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The description of dissipative systems via complex poten

tials is known to be phenomenologically useful; at the same 

time it can be incorporated (at least in principle and for 

reasonableJotentials) into the standard quantum~echanical 

framework/ . The purpose of this note is to show that the ri

gorous path-integral theory/2-4/ can be applied to this case; 

full exposition of the subject will be given in our forthcoming 

papers. The dissipative system is "singled out" in this ap

proach and its evolution operator is a contractive semigroup; 

in this sense the method is comP.lementary to the approach ba

sed on the influence functional/5-7/ where the state norm is 

assumed to be preserved. The results presented below are Par

ticular~ surprising because the heuristic considerations of 

Feynman 5/ have no direct counterpart here: one describes the 

corresponding classical systems, e.g., by time-dependent Lag

rangians (see~• 9 / and references contained therein) or by the 

Rayleigh dissipation functionllo/ instead of complex Hamilto

nians. 
Following the idea of Ito/tv, Albeverio and Hoegh-Krohn 

defined the Feynrnan integral 1(.) as follows: let H be a re

al separable Hilbert space of pat,hs wit~ the inner yr?duc,t 

(.,.) and f: J(. C belongs to ~(J<), 1,e,, f(y)= JJ(e•<y,y \!"(y'), 

where M is a finite complex Borel measure on H,then 

(I ) 

Choosing now J( = AC0[/; R d ], the space of all absolutely conti

nuous Rd -valued paths in i = [0, t] with square-integrable de

rivatives and y(t)=O, equipped with the norm IIYII 2 = ['y2(r)dr, 

we can use the definition (1) to express solution of
0the SchrO

dinger equation with absorptive potentials from the class ~(R~. 
i.e., such that are Fourier transforms of finite Borel measures 

on Rd: 

Theorem 1: The continuous contractive semigroup V = exp(-iHt) 

corresponding to the pseudo-Hamiltonian H=-·8+ V, 
D(H)=D(-!1), . with VE3'(R~atld 

Im V(x) ~ 0, (2) 
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acts on an arbitrary ¢E ~(R~ according to the 
formula 

(V, ¢) (x)=l (g ). 
X,! (3a) 

where 

' g , (y) ~ exp 1-iJ V(y(r)+X)drl¢(y(O)+x). (3b) x. 0 

Sketch of the proof: The proof of (3) for real VE:i'(R~ given 
in iiets: 2•3/ c~nsists essentially of two parts.First the path in
tegral on the rhs of (3a) is evaluated by expansion of the ex
ponent in (3b) and application of (I) to each term of these
ries; it can be done for any complex V-€5= (Rd) as well. Further 
the resulting series is identified with the Dyson expansion 
of Vt¢ in the interaction picture. These considerations re
main valid whenever the Dyson expansion is consistent, in par
ticular for a bounded potential which obeys (2) (cf. Ref (1 2/, 
sec. X.l2). • 

In order to deal with some other potentials including un
bounded ones, one has to extend the definition (1). This can 
be done by the polygonal-path method of Truman/4/, where the 
projection operators P(a): 

corresponding to partitions a=l 0=r
0 <r

1
< ••• <rn •·t I 

oi = ri+l- ri are used to define 
of Jt with 

l~(f)xlim l(f o P(a(m) )). (5) 

for those f for which the limit exists; here Ia (m) I is the 
sequence of "equidistant" partitions: fj(im) =tim. The defini-
tion (5) extends (I): it holds l(I)~I~(f) for any fEJ(J(); let 
us remark that the same is true if an arbitrary "crumbling11 

sequence (i.e., lim8
1(m) --0 ) of partitions la(m) I is used 

rn~~ 

instead the "equidistant" one. Now we are ready to formulate 
the assertion concerning the damped oscillator: 

2 

Theorem 2: The statement of Theorem 1 remains valid if I(~)" 
is replaced by I.,(.) and 

V(x).x.Bx, BxA -iW, (6) 

where A, W are real positive symmetric dxd mat
rices, W strictly positive. In this case, more-



ove.r,,. the functional integrql can be evaluated: 

loo(gx,t) ~ J G(x,y,t)</>(Y)dy, 
I . , .R d, ... · .. 

(7a) 

G -d/2 -1 -% i r. -1 
(x,y,t) ~(2rri) (det(!l sin!lt)) expi-Lx.!l(tg!lt) X+ 

. . 2 (7b) 
-l J -1 

+y·!l(tg!lt) lj-iy·!l(sin!lt) xi, 

where !J= (2B)'h. giving thUs··· the Green !unCtion 

explicitly. 

Sketch of the proof: Due to strict positiv.ity .of W' the "cy

lindrical integrals of (5) can be evaluated as foll~~slt31; 

'l(gx t 0 P(a))~(2rrifnd/ 2 f exp il...IIY 11 2 -
, Rnd 2 a 

t 
\8) 

-if (y (t)+X).B(y
0

(t)+X)dc\¢(y\0)+X)dm(y ), 
0 , . a 

where Ya ""P(a)y and m is the 
ing ¢( x)~ r e JX,y d,,( y)' y a 

Rd 

Lebesgue measure on R0 d. Substitut-

from (4) and 1', ~ y <•,) + x, and 

assuming 5 0=(\• .. • D. we g-et 

-nd/2 . 
dv(y)j exp( i(·" + l(gx,to P(a))•(2rri) exp( ~x.C(b)x)j 

Rd Rnd ' (9) 

+ .l c·M ColfJdt 2 - n . . , 

where Mn:::M 0
(0) is the ndxnd matrix, 

c -D 0 0 0 

-D 2C -D 0 0 

Mn= 0 -D 2C -D 0 ( 10) 

" .. - .. 
0 - ........ -D 2C 

-1 2 -1 1 ' 
with c.c(o)"o -::-g-Bo, D,D(ol,"o +;r!ls.further l'"t(0 ..... .(n-~' 
T/~(y,Q, .. ,O, -Dx). Tlie last integra1 i.:n (,9) contains complex, mat

rix Mn so the standal:-d tricks are n.ot appliccible, ho~ever~ 

by strai,ghtforward calculq_tion we get for it .agail) 
. l<df2 1. 2 I -1 .b . . I . (9) d 

(2rrl) (detMn r I exp(-y1J•Mn 7J).Su StltUt1ng tlls to an 

using the fact that C(O) and D(()) commute mutually, we can 

write 



(II) 

- - n where D.I)D,d(Mn)~8 d(Mn)and d(Mn) is the dxd matrix repre-
senting the "block determinant" of Mn, further Kn-t is the 
lower right (n-l)dx(n-l)d submatrix of Mn and finally 

- -1 -2-
H=Cd(Mn)-8 D d(Mn_ 1 ), (12) 

where Mn-1 is the upper left (n-l}dx(n-l)d submatrix of Mn. 
One obtains easily 

d(Mn)=Cd(K n- 1 )-I>- 1D2
d(Kn_2 ) (13) 

and the following recursive relation 

( 14) 

Further we put 

d(Kn_ 1 )·n8- 2
3 
n(~ )1>

3
B + l a("- 1\8)(.1.B)i (15) j::e2 J 3 

• (n-1) • w1th a j ""0 for j> n-1. then the relat1on (14) gives 
a<?-'L 2 a<n-2)_a<n~3)_48 28 (n-2) 28 2 (n-3) 

8
4 (n-3) (l

6
) J J j j-t- aj-1 - aj-2 

We take the following ansatz 

a("- 1\8)= 3 (i+l)! (n ) 8 2i+ 1 i 1 aink (17) 
J (2i+l)! J+l k.O k 

then (16) gives for the highest k 

j ( l)j 3j-l j ( l)i-1 3j-2 ( j aj..,_ ,aj-t""'- 2), 
(18) 

aj =(-l)j 3 j-2 ( j + 2 ), .•• 
j-2 4 

Now one has to check that the series ( 15) with a= t/n converges uniformly w.r.t. n, then the relations (17,18) imply 
- -1 lim d(K n-! (t/n ))~ !J sin !J t, 

n~~ (19) 
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where n~ ( 2B)V. (choice of branch of the 
arly irrelevant), Using further (12,13) 

square root is cle
we get 

lim d (M n (t/n )) ~ cosO t, 
·~~ 

(20) 

limH(t/n)~-QsinQt, (21) 

·-
then we substitute from (19-21) to (12) and use the definition 

(5) obtaining thus 

I ( -112 i 
~ g x,t )~(det(cosllt)) exp(- 2 x.QtgOtx) f d,, (y) 

Rd (22) 

I i -1 -1 
exp -2y.Q tgOtY+iY·(cosQt) xL 

Using the matrix functional calculus rules/14/one can check 

that the function ljJ: t/J(x,t) = I'Xl(gx t ) solves the SchrOdinger

type equation with the potential' (6), mass ffi=..,. 1/2 and initial 

condition !f(x,O)"" ¢(x). Finally, by Fourier transformation of 

the integrand in (22) and interchange of integrations we ob

tain (7), • 

In conclusion let us make some remarks. The pseudo-Hamil

tonian approach/1/ used here makes possible to avoid usual 

peculiarities of time-independent Lagrangians. Comparing to 

Refs:9• 15/we do not assume any driving force (stochas~ic or not); 

on the other hand we study oscillators of arbitrary dimension 

(the generalizations to d > 1 is non-trivial in the damped case, 

because the matrices A,W are not necessarily simultaneously 

diagonalizable). Finally, notice that (7) gives correct propa

gator (including the phase factor) in the non-damped limit: 

if d=l and 0=w 1-iw , then 
2 

1 f2 'f2 w 1 'f2 I "i w, t 
im ( Slii!Ti-) ~ (-. --) exp - -2 Ent--;:-- I, ( 23 ) 

w2~o..-sm t ]sinwlt] 

where the exponential factor is just the 
This sh9ws one more way how to prove the 
formul.i16/for the undamped oscillator. 

Haslov correction. 
"extended" Feynman 

We acknowledge gratefully discussions with Dr. J.Blank and 

comments of Dr. E.-U.Ilgenfritz. 
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