


The description of dissipative systems via complex poten~
tials is known to be phenomenologically useful; at the same
time it can be incorporated (at least inm principle and for
reasonable potentials) into the standard quantum-mechanical
framework’ V. The purpose of this note is to show that the ri-
gorous path-integral theory 2-4/ can be applied to this case;
full exposition of the subject will be given in our forthcoming

_papers. The dissipative system is "singled out" in this ap-
proach and its evolution operator is a contractive semigroup;
in this sense the method is complementary to the approach ba-
sed on the influence functicnal 5/ where the state norm is
assumed to be preserved. The results presented below are par—
ticularay surprising because the heuristic considerations of
Feynman'sf have no direct counterpart here: one describes the
corresponding classical systems, e.g., by time—dependent Lag-
rangians (see’®%/ and references contained therein) or by the
Rayleigh dissipation function/19/ instead of complex Hamilto-
nians.

Following the idea of Ito’1Y, Albeverio and Hoegh-Krohn
defined the Feynman integral I(.) as follows: let H be a re-
al separable Hilbert space of paths with the inner ‘roduq;
i.,.) and I: Ko € belongs to Fd), i.e., f(y)= Heihh? Wuly ),

where ¢ is a finite complex Borel measure on R, then
1= f ex (- 4y 115)du(y). (1)

Choosing now H= ACO[Jﬂ Rd ] the space of all absolutely conti~
nuous R%-valued paths in J'=[0,t] with square-integrable de~
rivatives and y(t)=0, equipped with the norm ||y”2=0r%x%r)du
we can use the definition (1) to express solution of the Schri-
dinger equation with absorptive potentials from the class 3(R%,
:i_.e.,d such that are Fourier transforms of finite Borel measures
on R%:

Theorem 1: The continuous contractive semigroup V = exp(-iHt)
corresponding to the pseudo-Hamiltonian H=-4A+V,
D(H)=D(-4), . with VeF(RYand

ImV(x)£0, x e RrRd (2)



acts on an arbitrary ¢€ F(RY according to the

formula
(V) (=1, ), (3a)
where

'g&to)awpbdgVh&ﬂ+bdﬂ¢(ﬂ®+n- e

Sketch of the proof: The proof of (3) for real Ve-&"(R‘ﬂ given
in Refs/?® 3% consists essentially of two parts.First the path in-
tegral on the rhs of (3a) is evaluated by expansion of the ex-—
ponent in (3b) and application of (i) to each term of the se-
ries; it can be done for any complex V€?(Rd) as well, Further
the resulting series is identified with the Dyson expansion
of Vi¢ in the interaction picture, These considerations re-
main valid whenever the Dyson expansiom is consistent, in par-
ticular for a bounded potential which obeys (2) (cf. Ref/12/,
sec, X.12}). [

In order to deal with some other potentials including un-
bounded ones, one has to extend the definition (1). This can
be done by the polygonal-path method of Truman/4/, where the
projection operators P(e):

-1
(P(U)Y)(T)‘_-Y(ri)*'('y(f”l )“"V(Ti ))31 ("‘-‘"i )s TG["i’Ti+1 ] (4)
corresponding to partitions ¢={0= o STy e < wtt of 3" with
Sj=n,,-r; are used to define
I(O)= lim I(f o P(c'™ ). (5)

0o
for those f for which the limit exists; here !o(m)} is the
sequence of "equidistant partitions: a(i“‘) =t/m. The defini~
tion (5) extends (1): it holds I(f)=I_( for any teF(¥H); let
us remark that the same is true if an arbitrary "crumbling"
sequence (i.e., limal(m) =0 ) of partitions {o(™ }| is used

I+ o
instead the "equidistant" one. Now we are ready to formulate
the assertion concerning the damped oscillator:

Theorem 2: The statement of Theorem | remains valid if Iy
is replaced by () and

V(H=x.Bx, Ba=A =-iW, (6)

where A,W are real positive symmetric dxd mat-
rices, W strictly positive, In this case, more~



over, the functional integral can be evaluated:

la®y, )= [ G.y.06()dy. (7a)
' e RY e R .

e

—d / 1 _ . ’ -
G(xy,t) = ( 2ri) /2(det(ﬂ 1m‘nm)) %emi—l-[ﬂ-ﬂ(sgm)lm
. o --*1 . L ”-1 : X (Tb)
+y-Q{tz0r) sﬂ-—-iy-ﬂ(sinﬂ:t) x!, T

where 0= (2B)% giving thus the Green function
explicitly.

Sketch of the proof: Due to strict positi,vity of W the "cy~
lindrical” integrals of (5) can be evaluated as follows/18/:

Hey,® P(o)=(2n "2 | em'f-iglwa e -

d .
. RY )
-iof (y (D+%).Bly,(")+x)drig (y 0} + 0dm{y ), s
where ygzp(a_)y and m is the Lebesgue measure on R™ . sSubstitut-
ing #(x= {e'*¥ du(y), Yo from (4) and f].=y(ri)4-x. and
d L .

R ‘
assuming 8 o= 8yw:= 8, We get
- —nd/2 i . ) '
I(g . ° Plo)=(2ni) exp(Lx.C(8)x) [ du(y)f exp(if.n+

+ = &M (8) )AL,

where M =M (8} is the ndxnd matrix .

C D 0 0 e O
-D  2¢ -D 0 ... . 0

M= 10 -D  2C =D ... 0 | L (10)
0 i -D 2C

with CaC(8)=5 - 285, D_=D(&),=5_1‘+ 1 g5 further &=(éy.ee & _Js
7=(y.0...,0, =DX). TRe last integral iﬁ (§)”c0hta%ns complex mat~
rix My so the standard tricks are not applicébie, however,
by stﬁg}ghtforward‘calcu]acion_we get for.it again ...

2ri) /% (detM, 71 Zexp (-~ 4 W.MnlnLSubstituting this te (9) and
using the fact that C(8§ abd D(§) commute mutuailv, we can
write



e g @ PON = @l 3001 empl & xncdm ) xk

o e )
[ OWemt-5y-dR, @M, Yyeiy. D @) x,
R

where 536D,E(Mn)= and(Mn) and d(M;) is the dx d matrix repre-

senting the "block determinant" of M,, further Ko_i is the
lower right (n-1)dx(n-1)d submatrix of M, and finally

H=CE(MH)—_:3—152—(§(MH~_1 ) (12)

where Mp_; is the upper left (m—1)dx(n-1)d submatrix of M, .
One obtains easily

dM,)=Cdx ,_, )-8~ DK, _,) (13)

and the following recursive relation

AR, _1)=25Cd(K, ,)~D d'®,_,) (14)
Further we put
- . n 3 ‘00 (n—'].) 1 j
d xns— & 1
(Kp_y)=né-£a(5)8°B + ,—52“1 (5)(%8) (15)
with a(?—n=0 for j> n-1, then the relation (14) gives
(—1) 5. (1~2) (=3) 2 (1-2) _ 2 (neg 4_(n-
FomRey ThapTi-as% P 0s%a Y s a" 2. (16)
We take the following ansatz
(a-1) j+1) 0 2i+1 j &
R CRE P L L R an
@+t ¥ k=0 ¥ :

then (16) gives for the highest k
i J J—'l N P . s

a) =(-1) 377, al =7 g% 1,
(18)
j i i=2  j+2
a ={-1) 3 e
i ) ( 4 )
Now cne has to check that the series (15) with 8=t/n conver-
ges uniformly w.r.t.n, then the relations (17,18) imply

Lim 4K, (t/1))e 0 sinQs, (19)
n-oo



wherei]=(2B)% {choice of branch of the square root is cle-
arly irrelevant). Using further (12,13) we get

Tim d (M, (t/0) = cosQt, (20)
n-=osc

limH(t /n)=-QsinQt , 21
n-»20

fhen we substitute from (19-21) to (12) and use the definition
(5) obtaining thus

LG, )=Cereost ) om(- L x0t0tx) £ dv )
rd - (22)

expl-Ly.07! tgfy e iy-(cos0t) ' xk

Using the matrix functional calculus rules/14/ one can check
that the function ¥: ¢(xt)=I_(g, , ) solves the Schriédinger—
type equation with the potential (6), mass m=1/2 and initial
condition ¥(X 0)=¢(x). Finally, by Fourier transformation of
the integrand in (22) and interchange of integrations we ob-
tain {(7}. u

In conclusion let us make some remarks, The pseudo-Hamil-
tonian approach 1/ ysed here makes possible to avoid usual
peculiarities of time-independent Lagrangians. Comparing to
Refs’/? 1%y do not assume any driving force {stochastic or not);
on the other hand we study oscillators of arbitrary dimension
(the generalizations to d>1 is non-trivial in the damped case,
because the matrices A,W are not necessarily simultaneously
diagonalizable), Finally, notice that (7) gives correct propa-
gator (including the phase factor) in the non-damped limit:

if d=1 and Qmml-imz, then
. Q Ve wy v i w,t
lim ( - Ry gu— Y2 expi - Tl Ente—de i},
CL,2_)0_'.551:1(11: ! Psine t] 3 T i (23)

where the exponential factor is just the Maslov correction.
This shows one more way how to prove the "extended" Feynman
formula 16/for the undamped oscillator.

We acknowledge gratefully discussions with Dr, J.Blank and
comments of Dr. E.-M,Ilgenfritz.
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