, - (55)

the internal Hamiltonian reads -

A 1R mo 2 mh : '
H=z=——p2 4+ 2%;2_ 2L % . 56
5o PR T 21_1!a ] (56)

For the operator of the squared dlstance between the partlcles

F2f2,F2 4f 32 and the squared 1nterna1 momentum p —p1+p2 +p§

~one obtains

g % .
2_
r zma“;iai,a i, . (57
: 3 . . :
p°= "‘“’1‘2 faf,aTl. (58)
2 i=131 i

The operator lElla a ¥1s element from the centre of g,l(3) and

therefore f{,r 2 . and p 2 commute with each other and with any
other element from the universal enveloping algebra of gl(3).

The linear envelope of the components of the orbital momen-
tum (27) :

12

o + - . : , ' v
iy =5 E cugnlafoay] 69
gives (as a real algebra) the algebra so(3) - Remarl:c that, cont?
rary to the canonical case, the momentum is measured in un1ts
h/2. The square of the momentum :

3

- 2 - L : .

] h 2 . - - .

M = > i'lg.k(f ijk) ta i’ ak l{a k'a i } ‘ ‘ (60)
is- the Casimir operator of so(3) “and hence all operators

f#i,r2,p2 M2, M , o S “(61)

commute with each other and can be measnred‘simultaneously. If
Ip;k>  1s a k —state in a representatlon with order of the sta-
tistic p,then

h

flpik> = %—@p—Zk)} p; k>

i

2 H ' L :
r_21p:k>=2——(3p—2k)|p:k> SR (7))
p2lpik> = mm?‘(3p 2k)lp K>

M2 pik>= 0. fof k ?0,3

=é f‘——— for k = 1 2.

s Re oy ‘ : G _
There is only one state, the state [p;0;0,0) . corresponding’

to the maximum distance between the particles and the maximum

of the internal energy ‘

r_= 3hp ) » E =g““flp‘ . o “"(63)

. max. 2mm ‘ ' max

B

This stdte carrles momentum zero. If’ p >i3, then lp, 1.1, 1) is
a ground, state, it is non-degenerate, w1th zero momentum and
corresponds to the minimal dlstance and energy

(-2, 172

min - 2mo ? min

=_a,1a(p-~2>., ‘ S (ed)

If, however, p=1! or 2, then the ground state is degenerate,
there are different states with the same energy and momentum |
(in units h/2 ). For all p0551b1e irreducible representatlons
of the LS A(0,2), i.e., for a fixed order of the statistics p
the distance between’ the partlcles 1S restrlcted from above,
the particles are confined.

13



The circumstance ‘that the internal distance can be measured
simultaneously with the energy does not contradict the.uncer-
tainty relation. The operator of every coordinate can be dia-
gonalized. Since, however, the Cartesian coordinates do not
commute with each other, they cannot be diagonalized all to-
gether. Thus, the two particles are mov1ng as the ends of a
stick with a certain length, which orientation in the space o
cannot be localized. -

We have, considered a very restricted class of representa-
tions of f and Sl corresponding to the Fock representat1ons
of the generalized creation and annihilation operators (55).
Since the Hamiltonian and the relative distance are elements
from the center of the even subalgebra gl(3), ‘ 1n ‘the arbitra-
ry representation of A(0,2) the eigenvalue of fi (resp. r2)
will be the same within every gl(3) multlplet. Therefore,
the spectxum ofy H and r will be finite also in the general
case (if r and p are hermitian operators) and in fact will
have no more than four different values. The momeéntum can be
arbitrary with integer and half-integer values within one re-
presentation of 'A(0,2).

The realization oﬁ‘the creation and annihilation operators
(and hence of % and f ) within the same Lie superalgebra is
not unique. In Ref. 18 we have considered another realization
in the framework of the quantum field theory, leading to in-
finite-dimensional Fock representations.

T would like to thank Professor H.D.Doebner for the va-—
luable discussions and suggestions he made and also for the
warm hospitality at the Institute of Theoret1ca1 Phy51cs
in. Clausthal-Zellerfeld.
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