


I.Introduction

In a series of papers ’**/ the three-dimensional relativistio
formalism was developed for describing the systems composed of two
particles with spin 1/2. The description is based on three-dimensio-
nal relativistic two-particle equations of Logunov and Tavkhelidze/sf
and Kadyshevsky /6/ in the cifflese '

A merit of the three-dimenslonal relatlivistic spin formalism
proposed in /1-4f 1s the keeping in the equation kernel all the
relativistic 1ﬁiormation contained in the Feynman matrix elements from
which the kernel 13 constructed. This result is based on a new '
three—dimensional representation /1=3/ for descriding of spin partlic-
les interactions in a relativistic case. The transition of the inter—
action kernel to thls three-dimensional representation does not need
the applicafion of expansion of Feynman matrix elements in powers of

Tv%‘ y like in the case of applicétion of Foldy-Wouthuysen transfor—
mation in the Brelt equation. In our approach the three-~dimensional
form 1s achieved by giving ¥ the four—dimenslonal matrix elements
the sence of a three-dimensional geometric generalization of the
quantum-mechanical Brelit~Ferml potentials, After this transformation
1t appears that the Feynman matrix element of one boson exchange,
taken in the momentum representationy has the same siructure as the
Breit-Ferml potential, but the Buclidean elements, such as momentum
transfer, been substituted by thelr analogs‘from the Lobachévsky
momentum space. In this way the three-dimensional formulation 1=
conservad in the relativistic description.

This “succession" of the form of spin two-particle e}uat%ons
.takes place alsc 1n the configuratlonal representation i1f in the
relativistic case the Fourier transformation is replécgd by the
harmonic analysis on the Lorentz group

The formalism developed in F14/ 48 quite suffioient for calcu=—
iation of energy levels of relativistic composite systems like veoctor



mesons. However, 1f we want to use the wave functions, obtained

as solutions of three-dimensional equations, for describing the
system form factors then we should generalize the spin formaldism
developed in the c.m.5. to an arbitrary coordinate system *), This
problem 1s just considered in this work.

Our conslderation will be based on the diagram technique arising
in the covariant Hamiltonian formulation of guantum field theory /64
Note that in this formalism the covarlant three~dimensional eguatlion
was earlier obtained for the amplitude of fermlion-antifermion elastic
scattering /9/. Using this equation and the fermion-antifermion wave
function defined in /9/ through the scattering amplitude,the authors

of r9/ deduced an equation for the spin wave function for the G.m.s.
In this connection, in Sec.2 we present the derivation of a covarlant
equation for the fermion-antifermion wave function by using an equa-
tieon for the vertex functlon, like it has been done in the spinless
case ln ref.

‘However, for practical applicatlion there still remains an impore
tant problem to be solved: is it possible to construct a covariant
spln equation which would contaln an interactlon local in the Loba-
chevsky momentum space? This question is answered in Sec.3 where as
&n example One-plon-exchange amplitude would be consldered.

2. Equation for a two-fermion waye functlon and Tobachevsky geomstry

Following ref, /10/, we proceed from the equatlion for R—matrile/

A faz;ar’) =-Frr-ac) /%r-arj f?[?z; az (&1

related to S-matrix by A=/ +: /Q/ﬂ e}, Rece)=Qar; Jr//r T
Here 547@'5) 13 the Fourler transform of the interaction Hamilto-

nian; A, the unit time-like vector xx)_’}‘j =4 with A, >

Equation (2.1) can be written in the operator form

R <~ K -HER

i — A ———————

x)It should be noted that the covariant equations for the wave
function of a two-fermion system were also derived within a single~
time formalism in reg, /87,

xx)As for the formulation of egyationa wtth A vector belonging
to the 1light cone, 1.e.,.ﬂ ﬂ = , see papers /117 .



where the operator matrix elements are defined as follows {(in the
space of sbsolute values of the spurion momenta /AT/E =TT 3

(-’r/ﬁ je’y = R lae, av’) é.’t'//r;‘/’f’)= H /-2
-
el Gl = Z:?r/fz:f—g‘g)] ar'/‘t'—?:’/.

In order that the eguation for the wave function contains the
same kernel as that one obtained in 7699/ £or the scattering ampli-
tude, let us perform one {teration of the operator equation and
make one substitution 7

R =R - fL-HEHEC,) A
After this we come to an equatbn 16/
R'= kg +4, 0. R [k =G
Further, in the spln case We define by analogy with 710/ “the
Vi Gs’/ /7 QT} as @ matrix element of the opera-
vertex functlon o my Pr, fa y)

&

tor @7/27)= R /AT, o) (primes will be omitted in what follows):

(s fro | R(aw) | B M, Ty > =

(20 29-)

4} .
= o7 ¥ 5 /j)—- -p,eav) 7%
“r) T ‘;O! /;zg_’ ./ % my 60:,/94/-723?‘),
e ol hy
o (2.21)
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— 5267 —
P8 (pp )P ae)= T ) G e T s ) € ).

—
Here/jz/'/;.‘z mj) 1s the state vector of a composite system wigh mo—
mentum &0 y mass A= }/,733— ;55 , intrinsic momentum (spin).z
and its projection 47y onto the Z —axls; /b: and /52 are
momenta of the fermion and antifermion. in representation (2.2b) the
fermion and antifermion are described by blspinors Z/dej/f)and 3;63&/
@(}fz =443 4 ; 6,6 are polarization lndices gqua.l to t."/.‘a)
which obey the normallzation conditlons :

P U )= I s B 1) BT =

The argument of cr' —function in (2.2a) contains the 4-vector T,
which sigmifies that the vertex function /7 (7. /72 az/
is consldered off the energy shell, Indeed, at, 2= 2,67 T =
= JQ —//01_ */Q:_)o , so that to the energy shell = & ¢orresponds.
The normalization of state vectors wiil be chosen-in the form

i lfe > = o S5 F) daw



Passing in the r.h.s. and 1.h.s, of (2,1) to the matrix elements

of R and the product KR taken over the same state vectors as {2.2a)
we arrive a.t the relation between /7 and matrix elements of the
type(r,s* A:,_s" ..... /!Q/ s M, T, My >,  Where 4 = 2, 3

For any matrix elements LB ... /'Caﬁ“ /R [P M 7 m>with the use
of {2.2) one can, in turn, obtain analogous integral relations

whick form an infinite chain of the coupled integral equations,
Applying further a technique developed in /6 for suoccessive elimina—
tion of such matrix elements with the aid of other equations of the
system 712/ we can write in the matrix form (of }

<A G, pre R /az)/ﬁ Mo T my> (02;_)7 féﬁgi)ﬁ@/@ )

£ - ng
/’afz,arr)//c %> Mw 443, .‘)//QKJTL)/P//ﬁ'mJ>
i~ eE
where the kernel

2
k = £ = A, + -

Tt G (1 )k T TR G LT s
contains the projection operator /7.2 on two-particle states /-2) =
=g R ,E:_JZ 7 .+ In the lowest order in coupling constant
the kernel K coincides with the ons-boson exchange matrix ele—
mente It should be noted that 1f the constant ﬁ' wag8 chosen so
that the matrix element k'_,_ would give the one-boson-exchange
potential providing attraction in the fermion-antifermion system,
then the subsequent term of the kernel Kk, ¢ (4 - A )k: being
proportional to 32 y will, as in y Tesult in terms involving
repulsion, '

Introducing the notation

L, el K (a"ejaw‘)jr,_—\?“ K4-03_> (.w) g (’arrl+;>,,+p.-; -k )

-4 &y
.[QFL,-QP”-SLMO.QHJ -V 14 (Pepe s | wa, Ko 50y ) =

e S -y -k, - ) % |
- (jqugal(:mzpl :1 2 i) % ('CA)V;J* () % p)
ITN 20 0’ v

and inserting it and (2.1) into (2.3), we arrive at the ‘squation



T (1952 = PN YQJT Sy oY He) St
m: "J‘, i

7 (2.4)

19/@7 AY/"&L“'”J')‘ /'22_[‘5)_1_ a(V(/ G -k —AT2)

4 SEN
-V Y A’{/’LJQT’@,&;QE) : /7 ’

/Ckr Ai./vf a tk]

6763

In A9/ it 1s shown that the kermel in (2.3) VJIJ; J"i,/’%”/’%&ﬁ'i)
45 a matrlx element corresponding to the sum of all irreducible

(ir the sense of one-—spurion and two-particle cuttings) dlagrams
describing the two—fermion interaction with a given Hamiltonian

A(p). Graphically, egquation (2.4) can ve represented as shown in Fig.
1 where dotted lines denote the incoming spurion with momentum ax
and spurion propagator (7 - cé.) . Inner spinor lines in a
diagram technique of Kadyshevsky correspond ﬁy /%2) and Jff/ui.}
functions. .

Figel

Tn what follows we will choose the direction of the unit a -
vector along the 4-momentum of a composite system,i.e.,equal to the

system 4-velaocity +2

zpf/}/ﬁ Y

Note that in (2 4) integration over momentsa of internal partic—
les runs over the upper sheet of the mass hyperboleid

< 2 2 .
£~ LT = m : (2.5)



and the edditional 4-vector JVN) in AT .function ensures the
escape off the energy shell,
In (20/2‘ we take a.dva.nta.ge of the invariance of volume elements
Br&) 5 (Kp - m2) in order to pass, in them
and JV ~funotion argument, to the vectors (£ /"= /AP )/,
whare —/7-:_‘;? is the Lorentz boost to the rest frame of a composite

partiole: ./LI R = f/‘f 0) s+ 8o that, for insta.nce(./‘.p _/'Laj,) /f-'é/
- (G ) = T, =T e MJM)

) (A5 k) = = A5 oy = Vs BT < kA

(2.7

yw[yj‘“ﬁ?'tx - kg ‘kf]= 3"’0//2{_%)/1; —_/l /,q,‘,?/
Tt 8)]- 8% v ig) @

The spatial part of the vactork!‘ M has the meaning of a covariant
generalization of the mementum wveotor of a particle in the c.m.s.
introduced earlier in 714/ + Indeed, as is seen from (2,8) Ef £,
that because the vectors (k‘) are on the masas sghell the aqua.tion
(2.5) ensures the equality of imvariant time components [ //;, o,
In what follows we shall supply with the index zeroe from a.bove all
the quantitlies representing the covariant generalization to an ar—
bitrary system of quantities defined in the c.m.s,

After integration in (2.4) over a/ A3 8nd /7, we get the

equa.tion 0/3/;, p
)3 A (2.9)
%), o L) ) Ju-2/5) e
v“‘"’“
-,}172//’1/51 Jl’/kf,k_:l .2*2') /" /A&&/ az-)

//Oz /b-! ﬂ‘z‘) "/—'_

N e
where T, =M -L (K;)e & = H-—.Z//o:),
and the quantities 4, and 4, 1n the r.h.s..are oon.nected
' with (kxl_)ﬂby the transformation ﬂctz)/" m 2 )f

" and D/c [{ki_),)—;’]



In the next sectlon we shall need some gquantities which will
be considered as the covariant generalization to an arbitrary refe-
rence frame used earlier in refs. 1-4/ for the c.m.s. obJects from
the Lobachevsky space /‘15/, realized on the upper sheet of the hyper—
boloid (2.5). For instance, the vector_g_onsidered in 7 a3 the
difference of two vectors /6? and A  4n the Lobachevsky spacex)
(or the transfer-momentum vector in the Lobachevsky spaoe)

—— — — g
/t'(—-)/b = AK)/, = ./l_:/c) - K _ﬂ_:f//co_.,%b)(a.lo)

and its time component may be introduced alsy for coveriently defined
veotors of the particle momenta in the c.m.s. (2.6) and (2.7) by the

rel%’cions i o f b _/_t‘:_;__i
ffg = Bepp=FT £ [06). =5, i

/ﬁ:é’/;) = Ym?4 I,;l» i‘@j)f&)ﬁ. /"‘:/eéﬂo*é_"/g (2.12)
L,/1/r L e Fr= = o .

| (2.11)

In analogy with the construction in ref./a/,’ of the half-transfer mo-—
—

mentum out of the transfer momentum vectory &),5’ , we define aa

half-transfer momentum ¢orresperdling to fé’f—) /}"’ as follows

a_g_._._. {é"’m/é;'j .//ozfm +M/A;, c)pf 1 (2.13)
%

. @ = ,f.f
.= Ve

Since, as has been mentioned, in accordance with (2.8) in any coordi-
i g

—— g

#

nate system Kk, = -4, =i J/gj.___,g_":p" R

then 2 s
By = Besp= B epifodop=dip,,
AR (2.19)

' -1 S Y
Four- vector /fzz)‘ﬁ'-‘- //Lp ,é,,,_) and ﬁt},z ./ velong to the same
mass hyperbolold (2.8) as vectors A4,z and Az o Therefore
they can be parametrized by spherical coordinates as follows:

x)In gontrast to the FBuclldean difference of two vectors '121-"13— ﬂie
difference ip the Lobachevsky space will be denoted by symbol _(—)/7/



(= mh sy S g Az, <~ E Gas

e

VTV

/K, =/n£_:/;x'k - MPZS/;G,,- éZ=/*“-f:—/ (2,17
=

In these ocordinates the equality (2.12) represents a formula for
the cosine of a compound angle in the Lobachevsky trigonometry 715/

oAxy = Vir (ECEF - ofy ok, - shn sAx.(61E)
a.nd the relation 'between the momentum transferred @a = A7 0/‘7
J'. I é_’ ,S’ZJQ and the half-transfer (2,13) takes the form

(02). =m k(%) = m }/m*gzm/{og—’zn (2.18)

P

TG

2
The fourwdimenslonal transferred momentum squared = /x —/J_)
1s expressed through the momentum squared in the Lobachevsky space
as follows:

£ =l ~p)*=am*-2up = dm* ”"Z/A_!)//é’/b)(z 9 o

= o&nlwibﬂ/bﬂ 2dm? = Lpr Yo f//g*(_)/ba,j.z’ =

-—‘__‘_“‘—'ﬁ

=dm® = D Yo s (£ 2 )

In view of (2,19), (2.13), (2.18), the invariant Feynman pro-
pagator assumes the form

4 - 4 7
,,/ul "//b-—}c_)l fg pgmz+égmj/mz J:%',)-‘ o/{ P Ca. 20)

In the nonrelativistic limit l:(—)p — A: _./o ¥ 55 - / “/’.)/z
The wave function of the syastem of a fermion and antifermion
with momenta kl and K‘ 5 8pin po__grizationa €: and ¢ , which
form a bound state with momentum o/ mass M) total spin
and its projection onto the Z -axismj will be given by the

formula

a76; % /e g /P ae)
@.'-Tm; /k‘f)& /P, 2z .7»»7 = ¥

} = - (2.21)
kg 24 kJM? [Aﬁ,,z%mg_,zj :

8



The substltution of (2.21) into (2.9) changes the equation for the
/7  function to the form

] o a6 (2.22)
28, (M =288 0man) %xm; (e, 2/ P 3pT) 2

A Z 0/‘2_;/»1_2” V 5;62/ A ‘2‘9
@r ) Taaz, R he ks BT/

; I
o U o (5 PoE)
of the egquation obtained earller for c.m.8. As 1t was shown
1n/16/ eq.(2.22) has the same form as the apin equation that was
deduced in the framework of Logunov-Tavkhelidze single-time ap-
proach. Equation (2,22) can be considered elso ag of the generali-

zation to the spin capme of the Kadyshevsky covarlant spinless
equation/6(III)’ 17/.

3. Three-dimensional fozm of the kernel in the one-meson—exchange
approximation

~6:62
Tet us consider the kermel of equation (2.9) Ak 4’1/’;,‘32’}
lki,k; );171_) in the second order in coupling constant corres—

ponding to diagrams drawn in Fig.2 {annihilation terms are omitted).
For the Hamiltontan %7,/ =g @“@ny@y@; this kernel
nas the form %/ 4 L 49 1 .
2 /b.:) .
%_)365; Oz/b.z;ﬂ'r/@ k1'3§)=— . 77 =
o o Yt -tg e -w)t

{3.1)

[f v omy e T | ) ) Tt 0 )

6,P,

klPi

G, P,

K2 P2




In virtue of the conservation of d4-velocity of the system/f’{Hﬁ/

_ (P1-+Pa.) _ (k;_ ‘*k‘a,)

= = = —=
Vot Viei+r)?

and the conservation of 4-momentum (including the spurion lines)
PrApr =T xlopta- Ay which gives the relation - \/,_S—P = Ty~ E,c
transforms on the energy shell = T, = ¢ 4into the Feymman matrix
element

q;; j-sé ‘(Fi) Fz' K':L,b-l) =7 31. ,‘“—q&‘)ysuirk‘f‘)' ’b—:‘%/k") = v&‘k.’i-z)
A, J"‘L‘ (Ps."hj.)z B

Spin structures of matrix elements (3.1)and(3.2)are identical
because additilonal spurion propagators ("cj_ —-e )_1 appear in the
EKadyshevsky technique as Fourler transforms of entering into T—pro-
duet scalar ﬁfxu‘}(°] functions written in the invariant variables.
Therefore, we first conglder the spin structures.

The bispinor 4 (Pi) x) entering into (3.1),(3.2) can be
expressed through the bispinor in the fermion rest frame

’H(?p_{)z S/p)1cYe) < Kfﬂj-f"j/y@v?ﬁz)w%), (3.3)

[

do

()]
Matrices »SV/J) and ,5(//54) correspond to the pure Lorents
transformations

/JV/D)"—‘}//"*/”)AZ/” /.{"" 0'(.;57/007"/”/; ;:d’od:*,

which do not compose a group., Thelr preduct is not, 1n general, a
pure Lorentz transformation onto a resultant vector, 1t rather
contains also the Wigner rotation V~//L@ k:) defined by
x)

Bispinors 2{6./5) and Z’F/;t/ enter into the spinor-field
expansion over the creation and annihilation operators as followst

' "j-"!'r ~> e 4+ -rhx .
¥/x) =é;_f—)3/4 a{—‘g cie‘%_/e £ re)rik) e ae,/e./zrg/:t%;;

th '
. — /3-’- ;‘é.x - ..(‘R” -6
%}:/%3% Z £ /e QG,A:)Z(Z)+€ t{ﬁ/ﬁ/f%

e &L K
&% .{}{,_

10
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where _Z- is & unit 4x4 matrix, and the matrix for the Wigner

rotation of spin 1/2 has the foxm /14{L)/

% e m)ﬁ— m) PE 6L "’%7
ﬁ/V ,e)/ //aZ 727, 7~ ool 2]
As a result, the formula (3.2) can be rewritien in the form
. - ~Z
Up) = SRS (B may ) 7 © DAV D )} %) 3t
and, coz‘respondingly, the currents
T e ¥ % e ) = 7%0) BV AOAJ/,Y/,W,}J

(3.5)

S TR S (D) Sy ) DLV F e f 205

A similar result follows also for ,;he term A}_)[é‘ 2//94)

1f by the transformation 2~= C U ¢; Ir=1/% C"I/(- Yok )3 _
passes to the chargewconjugate 'biapinor @« of tha same form asZs .
In virtue of the dependence of matrix J[ on a(-trd’it may be
interplaced with d’; + As a result

T pe) e o) L) DAY Pty S

A ; 2L
A /V /./L% map A’”“J”’Jf)/ﬁ/y-//’%’e‘yyﬁ/%

i pman)
where the auxiliary function Ay, map 2 CPLmIp

becomes the function ‘25/‘ V_ﬂ/l- /6)] of the c.m.5. para=-
metrization /1~ 3/ Further, following the results of ref, /18/

the .expression for the amplitude (3. 2) (and for (3.4))will be
wriltten in the form

11



pitsfen] T (B KA = (T, )75 (A Al A A
= %1 VD%t SV
DBV P plf R AV P, p)f

LG g ) T Ll s K s> (3.7

2 %’”:"22/5 Z/V 7Akj :»/D*‘)/ Z)ﬂ:", vy /VZ/L?J kl)‘/

A%

' £/ ) N ‘f__,’ -
Roione [V V05 S Ry VT )

{over the repeated indices x) summation is implied), where the
matrix element remaining after separating the Wigner rotations *x

- . o 1 E & —_
Z/’:{G}fo 3 f’zfﬁ/o / (z‘)P’_g/k.L "‘)L/f e £z ‘,?z/‘f> -

Ggo fpre 42 EEL )
= - 2o = - > .

97 AF) Oy B Dy,
/6:"-‘**-) _ *'\&/---—:—) oy ¥ 22
19"@&‘—‘/& 1 w2 L[:/k—p)'=‘ C A

has the "absolute form® (gee /3/) and depends only on the vector of
half-transfer momentum a-? « This fact will be important for con-
structing from (3.8) of a quasipotential, loeal in the relativistle
configurational representation, in an arbitrary reference frame.
Note also that according to /137 the Wigner rotation has the

% 14 (3.7) somewhat complicated notation is introduced for spln
indicea, howevery, 1t is coanvenient for interpretation. Namely, the

" momentum in & row with the spin polarization signifies, e.ges that
' this polarization index 1s "sitting" on the momentuﬁl(ﬁ fu'L G"i};’ » ectl

5 T
xx) U (o) =Vm (§s3§e—) s where Sc;"' are the two:oomponent
Paull spinors with the hormalization condition §r§5-/: J:-s.f_

12



geometrical meaning of the angle of rotatlon of the spin vector that
osceurs after its parallel translation along a closed triangle in the
Lobachevsky space.

Sonclusion

Let us summarlze our results, In Sec, 2 the covariant three—
dimensional equation 1s obtained for the fermion—antifermion wave
function with the kernel defined by using the dilagram technigue
appearing in a covariant formulation of quantum field theory. In
Sec +3 from this kernel in the one-meson-exchange approximation we
have extracted the part local in the Lobachevsky momentum space.

Our further task is to transform ege (2.11) to a form,
that would contain only the local part of the kernel given by (3.8),
and then to write the equation in the relativistic configuration
representation,

The author expresses his gratitude to V.G.Kadyshevsky,3.P.Kule~
shovy A.V.8idorov and I,L.Solovtdov for useful discusslons and the
interest teo the work.
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