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1. Vector-Function Action 

In the frame of classical mechanics ao;.entum p and 

angular momentum K are considered as an object of simi-

lar origin belonging ·to the group of generalized momenta 

conjugated i~ accordance with the generalized coordinates, 

In paper [1] it is shown, directions of investigation can be 

changed a little, if quantities p and K are considered 

relatively to one and·the. same coordinates defining angular 

momentu• with the help .or •o•entua p and radius-vector r 
j{ :{'i. X p]. (1) 

It is known from HJ•l theory that momentum vector can be 

represented as gradient or any scalar function 

p=yuul$. (2) 

In this case, it is easy to prove -+ ' . 
clt;z,. K = o. (3) 

-· It follows that K can be represented as rotation or some vee-

tor-function -7{ = .WI21. (4) 

The comparison or the expressions (2) and (4) gives an idea 
' ' . _. 

that there exist equations or vector-function u analogous to 

HJ aqua tion tor rune tion ·s • The needed aqua tion can be ob­

tained from the analysis or differential roras using tbe HJ 

theor:r, according ·to which 

- ./(" H . ;;r F = 1flt1« N ~ == - 'dt ~ 
·where H-Hamiltonian of the s:rstem, 

• 1 HJ - Haailtonian-Jacobi 

Of·bEa~1HE HHbllil ~1HC TH n; · 

?..:;r ::>HbiX t~ccr:: :::.(j3..i.t-- -: 

6V15nlt10TEKA 

(51 



Knowing quantities p and H , also function 

H = H (p) 
one can establish the form of equation for S and defini­

tion of.its total differential 

cl $ = (fu::l;;)- H elf. (61,· 

Let us take into. consideration.such quantities, which must 

be known to define vector-function Ui·. With this purpose, we 

can present tota~ differential in the following way 

clii= ('UJttlxclf] +rzacl(ilc{i) -1- ;ij off. 111 

it follows, that fo~ solution of the given tas~ it is neces­

sary and aufficl>ent to know the vectors 

7f = Z<JI U 1 

and also function 

- --;d7 ..... 
T=- ---rad (iiVl) . dt .· . 

T=T(R). 

(81 

(91 

According to defini tiona ( 1 l and (2 l vector K is vector 

of angular momentum. In literature vector T has not corres-

ponding name; it can be said about this quantity that if K 
is considered as analog of momentum, u as analog of S , 'then 
.... 
T gets corresponding interpretation as the analog of Hamilto-

nian H. Using this analog, one can formulate stationary prin~ 

ciple for vector-function action, which can be defined as an 

integral 

27 = f [if x dzJ - f df. (10) 

According to the stationary principle the equations of mo­

tion define such trajectories, for which 

EU=~ 
Let us calculate variation of integral (101 

au= S r s-R xdi1 + rRxcl(s-;J]- df cit= a, 
-'r' ~ . -11- --f" -. ,. 

ST = ['Zofx Tx :ElK]+ [ U>fz Txd"'l"] ~ 

( 11 I 

(12) 
where 

j'[}fxdtc~?)] == ffcr;; xc!RJ .. (13) 
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Substituting. (121 and (131 .in {111 and· equating· t·o· zero 

expressions at the same variations, 'one obtains 
J_... _... ... _.. 

' !!..1:-" -~fT ·. d'ir- ,;_ wt. T. < 14 I' df - II ~ dt - '2- • 
The first of equation defines the explicit form of function (91. 

It follows that 

T == .£. rR xZiJ + vt-c). . .z . 
To find out th'e sens'e of the ·seco~d equations let us 

(15) 

ccmsfder 

the equation'of mot.ion for ·angular momentum. 

Ac.cording to Newton's Second Law 

dK .·- · 
. d f = ["i >tT 1. (161 

Let us admit that 

F= -~adf", 
where tf'- potential function. Then 

di,v-['i'xFJ = o, 
or 

["ixfl =-'ZC>fil 
It follows that equations (14). and (161 are·equivalent. The' 

equations (14J are analogous to· the· Hamiltonian equations. 
\ . . . . .·. 

With the help of formulae (81 and (15) one·can derive the 
·. 

analog of HJ equ'a~ion for vector-function. This equation· has 

the form -:r -jfiacl (~;;)== ; [~ifxZ']+ v~~). (17) 

Here we deal with canonical transformations as well as in the 

' fram~ of the traditional HJ theory 

F = -;; ( ~ .. if.,) I); 
_..... . --... -P' 

11 '= K{7:,~k<>_. I) _ 
preserving. the form of equa'tio:s ( 14 l. (:?, K) and,. 

(181 

~- \ (~,~~ - joint form of new and\~ld coordinates and component. 
\ . . . 

of angular momentum vector,·correspondingly. In this case 
. \ 

vector-function u plays the role of a producing 
\ 

. ~ 't u ;_ f [Kxdz]- J~e~t 1-~ 
ZD ~ \ 

So far &$ 

\ 
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we get th~ following equality 
' ~-· ~' ~. ·~ -# _...;.. ~ ' _.:..;.. 

t( Zl = [J(xth: ]-[f(.,xd~-Tdf+ T:.cl{+ {21., (19) 

which shows the sense or equations (17). From the equality i19) 

it· followa that · , , · · . ·. 
. --· __,.~. _..;.....p. 

/{ = uft-ll" k' .. == 'Z£1fz,_ 21" 
-- 'd 2l j /:;>; -T::: - ;;(- {l'loq_ c U'ZY-). 

'In .a nu!llber of cases, the equa tio.ns I 17) and presented form~~ 

lism can be applied for ~ntegration of •ovement equations (14), 

This method can turn out to be useful, when in the task. external .. · 
vect..;r fields or V type appear interacting only with angular 

i 
momentum, If external field is introduced in the usual way, 

e,g.,by means of extendary •o•entum and energy 

p _.. f5 + :A} 

H-H-ey) 
(20) 

then the above-worked out formalism is completely equivalent to 

the HJ theory. Indeed, in this case we can give the following 

system equations instead of (151: 

T +2~ [(13+ crifJx If]= o, · 
(21) 

[{p+:AJxTJ- (H-_:p)if.=3 . 
((P+-f7J)K)=o" ((p+ :A)T)=o. 

It follows from the system (21) that vectors T, K and are 

mutually perpendicular, Let us exclude vector ~ rro• the ays-

te•, then we shall get the following equation tor the vee­.... 
tor It .•· _,. · _ . _ 

_ fm [lp+ %7i)x[(p + ;A)xKJ]- (H-ep)K =a. 

Opening the.bracketa according to the well-known formula' 

or vector cal~ulation, we obtain 

- .1.. (-P· +.!3-A)((FI+-.!.ii)"R) +/if(f-rt-11__ (H-et)ff=o 
21n ;c r ~ ,.. .1/tn. .J 

but ((p+ %71)K)= o 
; .. 

I 
consequently 
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r;,; (fl~-; A/~- o-1 ~ ~ r )1. rr~ o · 
.·J ; • 

or 

2~ (f?+?A)z~ (H-er)-· (22) 

Thus, we got th• known formula from.nonrealitivisti~ cla~si­

cal mechanics, In t~is case the expression given in brackets 

is equal to determin~nt of the sy~tem (21), ·and ihe tact that 

it is equal to zero s~?poses nontrivial solutions for the 

given system. 

,~· 

2. Quantum. Equation of Motion for 'Arigular Momentum 
- Vector 

~ough the above-presented formalism as well as the HJ method 

can be of some use at solving mechanics problems, however, their 

main ~alue from the modern,point of.view is that they play­

essential role in developing new th!ory. In particular t~e clas­

sical •echanics conception of the HJ.type was the starting 

point in developing or·quantum mechanics, tooking forward, ~et 

us note, that the generalizatio~.of the HJ eq~ationa 

in the spirit of L,de Broglie leads us to the Schr6dinger 

equation, then the application ~f this procedure to .the 

equations (21) brings to the Pauli equation for the spin 1. I _, 

Thus,we can say that the .pres!'n~e .. of the spin is included in 

cl~ssical equations (21), but electromagnetic inte.raction 

do!'s not reveal. it. As it is known, the spin effects appear 

only in the quantu·m mechanics. 
< ' i: "~ • . 

In t~~.equations (21) let ~s make transit into quantum 

mechanics according to the well..;.known;receipt, replacing 

fi tor operator" 

H- for operator 
·' ·'T'•,o" 

. • '../."d • 
·-tit-•> 
. aX 1 
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The system (21) transforms in th,e: following sys_tem of 

differential equations . 
~ J ::> e--) -T + ...L {(-i~ta;:; + C!A X If]== o_, 

Rm ~ · 
'd - - t.ta --[(-d~-z +: A)xT]-ti -ot --ep)fi ~~ 

((-lt~~ + tA)K)==o" ((-/tdd7 + ~A)T)= t?. 

(23) 

As it should be, in quasi-classical approximation equations 

(23) transform into the system (21). The solving in the quasi-

classical approxiaation can be presented in the form 

K == e lS/Ji [i{, +"A~ + ... ] > · 

T . ;Sit - . -+ '] 

=- e [1:.+t7;+: ... (24) 

Substituting (24) in (23) and-equating to zero the coeffi-

cients at different degrees f,- • we obtain 

'T / [(?!S e-... -
lo+ 2 m a-t+~A)xj.(,]=~ 

[( "J$ . Ri\ .-- . ( ~_.r ) --
a f + c A; x 1: l- ..,. ;)t ~ .e f /{, = ~ 
~.S -e-)- ·· 'd$ e-)-) (( ~ 7 + zA K~,)=o) ((». + 7 A 7: = o-> 

e.i.,equations (21). 

In the absence of the external field th~ system of diffe­

rential equations of the first·'order (23) is identical to the 
·. ' Schr6dinger equation. The inclu~ing of the external field leads 

to the appearance ~f the additional'com~onents ~~the Schr6-

dinger equation. The appea·rance of the additional 'coap.onents 

is connected with noncomautativity rir' ttle coa'p-onent-operat~r 

J-:' _ ·-' d + eA .. ;; ( •• - -I/, --. - - l. 
I 'dXi. c . (25) 

Let us consider peraanent electromagnetic field. The opera-

tor (25} ~atisfies the following coamutation relations 

6 

t\ 
i I 

II 
! 

·o 
-1) 

[1fx:>tfJ':']==~t~i :_](z/ 

_(26) [~)ffz:] = -t'l ce 'Jt'x~ 
r 1tz / 1& ] -= - lt ~ :J{;;' 

where :!tx J ~~ 7t'z are componen-ts 'or aagnetic· field. Let 

us exclude vector T ·from the equation (23). Then with the 

help of (26) one can obtain.thefollowing.equations for the K 

if 2-J?== HoJ?+ /'{Jfx}{], at. . . · ._ 12n 

where t.e ,/r== ~ ' 

HA 1 f;..,.- :'{ ..)-:' "2' ·,.r.-"-~1 • 
., -== z;;; LYlx -r vt1 -tv~c - e f. 

Let us present vector-function K in the form of a 

. column 

K~(:i)' 
. k'a 

· .. ,, 

then we can rewrite equation· (27) ·in the following way 
...... , A ..( , A. 

ti?tK== !tK+~{:Jti-)KJ ··: (28) 

where ~ is the opera tor vi th components 

". ·(0 00) ~: D C1 -:{ 

(} 1 0 

;. -· . ( o lJ :f). :"" :( o -:I o) 
z-lj.<:: 0 0 _t!:J , 7.: = .z t!J 0 • 

,) (J . .:.1 o o ' J c. ' C) . o o (291 

As is known, the opera tor .g. is genera tor of SU ( 2) 
I 

group. Dimensionality of this group is three, Lie algebra in 
. . . 

the Joint presentation is given by antisymmet~ioalmatrix (3x3) 

of form (29). The matrices (<!9) satisfy commutation relations 
.. . II" 

[ z;. ,) ''li J= € ljN ?',) 

r,,x· -total antisymmetrical tensor, l',r:; :1. 

. ' 

7 



'rhe equation (28) is the Pauli equation for the· spin 1. I_t 

can be obtained directly replacing the Pauli equation operator 
' t ' '. ' 

A A - ' '. 

<t:' for opera tor 6 (Pauli matrices l. But above-given way of 

obtaining equation (28)'is of methodological interest, as it 

shows the.; connection between the quantu11 equation of the Pauli 

type with clas~ical equa,t_ions .< 211 • The equations. ( 21 l describe 

movement. of .the angular momentum in the. external fi~ld. The 

following fact is of inti~e~t, the-transition to quantum equa­

tions from (21) led to the appearance of spin 1 in the system, 

e.i., quantization of the angular momentum. The wave rune-

tion in the case of the for11 

-K:::: 
the free movement has 

if ~ /(p?:-£1) 
/'lo e • 

~hus amplitude of the wave function corresponds to the vec­

tor of the .angular "mo"aientum 'in 'th"e 'probability interpret~tion. 

The movement in the permanent magrietic fiel~ can be t~~en 
as an example {2J •. If magnetic field is rather weak then 

" " " 
we can neglect the components, in the operator H.,, containing 

" . " 

square of the vector potential. In·this case the following 

approximate expr:ession for Hamiltonian _can be, ob.tained , 

H =-'- ( h; + P.L~+ pj)- ep + 3- r,(M + t £-)'Jl] 
'A 

.zm r Q • ~mer . . . j 

(30) 

M - operator of orbital 11omentum. , 

In the task of spherical .symmetry dep~nding on the magne­

ti~ field ~dditional.part ~r· e~ergy o~erator co11autate:with 

main part. So the addition to the energy level in a magnetic 

field is in t.he su.mlling to itl an 81genvalu~ of ad.di tional 

comp"on~~t •. If axislis directed along a ugnetic. field, then 

the addl tion wi·ll be ' ' · 
~f .. ,= :ei · (M'±11M)J(z " (31) 

2mc · · ;"' · 
where M is eigenvalue of operator Ma , andJlH= ,t1 ,o 

J\. . • 

is ·eigenvalue of ope~ator ?'. 

8 

). Classical and Quantum Equation of Motion 
for Angular Momentum in sTR•) · 

In the frame of STR the following expression for anti­

symll;~rical tensor Of the· angular moaentUII With the help Of 

4-dimentional vectors ot,mollentum pi and coordinates xi 

/"1 ··}= Xi Pi -.Xj}Oi ~ E 

(xl)"" (x~~Jz~cf) ~ {pi)-==_{pL_,'f~/pi!-~-c), 
(32) 

whith generalized expression ttl "in the case of relativity[3].· 

Reveal tensor (32) in the matrix fora 

0 

·./(, 1" -Kz Ti ) -11. a /( -r 
i 3 '~ 

1(2 -k'.s 0 7; . 
-7j' -7; -7: 0 . z. 3 

. (!v1lj) =· (33) 

Thus vectors I and T in STR unite in one antisy1111etrical 
' < ·, 

tenaor, where 

- . - E K' = [f X p] / T == f c 
In the HJ theorJ, where 

- '";)$ 
fl- ~K' 

(tc)J3. 

the expression. (32) can be presented in the form 

(34) 

. ??fl. ?JUx 
Mll(-=:: 'OX)(- 'iJP(l ) (35) 

generalizing toraulae (8). 

Let us obtain equations of 4-vector-tunction Zf; 
in the fraae of HJ theory. With· this aia we. can· aultiplay 

(33) froa the left. on pi and sua it up·. Taking into consi­

deration the general •relation of the o1assioa1 relativistic 

mechanics 

•lsTR - special theor~ of relativity 

9 



P~Pe-==- m:cz 
' (36) 

we get :t ~x· Jl ·- n(JAA ;n., c ~· -f fJx<J - r '" 1er, 
-J-=cpeXt. (37) 

Eq. (35) ,. being substituted in the system (37), tu_rns into 

the following equation of HJ type for 4-vector-function Ui 

generalizing equation (17)-for the case of· STR 

m.r (!~X ·+v ~2/e "=' 64!~:!!..e - ~) 
c K tK :rlX'e I l~XK _?Jl( e • (38) 

The relations (35) give,the idea of the existence of the 

Maxwell type wave equations .fo function Ui •. In fact, if the 

first pair of Maxwell's equati ns ~an be obtained from (35), 

then we have the equations (37) as the analog of the second pair 

(in eikonal approximation)~ It'is interesting,in this case the 

following expression plays the role of "current" 

'JJ{ -== 111};. ~)(I< -t}J;; -s 
it can be easily chec~ed 

n e . ., ~ t!J 
r .Je • 

Quantum-mechanical wave equations•can be obtainedi natu-

rally, as well as in the nonrelativistic case, replacing 

operator 

Pl-0= -li 2: +~A-dX' (" I 

instead of vector pi' 

Thus the equations (35J.and (31) can be rewritten in 

the form 

M t'x·-== tfxztl -lij 2/x~ 

m: c 2 21 x +v1'x -5 -== 77 .e /V1 e;{_.~ 
. -5~11~2/e. 

10 . 

(39) 

(40) 

In the absence of interaction the system of'equations 

140) is equivalent to the equati~n ~f Klein-G6r~on~ Su~po­

sing ~ =O, equations (40) transform into the well-known 

equations of Proca [4] , however, unlike the latter, exter­

nal field in (40) is included correctly. It is interesting, 

that one of generalizations of the P~oca equations (S~rUckel-

berg foraalism) has the form of (40), The generalizations 

of the Proca e~uations undertaken to remove-contradiction in 

the procedure of interaction including. The detailed discus­

sion of this problem can be found in paper (5]. : 

·The equations systems of the first order (40) can be· 

written in ·the fo~m of equations of the second order for (ui,s). 

They are 

(w~J?; +IJ1fcz_}21K + [1?;,/:1(<'] Zle = ~ 
. ( t[f.t[, + hz?. c 2\ Jl + d_e r ztt = CJ . 

... · . I!' "" ./ J zc rxe . . . ~ 

p--=- ~_~Ax. 
. KR . &JK'x 'PJ(~ 

Let us consider the case of permanent magnetic field -';}( • Here we obtain the following equation for .,the 

spatial' part of the vector u = (u,· u~l: ,_. 

(R2- f>2J u, ~ ~~ e !ilx uJ ~ m! cz~ 
. ; . . - . - . 

II. j'd 
H=i -;>t-efl) "' i ";:\ . e­

h:::: -.: -+-A I" &lX C ~ 

As is shown above, the interaction of spin 1 :With magnetic 

field corresponds to the expression in square brackets. 

(41) 

Ordinarily it is assumed that _the s·ystem 'of wave functions 

(40) corresponds to elementary particles (e.g.,vector mesons) 

with spin equal_to one,. However,. correspondence.iis known not 

to be so adequate a~, for exampl~; ~orrespondence of the 

l1 



Dirac equations to electron. The above-given way of·derivirig 

the equations (40} allows one to interpret them as wave relati-

vity equations for the tensor of angular momentum. Usually 

it was assumed, that only the HJ equations had the corres­

ponding classical analogy in the form of expression (36) .. or 

relativistic equation of HJ. The system Dirac, Proca, etc._, 

were formed by factorization of Klein-Gordon. operator. "In 

the present paper we have derived equations of Proca type 

for spin 1 according to the.principle of correspondence of 

the classical mechanics. We can propose the similar prose­

dure can be used for the equation of Dirac type at the corres­

ponding modification of method. However, the realization of 

it will be discussed in the following paper. 

In conclusion, the author would like to express grati~ 

tute to Professor E.P. Zidkov for his support and interest 

and to A.B. Pestov for the number of stimulating discussions. 
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.fiManees P.M. Kn.acCI14eCK11e 11 KBaHTOBble ypaeHeHI1R AB11>KeHI1R A.riR E2-81-322 
TeH30pa K11HeTI14eCKOro MOMeHTa 

B paMKaX Te0p1111 raMI1JlbTOHa-.fiK05H TeH30p K11HeTI14eCKOrO.MOMeHTa onpeAeJlReTCR 
4epe3 BeKTop-~yHK411~ AeHCTBI1R.C~OpMyJ111POBaH np11H411n CTa4110HapHOCTI1 AeHCTBI1R 11 
.nony4eHbl ypaaHeHI1R AB11>KeHI1R A11R TeH3opa KI1HeTI14eCKoro MOMeHTa,AHanori14HC ypaBH• 
Hl110 raMI1JlbTOHa-.fiKo511 ablae·AeHo ypaaHeHI1e A11R aeKTop-~yHK411.11 AeHCTBI1R. TpaA114110H· 
HbiM' CnOCOUOM,. 3aMeHRR raMI1JlbTOHI1aH'I1 11MnyJ1bC. CI1CTeMbl Ha COOTBeTCTByi:JUII1e onepa­
TOpb!,- nony4eHbl KBaHTOBO-MeXaHI14eCKI1e ypaaHeHI1R AB11>KeHI1R AJ1R,TeH30pa K11HeTI14ec­
KOrO MOMeHTa. PaccMOTpeHbl HepeJ1RTI1BI1CTCK11H 11 penRTI1BI1CTCK11H CJ1y4al1. no.<aaaHo, 
4TO ypaaHeHI1R onl1cblaa~T CI1CTeMbl co cni1HOM, paaHbiM eAI1H114e. B penRTI1BI1CTCKOM 
cny4ae nony4eH~ble ypaaHeHI1R o5o5Uial'lT · 113BeCTHble ypaaHeH11R npoKa, a Hepen.FITI1B11CT' 
ci<oM - ypasHeHI1e nayn11. A11.FI cn11Ha eA11HI14a. . · · 

Pa5oTa BblnOJlHeHa B fla5o~aTOpl111 Bb1411CJ111TeJ1bHOH TeXHI1K11 l!.aBTOMaTI13a41111 O~.fl~. 
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!analogous. to the Hamilton-Jacoby's equation. Quantum-:-mechanicaJ·equations of 
otion for the tensor of angular momentum are derived traditionally, replacing 

the Hamiltonian and momentum of the system for corresponding operator •. The 
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