


1. Vector-Function Action

In ‘the trlmé of classical lechanics momentum 'f and
angular momentunm i? nretconsidered as an object of simi-
lar origin>belongingvto the group of generalized momenta
conJuglted infaccdrdnncb with the generllized‘coordinaﬁes.

In paper [1] it is shown, -directions:.of investigation can be
changed a little, if quantities ¥  and K are considered
relatively to one and:-the. same coor&inntes defining angular:
monentul with the help of monontu- t]? and radius-vector ;?
I{ [’sz] _ : o

It is known from HJ') theqry ﬁhat momentum vector can be
‘roproscnﬁed’as gridiont of aﬁy scalar functiori~ ] )
o L ,Fzgnmﬁg. o | ' (@)

In this case, it is oasy to provo
c/m/{' o . ; RN &Y

It rfollows that K ~can bo represented as rotation of some vec-

~

tor-functibn » Do . : : IR
. -—
K= nol % : Y
‘The comparison of the.oxprosaiona\(Z) and (4) gives an idea
that there exist equationa of vgctér-ruﬁction'if analogous to
HJ equation for function S . The needed equation can be ob-
tained from the analysis of differential forms using the HJ

o

theory, according to which . ‘
P=grads, /-/—'— D,S’ , (5

‘where H-Hamiltonian of the systol.'

") g - Hamiltontan-Jacobi
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Knowing quantities '5 and H , also funetion . ‘ i Substituting (12) and “3) in “” and equating to zero'

£

H H (P) S e S - expressions at "the ‘same va.ria.tions, one obtains
one can establish the form of equation for 'S and defini- ~ . 4/?' zgz’T '_ ;'Zof T emes e L (14)F -

tion of its total differential L o . i The first of equation defines the explicit form of function (9).
C{AS,: (P“/‘f) - H‘{{- ' : 6), - e : It follows that

Let us take into. consideration .such qugntities, which must o T.._ ._{.[I{XZ‘] + V(’Z) 5 ' .(1.5_)

be known to define vector-function W . With this purpose, we To find out the sense of the second equations let us co‘ns‘i&der

can present total differential in the rollowing way the equat'ion) of motion for angular pomentum.

0/2{ l'ZOZ(Z{Xa/Z'] +71a“/(215/2‘> + = A7) i According to Newton’s Second Law ) . .
it follows, that for solution‘ of the given tasl): it is neces- ;. . Lo : (//{' [ -r] . | - _-“6),; »
sary and sufficfent to know the vettors_ o : ) i e g : taen R
T = 7 Gy v Let us admit that

K=zl T= 757:_-‘?/?"_"?/(2/29) | (8)

F__/Zaa/;”

and also:’functio'n o g v . ik where 5/ - potential function. Then :
T=T(K). (9) . div[FxFT]= o,
. . : or :
According to definitions (1) and. (2) vector ¥ 1is vector . wi St [zx.f] ——zc)Z{V

of angular nonentum. In literature vector T has not corres- It follows that equations (14)-and (16) are equivalent. The

ponding name; it can be said about this qvuarrvltityst,hat ir E' equations (110) are analogous to the: Haniltonian equations.

is considered as analog of nolentun‘, U ‘as analog of S , ‘then : “': ~ With the help or rornulae (8) ‘and (15) one can derive the

T gets corresponding interpretation as the analog of Hamilto- _“31°8 of HJ equation for Vef"?_"_‘f"',““”'_‘f Th1= e.““““ﬁ°" ;has

nian H. Using this analog, one can formulate stationary prin- : the f°" A : e : . o

ciple for vector-function action, which can be defined as an o -2 "7/""(/(2” [W{ZIX”]"' V(?) 7 (i']) ‘

integral —» — d_.. = v : ‘ Here we deal with canonical transformations as we11 ‘as in the
Z{: J'[K‘X ~Z]_T0{f’ (10) frame of the traditional HJ theory : o ‘

According to the stationary principle the equations of mo- " : ‘ ’Z’(?‘,) /-{",) Lt) . : o
BEROE . ' S (18)
11 © : b - e
H : : :
i /-f K(?‘,I K‘,/ 1{)

preserving the form of. equations (14). (" /{) e.nd

tion define such. traJectories, for which

SZ(:O

Let us calculate variation of integral (101 (r, ) - joint form of new and‘old coordinates ‘and co-ponent' .

- ] i

R N

SZ[ ‘S'[SK'XJ'Z] + [K‘Xé/{l;?)] STG/Zl_ o, (1 E ;‘ of angular nonentun vector, corre\spondingly. In this case

S f T 3_ ] - - vector-runction u plays the role of a producing function.‘-

where 2o X 4 fL', .
- 5’7_' [’Zoz‘ TX K] +[ € (12} b So far as

S[Rxdis®l= [[s55dR1. , - j[;{xdz] fTa’z‘+Z/o

9 b ’ ‘ - , . o 3. - \\




.

we get the followlng equallty

oA 7= [Fxd7]- [mxé/d—nm Sl AT

which shows the sense of equations (11). From the: equality {19)
it follows that

I{ 2ol 7, l{'a 'Zdl“ Z/
'7— = —-é?igv-';f??74(/222%>. ’
‘In a number of cases, the,equatlons_g17).anq presented forma-
lism can be applled_tor lntegratlon of mouement equatlone (14).
This method can turn out to be useful, unen in the’taek,external
vectur fields of —V type appear interactlng onlj with angular
mouentum. If external field is introduced in the usual way,
e.g8.9by nennedot e::enda:;_:gmentum and energy
Fj-q'fg + 7?'A » ' -
. s o 20)
}1 - }{ - ngp) - ,l R e
then the above-worked out‘formaliel is completely equivalent to
the HJ theory. Indeed. in this case we can give the following
system equationa insteed of (15): . : ’
| [(*+—Z)x?‘]-
[(p+—2)xTJ (H-ep)K =2
(B+2HR) =2, (()o+*/DT)-

It follows from the system (21). that vectors ?i Iy and ‘are

T2

—

mutually perpendlcular. Let us exclude vector T frol the sys-

tenm, then we shall get the folloulng equatlon for the vec~

-

i [(P'w‘z-e'Z)f‘[ZI_‘“‘cefﬁk)(xzﬂi(H-ef)ﬁ=a.

Opening thezbreckete according to the well-known formula’' =~ *.

of vector calculation, we obtain Ce

,A)((F+£A)K)+ MM (- e;ﬂ)H~
but ((,O+ —c_’q){{‘): . : conaequently

[2m(/0+e/‘) (H- 69”):”( o
Z(peER)=(H- ). e

Thus, ve got the known formula from nonrealltlvlstlc classlj

or

bcal mechanlcs. In thls case the expreaslon glven in brackets

is equal to determlnant of the syatem (21), and the ract that
it is equal to zero'supposes nontrivial solutions for the
given system,

gy e

2.. Quantum Equation of Motion for Angular ‘Momentum’
Vector N

Though the above-presented formalism as well ag the HJ method
can be. of some use at solvlng’mechanlca problems, however, thelr
maln;value‘tromkthe mooern:polnt o((vlewzle‘that they play-
essentlal role 1in developlng new theory. In partlcular thevclas-
sical mechanlcs conceptlon of the HJ type was the startlng
point in developing of quantum mechanlcs. Looklng rorward let
us note, that the generallzatlon of the HJ equatlone
in the spirit of L. de Broglle leads us to the Schrddlnger
equation, then the appllcatlon of thls procedure to ‘the
°Quatlons {21) brings to the Paull equation for the spln 1.
Thus Ve, can say that the presence of the spln 13 lncluded ln

classlcal equatlons (21), but electromagnetlc lnteractlon

¥

doee not reveal lt. As lt ls knoyn, he spln erfects appear

only in the quantum mechanlce..\

In the equatlons (21) let us make translt lnto quantum'_

‘ mechanlcs accordlug to the well— nown recelpt, replaclng

‘ P; for operator ."‘,; 17.‘2)(, 3
sy s , »‘ e PR - 2 f? i
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The system (21) transforms in the,rqllowing system of
differential equations

T+ = [(- r»+-—A)x;{'],
(-t + EAT]- (A2 -ep)K =ef
(A2 EDF)ee (A £)T)=e

Aslit should be, in quaai-claasical approximation equations
(23) transform into the aystem (21). The solving in the quasi-

classical approxi-ation can be preaented in the form

K=e /[K' 1

—

Tﬂ [T+ T+,,.] | B

‘ Substituting (24) 1n (23) and- equating to zero the coeffi-

cients at dirrerent degreea F ., we obtain o
[(DS+ A)XM]:O‘
(3% —/DxTJ (3F-ep)F=c
(('5 , 634;)}421) o Q::B)? £?14;>~]-:) t?

In the absence of the external field the system of diffe-

rential equations of the first order (23) is identical to the

Schridinger equation. The incibdlng of the external field leads

to the appearance of the additional components ‘in the Schré-
dinger equation, The appearance of the additional components

i3 connected with noncommutativity of the canonent-opérdtgb
. 2 £ . : (2
f(/. =-(z(-____ H = A 5)
! 2X; cA‘-

Let us consider permanent electromagnetic field, The opera-

tor (25) satisfies the following commutation relations

(23) .

S

A— g,

-column,

[ﬂi)f’]*—lf éz& R
Ul tx
NN AL ——fll .7(07 e

where j{X) 2?3 22. are conponents of magnetic’ rield Let
‘us exclude vector T “‘from the equation (23). Then with\the~ﬂ

help of (26) one can obtain ‘the following .- _equations for the K

”v(Zlg K' H }{'+/4[]/X}{']

27

w erel = t'e
" . A= ch
H= z,,,[f+ 2] ei”

_Le;_us pygsent vector-runction ;_ 1n the rorm or a

then we can rewrite equation (27) ' in the rollowing way -
lllaz,/{’ H K‘/'/"(j/?')}{' . (28

where 1r is the operator with. conponents

A OO0 \ A f o a 1‘)" v f O =d O - )

T, = .= (;: aeo =4 o o .

XT (o o-f ) 2= .. (29)
L ) ¢ ) )v (; 10‘7 2 o 0’ 00 ! L.

As 1: known, the operator ‘é 15 generator or SU (2)

'group. Dimensionality of this group 15 three, Lie algebra in

the Joint presentation 1: given by antisymmetrical latrix (3x3)
or form (29). The matricea (¢9) satisry comnutation relationa

[t‘ 2— ] l&k ?7A LT

é}xx»;tothl énfisynmetrical tensor, “é}é§”=1;



The equation (28) is the Paull equatlon ror ‘the “apin 1. It
can be obtained directly replacing the Pauli equatlon operator
qr for operator é? (Paull matrlces). But above-given way of
obtaining equation (28) ls or methodological interest, as it
shows the: connectlon between the quantum equatlon of the Paull
type Hlth classlcal equatlons (21), The equatlons (21) descrlbe
movement of the angular momentum in the external rleld The
rollowing fact is of interest, the - transition to quantum equa-
tions from (21) 1ed to the appearance or spin 1 in the system,

e.i.,quantization of the angular monentun. The wave func-

tion in the case of the free movement has the foru

K, ;A‘ p? Ez‘)

‘Thus amp}ltude of the wave function corresponds to the vec-

tor of'the.anéolan‘monencun lnrche:pnopapilitfrince;pnetailon.
The movemént in the:permanent magnecic-rlelo can‘be taken'

as an example {2] If magnetic fleld is rather weak then

we can neglect the components in the operator }Jﬂ y containing

square of the vector potential. In- this case the following

apprexlmate exprea:ion for Haniltonian can be obtained L

L (pi+pirpi)- e [(M+tr>%]

” , T (30)
ﬁ4 - operator of orbital momentum. .. < o -

In the task of spherical symmetry dependlng on the nagne-
tic ‘fleld addltional ‘part or energy operator connutate with
main part, So the additlon to the energy level in a nagnetic
rield 13 1n the sunming to it an eigenvalue of additional

component. Ir axiles directed along a magnetlc rleld then

. e
g co

the additlon uill be

AE = ;j‘c (/v] + AM)%Z - (31)
vhere M 1s eigenvalue of operator M&. B andAH- +1 50

'Ls elgenvalue of operator 2”.

'

- 3e Classical and. Quantum Equation of Motion :
for Angular Momentum in STRI)

.

, Inithe frame of STR:the following expreasion for anti-
synmetrical tensor of the angular momentum witn the help of

b-dlnentional vectors of: momentun p1 . and coordinates x

M‘J,—sz} X)Pl) v ] o
0= g2, ()= (P Py £y om

whith generalized expresslon (1) 'in the case of relatlvltyl}]

1.};

Reveal tensor (32) 1n the matrix forn ,
o Ke-K: T
Ao K T,
.:;{; —A; 5 7; .
Thun,voc;oro K

and T%;n STR unlﬁ. }n:one antisymmetrical

(M )=

(33)

K= [?X/“] T’ ?‘l'cs‘ - (fc)/o ; (”34)’(

In the Hq theory, uhere
248

[y |

the expression.(32) can be presented in the form
N 2_2—// 'BZ[A' PR o '
Mu{ 2x¥ BA“ K ' : (35)

generalizing formulae (8) ., :
Let us obtaln equations of b-voctor-runction 2{;
in the frame of HJ theory. Hith~th13 aim ue‘canvluitiplly

(33) froa the lert,on pi and sum it up.- Taking into consi-‘

deration the general ‘relation of the classicel relativistic
mechanics : o RE PR ;

. .
)STR - special theory of relativity



Ppe=-rmict g

ve met mZciKypt P38 = /UMer, L C

.'K 'aPexe. . o R N (3.”
Eq. (35),. being substituted in the system (37), turns into S
the following equation of HJ type for h;vector-function Ui
generalizing equation (17) for the case of- STR’

mic ‘XKTL,OK ax” :w (38)

The relatione (35) give. the idea of the existence of the

Maxwell type wave equatione»for function U In fact, if the

i°
first pair of Haxwell'e equations‘can>be ootained from (35),
then we have the equations (37) as the analog of the second pair
(in eikonal approiination); It is 1nterest1ng,1n this case the

following expression plays the role of "current®
P IR
Je= micaty + %
it can be easily checked
ey ..
Ve
Quantum-mechanical wave equationS'can be obtained, -natu-

rally, as well as in the nonrelativiatic case, replacing
operator ‘
e

P

F-—'f’,--——ri A (39)
instead of vector Py

Thus the equations (35):and (37) can be rewritten in

tne form ' NI , :
Ml’/{":/(jl’z{l' ‘/Fl'”ﬁ'}
mfcr"Z/K +WX5=/;[M8HJ o ‘ {40)
3=, - - a
10 -

In.the absence of interactlon“the system of3equations
(40) 1s equivalent to the equatlon of Klein-Gordon. Suppo~

sing 8 =0, equations (40) tranaform into the well<known

'equations‘of Proca [h] , however, unlike the 1atter, exter~
" nal rield in (40) is included correctly. It is interesting,

“‘that - one of generalizationa of the Proca equations (Strlickel-"- -

berg rorlaliem) has the form of (40). The generalizations

“of the Proca equations undertaken to remove’ contradiction in

the’ procedure of interaction including.. The detailed dlacus-* K

‘eion of thie problen ‘can be*found“in paper Ls]

"The ' equatione syatems of the firet order (40) can be

;vwritten in the form of equations of thé second' order- for' (“i'S)'

. They are

(f"//;+m0c)21,{+ V2 /’f_[z/(,—o

(fef _)-}hzc)f_*u{‘f‘g/pzﬁﬁo,

- 2Ac_ 2hx
'xp_gxx' oxe’

O

Let us consider the case of pernanent magnetic field
—D

~g{ ; . Here we obtain the rollowing equation ‘for the

apatial part of ‘the vector u's (uy uo).-»vin

(H p)Z/ ’ie[}’fXZ/] m‘cZ/
-11’—-—«3;/1 p—-zf/-'r’ e/I

Aa is ahown above, the interaction or epin 1 with magnetxc
field correaponde to the expreeaion in square brackets.

Ordinarily it is assumed that the aystel of wave functions

(40} correeponda to elementary particles (e.g.,vector mesons) "

wlth epin equal to one. However, correspondence As known ;notl

_to be so adequate as, for example, correapondence of the

1



Dirac equations to. electron, The above-given Hay~or‘derividg
the equations (40) allows one to interpref them as wave relati-
vity equations for the tensor of angular-momentum. Usualiy
it was assumed,'that only ﬁhe HJ equations had the corres-
ponding classical analbgy in the form of expression (36)..or
relativistic equation of HJ, The syétem Dirac,- Proca; etc.,
were formed by factorization 6r Klein-cordon_operator.wIn
the present paper we have derived equations of Proca type.
for spin.1 according to the principle of correspondence of
the classical mechanics, We can propose-the similar prose-
dure can.be used for the equation of Dirac type at the corres-
ponding modirication of method, However, the realization of
it will be discus;ed in the following paper.

In conclusiqn, the author would 1like to expfeﬁs 8r8§1f
tute to Professor E.P. Zidkov. for his support and‘igyerest

and to A.B, Pestov for ‘the nuhbeé of stimulating diacussiohs.
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