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!.Introduction 

rn·a series of papers·/l-4/ the three-dimensional relativistic 

formalism was developed for describing the systems composed of two 

particles with spin 1/2. The description is based on three-dimensio­

nal relativistic two-particle equations of Logunov and Tavkhelidze/5/ 

and KadyshevSky 161 in the c.m.s. 

A merit of the three-dimensional relativistic spin formalism 

pr~posed in /l-4/ is the keeping in the equation kernel all the 

relativistic information contained in the Feynman matrix el·ements from 

which the kernel is constructed. This result is based on a new 

three-dim~nsional representation /l-J/ for describing of spin partic­

les interactions in a relativistic case. The transition of the inter­

action kernel to this three-dimensional representation does not need 

the application of expansion of Feynman matrix elements in powers of 

7r'-j cL , like in the case of applic.ation of Foldy-Wouthuysen transfor­

mation in the Breit equation. In our approach the thr~e-dimensional 

form is achi~ved by givingW the four-dimensional matrix elements 

the sence of a three-dimensional geometric generalization of the 

quantum-mechanical Breit-Fermi potentials. After this transformation 

it appears that the Feynman matrix element of one boson exchange, 

taken in the momentum representation,· has the same st·ructure as the 

Breit-Fermi potential, but the Euclidean elements, such as momentum 

transfer, been substituted by their analogs·from the Lobaohevsky 

moment~ space. In this way the three-dimensional formulation is 

conserved in the relativistic description. 

This •succession" of the form of spin two-particle e'uations 

takes place also in the configurational represen.tati.on / 4 if~in the 

relativistic case the Fourier transformation is replaced by the 

harmonic a.ria.lysis on the Lorentz group /7/ • . ,, 

The formal1sm developed in /.1-4/ 1s quite sufficient for calcu­

lation of energy levels of relativistic composite syStems like vector 
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mesons. However, if we want to use the wave functions, obtained 
as solutions of three-dimensional equations, for describing the 
system form faotoXi then we should generalize the spin formalism 
developed in the c.m.s. to an arbitrary coordinate system x). This 
problem is just considered in this work. 

Our consideration will be based on the diagram technique arising 

in the covariant Hamiltonian formulation of quantum field theory 16~ 
Note that in this formalism the covariant three-dimensional equation 
was earlier obtained for the amplitude of fermion-antifermion elastic 
scattering 191. Using this equation and the fermion-antifermion wave 
function defined in 191 through the scattering amplitude,the authors 
of /9/ deduced an equation ·for the spin wave function for the c.m. i· 
In this connection, in Sec.2 we present the derivation of a covariant 
equation for the fermion~antifermion wave function by using an equa-
tion 
case 

tant 

for the vertex function, like it has been done in the spinless 
in ref .110/. 

·However, for practical application there still remains an impor­
problem to be solved: is it possible to construct a covariant 

spin equation which would contain an interaction local in the Loba­
chevsky momentum space? This question is answered in Sec.J where as 
an example one-pion-exchange amplitude would be considered. 

2. !~on_!:Q.L!LID:!!!:!!!~-l!!-Y~~ctiQ.!L~-k2~!l!!skz_g!Q.!!ll:z 

Following ref. /lO/, we proceed from the equation for R-matrix/6/ 

~ d' 
ll /.i "' ; .1 '< ) = -Jlt:n -:;a) -j':;lf'p r- :1 7J). "'L fi( ;fl r; . ::1 r J< 2 • 1) r- :277/7:;-,<J , 

p 

related to !Hnatr~x by ,J'=.i.+<l2(,·c), Rfc;·o)=.l(f':lr;:Jr)/T='<''=a 
Here r;/1 P.7::) is the Fourier transform .of the interaction Hamilto­
nian; .A , the unit time-like vector xx) }A.!'= .:f with au '7 o . 

Equat~on (2.1) can be written in the operator form 
A 

.R. 
1\ "" .., ..., 

= - 1-1 - 1-1 G~ ,.£ 

x)It should be noted that the covariant e~uations for the wave 
function of a two-fermion system were also derived rtthin a single­
time foxmalism in rer./81. 

xx)As for the formulat~on of eg.uat~ona wtth J vector belong~ng 
to the light 'cone, i.e. 1 .A;e - 1 :z:::: 0 , see papers /ll/ 
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where the operator matrix elements are defined as follows (in the 

space of absolute values of the spurion momenta. j:Arz-1.:?.. = "t"' ..z ) 

<_cz:l R Icc'> = 1Z f.n:; :;."''); <..-r/N/7:') = <;/I/J7:-::A7:) 

I.'<- I Go/'1:') = {27T('"C'-t£)j-t df?:- ?:'). 

In order that the equation for the wave function contains the 

same kernel a.s that one obtained in / 6 , 9/ for the scattering ampli­

tude, let us perform one iteration of the operator equation and 

make one substitution -L 
R. =I<.'- /.i.- 1-f{;!ofiC-o} fl. 

After this we come to an equatbn 16/ 

n' 1 
""' ~ k,._ + ,.t; c.. R. ( k~; 1/G.J-1) · 

Further, in the spin case we define by analogy with /lO/ the 

vertex funct:1.on r ~: (pi.J/'.a /P; aT) as a matrix element of the opera­

torR lji'<)•R/J<r; o} ""(primes wUl be omitted 1n what follows): 

ZjfSJ.;;; ~ I R. ( J.-7:.) I 9_, M, ~ tn:;> = 

=(hJ~ J 11
;(:P- f'rAz o"-J F 61 ~ , I 0 ) 

V
:Z1J . :!,my i/'<,f'.< Y,J«-' 

:Jo · /2,4 0 
·:ZJ.,, 

(2,2a) 

,.., 61.5< r 61 r s c 2. 2b) 

I !f,"':t J1pJP. J7:)= u" !/,) "1'(;.~,;./J}::~?:/Y;"':~)v;"!j'•). 
-+ 

Here/~H;~ l'n.J) :1.s the state vector of a composite system Wi\h mo­

mentum §"'" , mass.f/::::. YJ;.t- JY-2', intrinsic moment~ (sp:1.n)~ 

and its projection m1 onto the ~ -axl.s; }.i. and j->:z. are 

momenta of the ferm:1.on and antifermion. In representation (2.2b) the 

fermion and antifermion are described by bispinors v~GJ(;)a:n.d "Z/J,e;(f>) 

{ot
1
f = :/_.:!1 3 ..... ./1. j 5L, s;;_ are polarization :1.nd:1.cea ~qual to "!:. ·iJ.z) 

which obey the normalization conditions 

ii.,"i.(t) 11""' (p): .?m J.';c.; , i,"" (;,J Zr5f;>) ~ iln. 4; ~ · 
The argwnent of r -function in (2. 2a) oonta:1.ns the 4-vector .AT 1 

which signifies that the vertex function f7 f.PL_,_,ba. / ~ .;l z:) 

is considered off the energy shell. Inde.ed, a.t .A=- (L_. o--J '"2:"'"'" 

= dt - (;cL +,tO.t.)o J so that to the energy sh~l.l ?"'":::. 0 corresponds. 

The normalization of state vectors will be chosen· in the form 
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Passing in the r.h.s. and l.h.s. of (2.1) to the matrix elements 
of Rand the product KR taken Over the same state vectors as (2.2a) 
we arrive at the relation between J7 and matrix elements of the ~ ~ ~ ;--type.(..e.~61_,1c'-tG;_,., ...... .C4 B;_jR :P,I'fj·.':/_,1?1!r>7 _where n."' .2~3 ....... 
For an,y matrix elements .( i; 6J. _. .. •. . .R:.. &-,_ / R / :P .. 1'1_.· 7_, l'nJ > with the use 
of (2.2) one oan, in turn, obtain analogous integral relations 
which form an infinite chain of the coupled integral equations. 
Applying further a technique de~eloped in 161 for successive elimina­
tion of such matrix elements with the aid of other e/uations of the 
system 1121 we can write in the matrix form (of. /G ): 

1.fi s;_,/';-r;;. I R fJ "- J !f!;""fr>·:r_ "":r> ~f.v;f E. f ~6i' ,/';6;; fcz.J) 
}:;(~<z:>J.'7::,)/k;-1J!;_,p elk"; ,J£; /z; /.k,~:J i!" ~ '1<.(;-z-)/?#.:r .\ ---cc-:--;,-.- '.f 'i.> .:z ;zl' .1.. ., ... ,mJ/, 2:{ - tE 

where the kernel 

i 

.i-

contains the projection operator /72 on tw;o-particle states /:z>:::: :/k!;4, .t:_ .V,z /' • In the lowe.st order in coupling constant 3-
the kern-el }\:: coincides with the one-boson exchange matrix ele­
ment. It should be noted that 1f the constant ~ was chosen so 
that the matrix element k.R.. would give the one-boson-exchange 
potent~a~ providing attraction in.the fermion-antifermion system, 
then the subsequent term of the kernel k:a. GQ (i.- [!It) lc:~- being 
proportional to ~.2. , will, as in /lJ/ , result in terms involving 
repulsion. · 

Introducing the notation 

<ho;,p-;.-.._IIC r_,..,,.::>...,,)/ ~.:;,_, ,;;;:.:;.._>:. c~1TJ" S''~r~"', ... f,+p.--"r-'1-~J 

and inserting it and (2.1) into (2.J), we arrive at the ·eqUation 
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6j6"j; (; 

In 1.91 it is shown that the kernel in (2.J) v-{.J;Z. f'L,/'.t.._;JT/1'5t/C.z._:_:A7:.£) 

is a matrix element corresponding to the sum of all irreducible 

(in the sense of one-spurion and two-particle cuttings) diagrams 

describing the two-fermion interaction with a given Hamiltonian 

H(p). Graphically, equation (2.4) can be represented as shown in Fig. 

1 where dotted lines denote the incoming spurion with momentum ~~ 

and spurion propagator {7::. - ,·E:..) -.f.. • Inner spinor lines in a 

diagram technique of Kadyshevsky correspoxid s+/K.t.} and ,.f"~(k.t_) 

functions. 

P, 

P, 

r v G, r 

Fig.1 

In what follows we will choose the direction of the unit ~ 

vector along the 4-momentum of a composite system11.e.,equal to the 

system 4-velocity / 6 ,9/ 

?r = J?r /y 7'• = 0- I H 

Note that in (2.4) integration over momenta of internal partic­

les runs over the upper sheet of the mass hyperboloid 

.t'..,.z- ;;.z = fn.z. (2.5) 
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rvf<) and the additional 4-vector d in a 't -function ensures the 
escape off the energy shell. 

In (~i> we t~e advan;age of the invaxianoe of volume elements d.O"'. ~ %· & IK;) d fl<; - """) in order to pass, in them 
and 'JV -function argument, to the vectors (_k,j/'~ f Atfo k;JI'', .-f where J~~ is the Lorentz boost to the rest frame of a composite 
particle: _/[_-;, :J): (N_, if} , so that, for instance( As> =.A?.p) /i~/ 

.- /A-£ J: r -- ~~:. - k;:Jiz ,c.i. ... ( .... !J> k.L - K.t..,~ln;;,:J" -k..t -l');l;l.1'L:..c..(e> ~(2.6) 

~). = (A-; k 1 ). = L1 ;,, ~».A.? = Jim"+ ,¢• = 1:!/'.A.!i'.f" 
r.V, . (2.7) cf(i'r :JJ -:4-.'P ~ _ k" -~cJ = t rrL- J:JA-;, 0 _ A-;r~·:J= 

= J''f!1- ~- fkd- (~c;J}· yr.)r;cj + ii) (2,8) 

The spatial part of the vector k j JA has the meaning of a covariant 
generalization of the momentum vector of a particle in the c.m.s. 
introduced ear~ier in /l4/ • Indeed, as 1s seen from (2.8) ;;:-=- A!: 
that because the vectors (.J0).r are on the mase ahe.l~ the equation 
(2.5) ensures the equal:l.ty of :l.IlV"ariant time components {KJ = ~),. 
In what follows we shall supply wi.th the index zero from above all 
the quantit1.es representing the covariant general:l.zation to an ar­
bitrary system of quantities defined in the c.m.s. 

After integrat1.on 1.n (2.4) over tli K.: and d'r.t we get the 
equation ~ · 

;"i"Z. / j9 ) d '}1 f ,IJ~ i :J; m:r 1/'Lj>~ 'C/..7: ;(~)'L...J -.- · • (2,9) 
~;>?. .2/kJ. ~J./?t -.zr4J.,-/V 

Vs:t~ 

· -!} ..:> .. f ~''PA;· .1 '1:' 1 ... "'>,.. ; .?.'Z"). ro}>i /,._"'A;. ;t!J a ·J :J; ~n:y I , ~ ~ r ' 

where '<,< = .N- £. (;;,) c ; 't' =. H - :Z (',b" )• 
and the quantities .lc.t.. and k.t in the r.h.s. are oonneoted 
nth (!C'u )~by the transformation (lc,_:z.)l'; {A.:? ~ ... )"~" 
and .t)' = £ r-k"'J. > - ;t;j. 
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In the next section we shall need some quantities which Wi~l 

be considered as the covariant generalization to an arbitrary refe­

rence frame used earlier in refs. /l-4/ for the 'c.,m.s. objects from 

the Lobachevsky space /.1 5/, realized on the upper sheet of the~hyper­
boloid (2.5). For instance, the vector considered in/?/ as the 

.,.,... ~ x) 
difference of two vectors ;6 and ~ in the Lobachevsky space 

(or the transfer-momentum vector in the Lobachevsky space) 

-- ......... ~ / f. ~ p ---- ·; 
k<'-Jb =: LlK" = cA- Jc) = Jc --(ko-~ (2.10) 

/ -:Jr f )J7 ,h?+,.Oo 

and its time ·component ma,y be introdUced alro for oovariantly defined 

vectors of the particle momenta in the c.m.s. (2.6) and (2.7) by the 

relations / 17 I ";"' ~ 
o o 1!: r /. 1ci ·A ] 

lfiA "' ,c;(-Jjt = K7 -,. L f k.t), - ;, + 1/0~ (M1) 

(2.12) 

In analogy with the oonairuction in ref./3{ of the 

mentum out of the transfer momentum vectork' ~J j? 
half-transfer momenttun corresponding to $ €-) r 

half-transfer mo­

) we def:LII.e a 
as fol.lows /l8/ 

~ = { .<::7>-; ;;-;-} f~-=-f-r~--m~.-----,---, 
"'- m +- ( LJ.{ ' ) } 

'"LJfJ. () 

J (2,1J) 

Since, as has been mentioned, in accordance with (2.8) 
,...!,... .s- --- ~ .,. ., 
kL~-kL=J< j,/>s~-;;:~p J 

in any coordi-

nate system 
then 

- .<f;<-J/Z= -f.<!;r-;j;}=-.fL~r. = 

0. -4-- ~ 
~ = - ~ ~ """ • (2.15) 

Four- vector (/'~z)"'' = (A~ A,)J"' and (K~._) -;elong to the same 

mass hyperboloid (2.8) as vectors ,A,.:z... and k..:(,.Z. e/u. Therefore 

they can be parametrized by spherical coordinates as follows: 

x)In aontrast to the Euclidean difference of two vectors ~})'the 
difference 1n the Lobaohevsky space will be denoted by Symbol (-)111 
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(/). = In ,A'.}(,. 
-' F= me; dh ;;=£ (2.16) -' I ,Iff> I -' 

(k}o ~ h1 c/y.._ lhP;d~"'" ./ 
. 

fr= ..... - ):::--- (2.17) 
--' e..,- I /C...._ I 

In these coordinates the equality (2.12) represents a formula for 
the cosine of a compound angle in the Lobaohevsky trigonometry /l5/ 

c~ Yd" = V L r ( .t-r;, tp~ ~ c-4 ~? - s; /7~ , s~ (e: e;) 
and the relation between the momentum transferred (Lf)o = Me£~ ff ~ ;, ~ ,s' A'.7:, and the half-transfer (2,1J) takes the fom 

(~ ). = ht c-1 f(z• ) = '"' Y"' -r 14,;e)o 
"""' 

The four-dimensional transferred momentUm squared t -;::; (,k; -p) 2 

is expressed through the momentum squared in the Lobaohevsky space 
as follows: 

i = (k -pf = f?m~ -dicJ = £m" - £ (A;,;'"-)/:1j,) = 
r----"--·~ J> .1'(2.19) • 

= .z.n~- :u!l'f~ =2m"- :2m (m~r /11!-f--J)'-/ ~ 
= -fn.i - k, /1/J?:z ~ (J;{;r f 

In view of (2,19), (2,13), (2,.18), the invariant Feynman pro­
pagator assumes the form 

i i L 
/"~ - (1 -"'-y = /'~-2m• .._.t,JI~n'-;fi'Jjf /"-~£~ 'c2.20) 

In the nonre.lat1Yistio limit Zc-)_P-;-;>...,.; ~-- ~-/>-:J.iz . 
The wave function of the system of a fermion and antifermion -- -with momenta k1 and K.z .> spin p~rizations ~ and ~ , whioh 

fonn a bound state with momentum P mass M total spin !/ .> ) and its projection onto the ~ -axis~)?_,. /will be given by the 
fonnula 

o2 Ll~ "''?? L M - .2LI.; "'~- , .. _/ 

8 
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The substitution of (2.21) into (2.9) changes the equation for the 

r function to the form 

2.Ll o / • ) n/~615;; / / 0 (2.22) 
.k_.m:;~9 ( fo! -..:Z Ll..tjm.Af' -.::r tmy ( k.:tJ /..>..2 Y J ':)5'f£)= 

- _:!__ E j ~~-::; ',.;.~ s;€1 · / / d. 

-1Gily ~ ..<=• ; . V '>!tv"(x_.r/,.t-~; :~7 r/-".t/"G;.:I.r<?".J 
., '- -,_ c:?Ll.c;,::>y . ,..,,_.,,..,. /,<-/ //..'"" z-'i 

'.Y. !I h7:r { "':..{_. tS ./_;qp / 
of the equation obtained earlier 191 for c.m.s. ' As it was shown 

in/16/ eq.(2.22) has the same rorm as the spin equation that was 

deduced in the framework of Logunov-Tavkhelidze single-time ap­

proach. Equation (2.22) can be considered also as of the generali­

zation to the spin case of the Kadyshevsky covariant spinless 
equation/6(III),17/. 

!!ll!:~~!2n 
-6.l6j / 

Let us consider the kernel of equation (2.9) V ~..J.z. /)'..t.,P~_;:Az} 
) k1;~c.; ) :l:r..t) in the second order in coupling constant corres-

ponding to diagrams drawn in Fig.2 (annihilation terms are omitted). 

For the Hamiltonian :fr:n.t =j: 'Ji:fx)Jo '?j(X)!//x); this kernel 

has the form 191 f. = (k, _ ;"'-)'" : 

\[ ~~ 
6>) .Jf.JL fi<,J~; a"' 1~, *~;::~-r;, J = - v· -I. j (r- rr._/--

-1 (J.l) 

. [f r'l: n,) + &'- t+f r'L-'l:sJ .u .. 'frHs-u,)•r~o,J· /jjr/C~l 0, u"'fr~. 

a) 6) 

Fig.2 • 
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In virtue of the conservation of 4-velocity of the system/6{IIY/ 

- (h.+)<,.) 
- v (k:; ->k,j"-

and the conservation of 4-momentum (including the spurion lines) 
)'J-+ P> -?.'! = lei.+>;,- ;) '<";. which gives the relation '1:"- ff, = 'r,_- {"fiK 
transforms on the energy- shell It'-= rt' L -::: 0 into the Feynman matrix 
el ernent 

Spin structures of matrix elements (J.1)and(J.2)are identical. 
because additional spurion propagators ( "1: i. - ~·(. r~ appear in the 
Kadyshevsky technique as Fourier transforms of entering into T-pro­
duct scalar B[x~-y"]functions written in the invariant variables. 
Therefore, we first consider the spin structures. 

T.he bispinor ~ {p~) x) entering into (J.l),(J.2) can be 
expressed through the bispinor in the. fermion rest frame 

(J.J) 

Matrices ,S'(!P} and ~ {J.i) correspond to the pure Lorentz 
transformations --

,..5";/>) = YfJc-'m) /£;, (:/ + o<.j> /_Po -l-1») j ;;[~Jc?, 
which do not compose a group. Their product is not, in general, a 
pure Lorentz transformation onto a resultant vector, it rather 
contains also the Wigner rotation -v-/A.~..t:} defined by 

x) 

Bispinors 1/:s(·c) and 'V 0(JC) enter into the spinor-field 
expansion over the creation and annihilation operators as follows: 
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where Z is a uni. t 4x4 matr1.x, and the matrix for 'the Wigner 
rotation of spin 1/2 has the form 114 ff)/ 

As a result, the formula (J.2) can be rewritten in the form 

A similar result fol.lows also for johe term jF {J, /;: .. ) {s -zrB:,(o~) 
-c - ""L/. ,). if by the transformati.on 1.r:::: C V _; 7r ';:' Vc~ C- f C;:fod2rne 

passes to the charge-conjugate b:l.spinor 1A c of ~e s~e form as 1A • 
In rtrtue of the dependence of matrix ,S (§Jj on o<=J"'(it may be 
interplaoed with trs . As a result 

where the aux:!.liar;y :function .J:> f4 (V -~"""' ..... ~ .tf;,,~"':Ja>)} 
beoomes ths function ?Syy-yA,.> j>)} of the c,m,s, p~a­
metrization /J.-J/. Further, fo.llowing the results of ref. /l I, 
the expression for the amplitude (J,2) (and for (J,4))will be 
written in the form 
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(over the repeated indices x) summation is implied), where the 
matrix element remaininP, after separating the Wigner rotations xx) 

has the ''absolute form" (see /J/) and depends only on the vector of 
4-

half-transfer momentum ~ • This fact will be important for con-
structing from (J.B) of a quasipotential, local in the relativistic 

configurational representation, in an arbitrary reference frame. 
Note also that according to /l9/ the Wibner rotation has the 

x) In (3.7) somewhat co~plicated notation is introduced for spin 
indices, however, it is convenient for interpretation. Namely, the 
momentum in a row with the spin polarization signifies, e.g., that 
this polarization index is "sitting" on the moment~(f f."t ~if' eC-o/. 
xx) 'UG"(o) =-~ {~f>J56-) , where 3.,:;--- are the two.;oomponent 

Pauli spinors with the hormalization condition $~§s-t = J;-6'1 • 
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geometrical meaning of the angle of rotation of the spin vector that 

occurs after its parallel translation along a closed triangle in the 

Lobachevsky space. 

,..Ql!!Q1~ 

Let us summarize our results, In Sec, 2 the covariant three­

dimensional equation is obtained for the fermion-antifermion wave 

function with the kernel defined by using the diagram technique 

appearing in a covariant formulation of quantum field theory. In 

Sec , J from this kernel in the one~eson-exchange p.pproximation we 

have extracted the part local in the Lobachevsky momentum space, 

Our further task is to transform eq. (2,1.1) to a form, 

that would contain only the local part of the kernel given by (J,8) 1 

and then to write the equation in the relativistic configuration 

representation. 

The author expresses his gratitude to V.G.Kadyshevsky,S,P.Kule­

shov, A.V.S~dorov and I.L.Solovtsov for useful discussions and the 

interest to the work. 
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