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1. Introduction 

The potential models of quark interactions were used since the 

beginning of the quark theory of hadrons/1-J/ up to the present time 

(see, e.g.,Refs./4,51). In particular, application of the nonrela

tivistic potential formalism to the heavy-quark bound states 

( 11 quarkonia") turned out to be very successful/61. Extension of the 

potential picture to the light (~, d, s ) - quark dynamics presents 

an alternative to the picture of the quasifree motion of relativis

tic qUarks in certain bounded region of space, which is known to 

underlie the bag models/7-91. To get more insight into the dynamics 

of a composite relativistic systems, an adequate description of the 

multiquark (primarily, three - quark) systems may be crucial. Having 

in mind the difficulties in dealing with the relativistic multipar

ticle systems as well as uncertainties in our present knowledge of 

quark potentials, we believe the variational approach to be, at this 

stage, the most suitable and economic tool in investigation of the 

dependence of various hadronic observables on free parameters of 

theory. For this reason, we employ the variational method for a 

unified approxLmate treatment of both the two-particle and multi

particle bound systems. For mesons (i.e., the qq- states), the nu

merical solutions, whenever available, of the exact. relativistic 

two-body equations ( e .• g. 1the quasi_-potential equations/10 • 11-0 may 

be used as an accuracy teat of the approximate variational calcula

tions. For baryons and exotic multiquark states, the nonrelativistic 

quark model is fruitfully used in line with the relativistic, 11one

particle-type11 bag models. SUccess of nonrelativistic models in 

predicting many relations between the hadronic observable& looks 

rather paradoxically, because the velocities of the consti tu.ent quarks 

have certainly to be relativistic. This work aims to offer, besides 

simple and, hopefully, effective calculational approach, some argu

ments underlying the phenomenological utility of' nonrelativiatic 

models. We shall not assume the velocities of constituent particles 

to be small. Yet, the energy functional constructed in Section J has 
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apparently quasinonrelativistic form and by redefinition of appropriate parameters may be identified with the well-known nonrelativistic expression. This feature of the proposed scheme enables us also to attain the favourable balance between a comparatively simple treatment of the multiparticle aspects of the problem, analogously to nonrelativistic approach, and consideration of motion of constituent quarks relativistically, the feature used to be dealt with in the framework of the independent particle models. 
2. Quark Interaction Potentials 

A) Two-body qQ - potential 
To perform calculations, it is first necessary to fix the Lorentz - Dirac properties and radial dependence of the qq - interaction potential. The potential should ensure the quark confinement and be consistent, as far as possible,with the known or expected properties and peculiarities of the fundamental field theory - quantum chromodynamics (QCD). According to QCD short distances are dominated by the one-gluon exchange, i.e., as Q'L-+ o0 the vector potential in the momentum representation is 

\/,. (Q~) ~ c Q. ... tn. ~:T' c2.1 > 

where A is some unknown dimensional parameter. Richardson/121 has proposed an ansatz for extrapolation of (2.1) into the region • of small Q ( i.e., long distances) by means of the change tn, Q~ ~ln..(.J+"G/A'l.). As a result, in the coordinate representation the potential .Q,as the asymptotic behaviour"' ('ten, 'to) -I and "' 't. at short ( 't.-+ 0) and long ( 't-.oo) distances, respecti-vely, and at the same fixed A well describes properties of "J/~J~ and Y -mesons. To .see at which values of 't. the asymptotic regime sets in, it is convenient to consider the analytic approximation 

(2.2) 

' The conditions of the continuity of V('-) and V ('t) at points 't..:. 't 4 ,z reduce the number of free parameters in (2.2) to 
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on~. Constant C is assumed to be known from QCD: the one-loop 

approximation to the gluon propagator gives 

where· 
mass 

Other 

rtf is th~ ;number of" "effective" quarks, i:.e., those with 

m,~~ '/'(,,. 
constants in (2.2) can be ;·expressed, e.g., in terms of a..~ 

e 2..,. -;::. "t:r.. -=- .i. ( .!1&. ) 4/1... 
'to = \.-1 e 2. atf 

t c I c e'a.~c )''~, 
where e 2,718 ••• is the base of natural logarithms. 

region of" reasonable values of a.v corresponding to 

(2.1) from the range o, 1 ~A~ o·,5 GeV the values of" t-1 

vary within limits 0, 22 ~ '(..1 ~ 0,44 f'm and 4,4 >,.. 'L1.. 

(2. 4) 

In a 
A in 

and 't-z.. 

>,:. 0,88 f"m, 

and therefore the wave functions of most hadrons should be expected 

to concentrate mainly in the range of action of the logarithmic po

tential. Further, considering that the approximation £n, 'tfto ~ 

-;:::- t ( t.A:o- 'l.,/t) is well enough. in the range t,.f ~ t.. ~ 't2. and 

has a qualitatively correct asymptotic behaviour for 't. > "Lt. 

and 't. <.. 'L1 we take the expression 

v ('t) 
v 

(2. 5) 

as an approximate representation of Vv- ( 'l..) at all 't. • The 

constant ~ ~ C is independent of av and at n.f = 2 CJe, :::..0.8. 

In addition to the vector potential, qq- interaction should 

involve also terms with different Lorentz - Dirac properties. 

Starting from pioneering works/1-.3/ a possible role of the· sceJ.aX 

interaction potential is repeatedly discussed i~· current literature. 

It seems worth noting that the evidence for insufficiency of only 

one vector potential comes from an old theoretical work/15/ repor

ting. the absence of discrete spectrum of eigenvalues of the Dirac 

equation with pure-vector potentials of confinement. The Dirac 

equation may be used for the approximate description of properties 

of two-particle systems composed of one "very heavy" quark (e.g., 

b -quark with mass m.., ~ 5 GeV) and one light quark ( m'$-::::.o ). 

The very existence of such mesons together vdth assumed validity 

of the potential approach testifies to the existence of the 

universal scalar potential of confinement. From QCD it should be 

expected that the role of the scalar potential will diminish, as 



't.....,. 0, compared to the vector potential. For simplicity, we take the simple linear r~dial dependence of 'Js("t) at all r : 

\ls\'t.) ~ Qsl-· (2.6J 
Analysis/16/ of the spin-orbital splitting of Jp 0,1,2 -lev-els of 
charmonium agrees with·the approXimate equality Cl.s -:::z. a..~ • Thus, formulae (2.5) and (2.6) fix our "working" qQ- potential which we 
consider universal,i.e.,indep.ende.:tlt of the· flavour quantum nuillbers like isospin, hypercharge, charm,etc. 

B) Effective interaction of quarks in many-body systems 
According to QCD and confinement hypothesis, all the hadrons 

are singlets, (anti) quarks are (anti) triplets and gluons are 
octets of the colour group SU(J)c• The one-gluon exchange poten
tia~of ~quark two-body interaction contains the colour factor ( 1\t • ~J ) that fixes the strength of the Coulomb interaction of an i-th and j-th quark in an arbitrary, colour-singlet system 
relatively the Coulomb qq - interaction in the meson. Relation of this kind between the phenomenological qij-potential _and quark 
interaction in many-body systems is,in general,unknown. As a pos
sible ap·proach to solve this problem we resort to the self-consistent field method. Let us eonsider an N - quark system, being 
a colour singlet by definition, as a quasi-two-body system composed of a colour point-like triplet ( i.e., quark ) and spatially distributed colour antitriplet, consisting of (N - 1 ) quarks. The radial dependence of interaction of the quark with the volume element of the effective "antiquark" is assumed to be known according to 
the hypothesized independence of the qQ - interaction of particle 
flavours ( that is,the baryon charge, isospin,etc.). The expectation value of the potential in a given state of the whole system is expressed via the same parameters we introduce to determine the 
wave function of the N - particle ~stem, and define, in the variational approach, through mi!U.mizi.ng the energy of system. Consider now this scheme as applied to the )-quark state ( baryon). The potential V(1,2,J) dependent on quark configuration variables is represented by 

V(<,2.,3) = k"[V(<;2,3) + (.< ...... 2.) + (H .. 3)]. (2.7) 

where V( i; j, k ) is the interaction potential of an i-th quark 
with a spatially extended ''antiquark" f.orm.ed of j-th and k-th quarks and factor K is included to get rid of possible multiple counting 
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of the same terms (for instance, K = ~/2 it each term V(i; j, k) 

is reduced to the sum of two-body potentialsV(i, j ) and V(i, k)). 

Each term in the sum (2.7), e.g.,V (3; 1,2) has the form 

(2.8) 

where ~ 1 
is the radius- vector of the volume element of the 

colour antitriplet compos_ed of 1st and 2nd quarks, V0 stands for 

our "fundamental" q(i- potential fixed in the 

We assume that the distribution function 
preceding section. 
I'( '1-) of the 

colour charge is spherically symmetric, obeys the· unit normalization 

condition and has the form 

~< .. ) ~ t) ~ o~·,· l'l't :t;. ot:s;l:c st~-T;.') + sc;z -?~~, (2. 9) 

,,f(~ ~ - ) 
where -:I:: 't.1 ,'r.L ~ 'Ll · . is the symmetric ground-state wave function 

of the 3-quark system. 

Consi~er the expectation value of V(3; 1,2) in the ground state 

of baryon 

<."<~;<,2.))~JI'!:'<?;).;t-[v,Ciff>.',+ 11;1) + 

+V, (I Jf>.',- ~s;l)} !"±'Cf..~;)J" <lf:J"5:,dyJ)::, (2.10) 

where we introduced the Jacobi coordinates 

(2.11) 

and performed integration eliminating the b- functions. 

As a first approximation We take now a test wave function in the 

factorized form 

(2.12) 

the factorization being fulfilled for two other possible sets of - - - ....,. 
the Jacobi coordinates ( 't" , ).1 ) and ( 5>2- > ).z. ) resulting 

from (2.11) by the change of particle indices. In this case one can 

obtain 

(2.13) 
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without specifying the form of functions ~ and :i_ in (2.12). Allowing for the factor K "" i/2. in (2. 7) we find that on the class of test functions satisfying the condition (2.12) the complete potential can be written in the form 

3 -V(i,2.,3) =L. v.( ... ,j). (2.14) J>i=l Generalization to the N - body case is 
the normalization factor 

f/N-i with the same 
~1z. in the 

straightforward: replacing 
formula of type (2.9) by 

considerations we get 

" V( 1,2, ... N) ~ Nl-1 "f~,V,(?,J) 
condition of factorization of ¥ (f., .... 0 ) ' J N-1 

under the 
either of the Jacobi coordinates 

~ -i/2. [ ... .... .... J I' = [ntn+<)] · L 'tt - n-1-._. n.. 
l·-=1 

(2. 15) 

in 

The potential (2.15) can be used at the first step of the iteration process. Next steps will give rise to the effective many-body forces. Note one more Lmportant point. 'f.he presence of a! - functions in (2.9) is equivalent to the assumption that the colour charge in the baryon is carried out only by point-like quarks. Assume now that the instantaneous distribution of the colour charge in the effective anti triplet represents a "string", i.e., the charge is uniformly, for simplicity, distributed along the straight line between points 1 and 2. In this case, even in the zeroth approximation, that is on the class of factorizable test functions, we hav~ .. 
( IT- s -) <.V[>;<,2.))• t<_{Js V,(\~2 :\,- >12: Y,j ' 

where scalar parameter S varies in the range -1 ~ S ~ .,., defines the coordinate of a point on the string• t (S) '(~ - ...., = z 't 1 + t2.- 5 ~2. ). Integration in (2.17) leads in general complicated )-body potentials. 

(2.17) 

+1 and 

= 
to the 

In the following we con:f'ine ourselves, while carrying out calculations, to the simplest case of two-body potentials (2.15) of eff'ect·i ve qq - and q'i] - interaction in many-body systems. 
). Variational Approach to the Desc_ription of Relativistic Systems 

Let H be the Hamiltonian of a system of N particles with a two-body interaction. Define operat9rs k. by the equality 
' 
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A . 

t\ ~ ~ T, + ~.VC")) s 4= ~. ~ i;:.[T, + ~ '?: VCi,j)J, 
~ ~(,l ~ t. J(*l) 

(J. 1) 

where T(V) are operators of the kinetic (potential) energy. VIe 

consider the standard variational problem of finding the minimum 

of the energy functional 
rJ ~ 

(. "'¥\ H \ 't) = T. Z "¥1ft., I'¥)....., exh (3.2) 

..... " 
on a given cl.ass of normalizable test functions 1f:'" • Let £c.. be 

a one-particle energy which corresponds to the expectation value 

of hi and has the meaning of the Lagrange multiplier. From 

the obvious inequality 

(J.)) 

we have 

Now we make a physical assumption on the approximate stationarity 

of the one-particle energy. If this is really the case, then the 

left-hand side of inequality (3.4) is close to the right-hand side 

and instead of the initial energy functional (3·. 2) we can consider 

the expression that is close to and majorizeS it 

tJ < I ._ r"-
L Z ~ \ 2.£· \. E, + n., ) \ Y) --> ext'(. . (3.5) 

t=\ ~ A 

Let us now specify the form of Jl~ allowing for the relativistic 

f• 
nature of the system. For ~; the ezpression is postulated 

which results from squaring of the Dirac operator for a given 

particle moving in the external field of N-1 fixed centers with 

the coordinates of particles of the sys·tem and subsequent transition 

to the two-component formalism. To illustrate this statement, we 

write down the one-particle Dirac equation with scalar (VB ) and 

vector (V v ) potentials 
(3. 6) 

Squaring it we get 

<. V'- + l.,+ v,)'-- v~ + 2EV., • -- --- 'Z. 
-, (ot·':)Vv + 'J>(ot·V)V

5
) o/ = t. t. 

(J. 7) 
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The extra components of the wave function can be eliminated and the two-component formalism is 1ntroduced via the definition of the chiral components 1.\tR(L) and two-component functions "f and X. 

(3.8) 

As far as the spin-orbital term in (3.7) originated by the scalar potential Vs does not commute with y ~ , thus preventing decoupling of' 'fiR. and '1-'L , we restrict ourselve; to the "zeroth" approximation in all spin effects and identify ki With the operator in the left-hand side of the equation {J.7), where all sp~ terms are omitted. Th2s is then the operator of the Klein-GordonFock one-particle equation. With the formula (2.15) we obtain the energy functional of the N-particle (quark and antiquark) system 
/ _!:I. < { < -.:• [ < ""' v ( .. ]~ E : <... 'Y- \ L zc £, + r, + "'' + Z(N-<) "--. s '•J) -p .. o i.="' c;...;. 

l(t-l) 

(3.10) 

where '£.-p.0 ( Y: , ... 1N-\ ; {d.) ; { Et)) are test ""ve functions dependent on (N- 1) Jacobi coordinates, with total momentum of all particles P = 0, { cl) is a set of the variable para-meters. Besides {o(. )- E.L are also varied to minimize the energy. 
The conditions of extremum 

t=<,2., ... 
(3. 11) 

t. = .f, 2. ) ••. tV 
(3.12) 

compose a system of equations for defining the variational parameters. In the nonrelativistic limit, 11;,/c <::< 1, the expression. (J.10) transforms into the known expression of nonrelativistic theory 

(3.13) 
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Note, that if in ().10) we merely redefine the quantity £i and 

call it the 11 eff'ective mass 11 whose value is defined by the empiri

cal fit, then we come to an expression, formally equivalent to 

(3.1)) but with a more complex potential function. This observation 

allows us to get a further insight into the nature of the striking 

adequacy of many relations between observables, which stem from 

the application to hadrons of the nonrelativistic quark model (see, 

in this connection, also Ref./171). 

4. Calculation of Static Characterictics of Hadrons 

A) Hadron Masses. 

The hadron masses are calculated by minimizing the functional 

0.10) with 

(4. 1) 

<£. = 0.8 and «.. is a free parameter. 

The relativistic squaring of the potentials (4.1) might suggest 

the choice of test wave f\Ulctions with a singularity at 't(j --i"' 0 

and also a possible redifinition of the normalization condition. 

Reserving these possibilities we, however, consider, as a first 

approximation, the simplified version 

for the qq - system and 

-2. J ..... .!'~-·) (4.3) 

for systems with the total number of quarks and antiquarks N ~ J, 

where normalization constants E~ are defined in a usual (i.e.,non

relativiatic) way. 

The model results should be compared with definite combinations of 

masses of physical hadrons with the contributions of the spin- de

pendent potentials eliminated. Let us introduce 

M (4.4) 

(4. 5) 
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where M (o) is a hadron mass with the "switched-off" spin-spin potential VQ , ~f is the "colour magneton" of an i-th quark, characterizing the spin-dependent constant at the vector interaction vertex. 
According to (4.4), for the meson ground states we have 

>V+ p 
'i (4.6) 

where particle symbols denote their masses. For baryons, 
one l.Ullike ( 

consisting of 
'h = 'h. 

two identical C.'\-,: '\-, ~ q,,) and 
) quark, we have the general expression 

(4.7) 
where (unspecified) '( tj (B) are defined by averaging (4.5) over the radial wave function, and the readily calculable numerical coefficients L(B) and U(B)-over the spin-unitary part of the baryon wave function, correspond2ng to an approXiina.te SU ( Z..nt symmetry. If we further put 

(4.8a) 

'( t<.<. = '( '\<S (p u..,d)' 
where '[ "~ S are no longer dependent on the baryon type in the 56-plet of SU(6) symmetry, then with the factorization 

2. 
'6'1/V·Yss ~ 't <J,s 

as awned by (4. 5), we get 

(4.9a) 
Ht.-N)= i"l~"·!:)- t-(~-N-:[*+'2:') = 

~ ~ (~~"'LJ- ~("L-A) (4.9bl 

(4.9c) 
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n''l = Sl. - ...!...__. (-~.~-"L)"
'l.(ll.->1) 

, t•) "<' <•) _ 1\ + .L (b.- NJ 
''c. ::::. L..c.. - c. 2. J 

Vlhere 1\.c.lq,.q,.,c) is the charmed baryon with isospin I = 0. 

(4.9d) 

Calcu,lated values E and "experimental" (i.e., given by Ect-n.. "'s 

(4.9a-e)) masses Mto') of mesons and baryons are collected in 

Table 1. Masses of hadrons in (4.9a-e) were taken from Ref./181. 

Underlined entries were used to define free parameters: a = 0.055Gev2 

m = O.JJ GeV , m = 1.65 GeV. The masses of u- and d-quarks 

we~e put zero. For ~he mass of b-q~k we, following/191 assumed 

value Yt'lt, = Me..+ ).45 .. 5.1 GeV. Table 1 presents also values of 

"f and d... characterizing the spatial extension of wave func-

tions and values of E."- and E. t'..(1A..) • In baryons, E.e refers 

to the like quarks and E ~ to the unlike quark. Except for the 

mass of Y(g{;) the model predictions are in good agreement with 

Table 1 

Masses of the qq - and q3 states and parameters 0 • t, • e.. 
for mesons, and d. • e. t • E.u. for baryons. All values 

are in units of GeV 

Particle Y(o<.) E,(ttl ~.(e. .. ) E th. 
M(o) 

ex~ 

Jr( '1-.'h) 0.703 0,325 0,)25 0,605 2..:..lli 

K<q.;s,) 0.915 0,405 0,577 0,796 Q.,~ 

'l'(s,s,) 1.109 0,624 0.624 0,953 ~ 1.02 

l>el~,t•) 1. 359 0.579 1. 758 1.962 .1..:21 
F< (s,E,) 1,626 0,783 1.833 2.067 2.10 

~,.., (t, C:,) 2.615 2.0 2,0 ).02 3.06 

D,lq.,{,) 1.908 0.801 5.205 5-33 

F,(c,!,) 2.26 1. 01 5.22 5.40 

1(~.t.) 7.02 5.87 5.87 8.98 "'9.46 

N (<j.') 0.298 0.)19 0.)19 1. 11 1.088 

-,::('1-'s) 0.344 0.)56 o. 511 1. 28 1.27 

S(S''\.) 0.387 o. 53 0.39 1.42 1.44 

.O.(s') 0.428 0.55 0.55 1. 55 1. 61 

"'1:<('1-'c) 0.419 0.42 1.753 2.505 2.43 

"E&('I-'t) 0.45 0.447 5.176 5.932 
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exper~ent. For the bb - system the wave function is mainly concentrated in the region of transition of the logarithmic potential into the modified Coulomb potential, and therefore, the accepted approximation (2.5) fails to work. The model allows simple relations to be derived for the change of hadron masses with a small change of masses of constituent quarks. 
Let us estim.e.te the average value of u - and d - quark masses with the help of the relation ( see, e.g., ref./2°/) 

oE~(m~ ') \ '2:n1 lo') = E.,(mq,)- E"(o) = m., .-:.:__--'---. m.,_ "''\ .-.,o 
(4.10) 

between 0 -term Lll"'tol(o} in the 1t N scattering amplitude and the nucleon-mass shift due to a small change of rYI ,_ :::: :;;: ~C.m~.t+ rrtd.) :from zero to a certain finite value. The explicit form of the energy functional (3.10) for nucleons obtained with the use of Eqs. (4.1) and (4.3), enables us to get 

'lJ EN l - ~ K .!!e._ !0:. U8 "rn., m\ ~o - 1t: c.,d..., 

If we noVI assume/20/ 2rr./•) = 51+ -5 MeV, then Yl'l'j, ~ 40 MeV follows from (4.10) and (4.11). 

(4.11) 

Consider now the mass splitting of particles, belonging to 
the same isotopic multiplet, caused by the isotopic mass-difference of d- and u- quarks. Denote by liP-'bV = E(dQ)- E(u.Q) the meson....m.ass shift ( the baryon-mass shift ~ S being analogously defined ) due to the nonzero mass difference· ornud-=. md- i'Y!\.l * 0 Quanti ties b P and S S depend on flavours of particles (strangeness, charm1 etc.). The ratios of bP and bB for different particles are proportial to those of the quantities "ft...,O and 4/f~c/.. (cf. Equation (4.11~which can be found in Table 1 

b(y'w): 'bK: 1>1>,: );1)&~~:0.62.: 0.2'3: o.i5 (4.12) 

(4.13) 

From (4.12) it follows, for instance, that the mass difference of K0
- and K+- mesons, caused by more heavy mass of the d_:quark as compared to that of the u-quark, is twice that of D~ (d. C) and D; l i:<: C) e.aused by the same origin. The quantity 0( ~·w) in (4.12) stands .for the contribution of the internal u- d mass 
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difference to the nondiagonal mass of the o•w } - transitione It 

is interesting to note that despite a considerable breaking of 

SU(J) synunetry ( ~ N ~ 'b L: "- S 'L ) differences between 8 B 

are almost completely compensated in the Coleman - Glashow relation 

~· ~- - <:"+ 0 p-n..+L..-w -L +L. '= (4,14) 

derived earlier within exact SU{)). 

B) Magnetic Moments and M1-Transitions 

External electromagnetic fields are introduced in the same 

way as in the two-component theory of Dirac particles. The vector 

potential is included through the usual gauge-invariant substitution 

in the kinetic term of the energy operator (3.10) 

(4.15) 

In an external, uniform magnetic field there appears the correction 

to energy linear in field strength 1t -- - ~ 
~E('Jt):- <. 2:. ~(6,.1{))=-ft·R. 

~ 2€c: 
(4.16) 

From (4.16) it is seen that instead of the i-th quark mass the 

effective quark magneton contains £.i .Averaging the magnetic 

moment operator over spin wave functions and applying the numerical 

values of E.i. from Table 1 we obtain the magnetic moments of 

b~yons. Formulae for magnetic moments and the transition moments 

f1 ,
5

:<B(V2.''llf_l s*\Ytl) coincide in form with formulae of the 

no~elativistic quark model/21 1 with the only difference: the quark 

magnetons are defined not by the universal parameters (masses of 

quarks) but by the quantities E. i.. which are different for a given 

sort of quark residing inside different hadrons,i.e.,depend on the 

quark environment. From Table 2, Where for cojParison we report also 

results of the nonrelativistic quark model/21 , it is seen that the 

relativistic consideration makes better agreement of theory with 

experiment/18• 221. Consider now relations for decay rates of the 

magnetic dipole (M1) transitions V- P "'( • Transitions of this 

kind between 11 light 11 hadron.s are characterized by a great energy 

release, and therefore, the calculation of .matrix elements requires 

to take into account the relativistic contraction of the wave func-

tiona of moving particles, the retardation effects, etc. We take a 
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simplified scheme of calculation, assuming: that in the ratios of radiative widths unknown dynamical :form factors dependent on the photon enere;y will approximately cancel out and a remaining factor will be proportional to the ratio of the transition moments calculated for the 11unphysical" situation when the initial and final mesons are at rest. 'l'hen we can calculate the V~ Po decay widths by the following formula 

r(\/~Pi): r(w~n•r)·[}"((VP~)JZ[m"' (m;-m:)J3. (4.17) }' wu ~·v ( m~- m;::) 
For r(w-.,11°~)= 789 :!:. 92 KeV/22 • 30/ the values calculated by (4.17) are collected in :L'able ). 'l'he transition magnetic moments fA.( VP) are calculated by using formulae of the nonrelativistic theory and values of E~ from Table 1. The inclusion of the dependence of /'<ty and f<s on the mass of quarks- neighbours almost eliminates the discrepancy exioting till now betwe.en theory (see, e.g.

1
Ref/JO/) and experiment for the decays K*-"> k l( nnd l{J _,. 'l.. y 

Table 2 

tmgnetic moments of baryons in units of nuclear 
magnet on a 

Baryon tt /21/ 
NR 1-l'<t 

/17,22/ 
ftup 

I> input 2,94 2.97 

1\. -1.86 -1.96 -1.91 

1\ input -0.61 -o.614:!:o.oo5 

'i:+ 2.67 2.55 2.33!0.13 

1:.- -1.09 -0.97 -1.41!0,25 

( 1\'i.•) 1. 61 1. 52 1 82+0.25 • -0.17 .,. 
-1.44 -1.)2 -1. 237:!:o.016 u 

;:, -0.49 -0.52 -0,75:!:0.06 

n_- -1.83 -1.71 
-------~---· 
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Radiative decay 

l'i:eV. The angles 

flv = 40° and 

Decay 

*• • 
De -De 0 
1>~+ ~ 1)+¥ 

•+ + 
Fe. -7 FeD 

Table 3 

widths of vector meson!J in W1it.:; of 

of the W (.('- and '1.. ~·- mixing ore 

ep =-10°, re!Jpectively 

I th r exp 
/22,30/ 

7U?t92 789±92 

s6:!:1o 67!7 

87±10 75±35 

:;2±6 62±14 

8.6:!:1 .o 6.5±1.9 

47t6 67±9 

1,68 

14.8 

0.23 

0,011 

For the radiative decays of heavy mesons ( Jf'JI-"'7c. 0' , 1)*_.,. D ¥ , 

~~~ ~ 0 ) the energy release is small, the retardation and 

recoil effects can safely be neglected, and therefore we have cal

culated the absolute values of widths by the formula of the long

wave approximation 

~ '- 3 

n\I~Pt)= Llf< -t-1- )'-.1 mv -m•), 
~lr · q,., ~2. \. Zmv 

(4.18) 

where ~'V:: e 1J 2. E.,_ , mv(P) are meson masses. 

Radiative decays of heavy mesons manifest in a clear-cut way the 

specific prediction of the model - a significant change of the 

effective magnetons of u, d, s - quarks depending on the mass of 

the spectator qUark. A strong, compensation-type decrease of vddth 

of the l= * -'1 i= '( decay may produce. an extremely interesting and 

unexpected situation when the weak-decay branching ratios of the 

F * -meson will no longer be negligible. 
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C) Quarks Dimensions o£ Hadrons 
Let us first assume that quarks are pQif:nt-like ("bare") particles and define the charge radius <.. 'tz.>~ by 

where e,_ (i) is the i-th quark electric charge and averaging runs over the·ground-state wave function. For charged particles the r.h.s. of (4.19) should be divided by the total charge of the system. 
As is seen from Table 4, numerical values of .(_'L'l..):h. are, on the average, smaller than experimental charge radii of hadrons. The 

Table 4 
g 

dii <:"''" 
Charge ra /ch. and 

t. e>tp 2. 
(It ~h in units of' fm , 

Particle 

Jt"± 

K± 

K" 

D: 
D; 
p 

t1.. 

'E+ 

"£-
.,-
~ 

n-

~ 
(.'L') 

c.h 

0.24 

0,16 

-0.03 

0.058 

-0.085 

0.44 

0 

0.42 

0.33 

·o.26 

0.21 
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o.43±o.o/31/ 

o.28±o.o51321 
-0.054±o.o26/33/ 

o.74±o.o2/34/ 
-0.12!0.01/35/ 



way out af ihe difficulty is rather obvious and consists in supplying 

the hadron valence quarks vdth internal structure. As is known, the 

quark-parton model of deep inelastic interactions exposes the multi

component state vector of the hadron: the hadron consists of the 

"valence" quarks-partons and of a "sea" of gluons and q'ij'-pairs. On 

the other hand, the static properties of ~adrons are described 

under the assumption that hadrons are formed out of a minimal 

number of constituent quarks. For consistency with the above men

tioned multi-component picture of the hadron, it is now necessary 

to supply the valence quarks themselves ~~th the multi-component 

state vector. The dynamical degrees of freedom of "sean quarks and 

gluons are phenomenologically reflected in properties of potentials 

of quark interactions and in the existence of the internal structure, 

non-zero effective mass, and so on, for the valence quarks. It 

should, furthermore, be expected that in the peripheral region of 

distribution of the hadronic matter there come into effect the 

clusterization of the coloured quarks and gluons into 11cplourless 11 

virtual hadrons. In this sense, one may speak about a "pion cloud 11 

and masonic degrees of freedom of hadrons/231. Contributions of 

meson (primarily, pion ) currents into the hadron characteristics 

should stronger depend on hadron quantum numbers and their masses 

compared to the intrinsic structure of valence quarks caused by 

fluctuations of the accompanied gluon field. 
The relation 

('t'> + ('<-') = <.'<-'); + <"-'>' + ('<-·)~ 
p ~ ~ p ~ 

(4. 20) 

and' the values collected in Table 4 give for the intrinsic quark 

radius ('1.')'1- = 0.18 Y 0.02 fm~ ( q = u, d). 

The isovector pion current gives no contribution into the isoecalar 

combination (4.20) but should be essential in fo~ng the negative 

value of the exper~ental neutron charge radius. If we parametrize 

the meson radii by the expressions 

('<-'>. ~ <:'<-') + ('<-'-::>t 
1(+ \' 1f" 

g 
( >t') ~ !.. ;( '<') + i.. <. "-'> + <: 't') 

I<+ ~ '\o 3 s lc:"" 

('t') :-i.. ("-') +.!.. ('t') + ('t.)t 
K

0 3 ~ 3 S \<:
0 

• <.<p 
and make use of the numerical values of (.it. >-w (\<.) and 
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in 'fable 4y then we get 
= 0.07 ± 0.07 fm!" Within 
qualitative expectations. 

('t')'l- = 0,17 
large errors, 

D) Exotic Utultiquark Hardons 

and ('t'): s 
these estimates confirm 

Properties of hadrons for Which the dominant configuration is the multiquark state are extensively discussed in literature/24-271. Almost all works are based on the MIT bag model/7/. Here we apply 
<•) the developed scheme to calculate masses MN of ( not yet 

unambie;ously identified) hadrons with total number N of light 
(u- and d-) quarks and antiquarks being 3 < N ~ 12 ( N = 12 is the maximal nwnber of quarks which can be in the ground state 
with the total orbital angular momentum L = 0 and the symmetric 
radial wave function). Ji.esults of our calculation are collected in 
Table 5 where, by the "triality" principle, the state with N = 4 should be understood as (qtq2.), N = 5 - as (qitq ), and so forth. Numerical values of M~o) do not take into accotmt the spin-de
pendent interactions and therefore their direct comparison \dth calculations including those interactions is difficult. Meanwhile, 
in comparing all models vdth the real situation one should take in view a possibly serious inadequacy caused by a too restrictive way of imposing the confinement conditions. MUltiquark states admit 
the formation of "colourless" clusters out of a smaller number of constituenty quarks and for their relative motion the mechanism of 

Table 5 
Masses of multi quark states and parameters o<. and €-

in Wlits of GeV, 

N 4 5 6 9 12 
o((~) 0. 282 0.273 0.268 0.261 0.258 

H<t-l 0.323 0.326 0.328 0,330 0,332 

E"(<t-) 1.557 1.996 2.43 3-74 5-04 

<>. (S) 0.401 0.387 

E.lS) 0.557 0.560 

E"'(s) 2.16 2. 75 
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confineMent .:.ihould not necessarily operate. However, the te.:>t ~·1ave 

function (4.3) we are using does not allow for that fact. Deside::;, 

in the bound atateu containing antiquarku the proce.:.::::es of virtual 

q(i - annihilation may lead to a complex mi.xture of hadron ntutes 

rtith tbe same quantwn nwnbers but different number of corwtituents. 

These fo.ctoro raake it not u simple task to reveal n possible 

existence, in the hadron-hndron scattering channel, of the multiqunrk 

quasistationary states awl to identify their compo.::;_ite structure. 

In view of the signature, which facilitate their experimental ob:::er

va·tion and of relative isolation from other states, perr.li'tting a 

J,lQre reliable interpretation, a search for resono.nceo; formed only 

out of strange quarks and untiquarks and decayiHG. in~o "f' - uJe.Gorw 

looks enpecio.lly promi:.:lnc, e.g., ( S
2 5z) ~ 2'-P • ':'he po:..:;sible 

evidence for e::d.stence of such a state \';ith nlass 

the data on the reaction 1C.- (22 GeV) + p ~ n. + 

2. 35 Ge·f coute.s frot.l 

2 'f' /28/ • In 
(o) 

Table 5 we present several values of M N for lw.drons conctruc~ 

ted only from S(S) - quarks. One can notice the.t the difference 

betr1een the mass of (st.Sz.)- state ond the doubled mass of (SS) -

::Jtate runount.s to 0.)2 GeV that is close to the 11 experiwental value": 

2,.35 - 2 X 1,.02 = 0.)1 

2 .. 35 GeV/2S/ is indeed 

nuclear _processes Ylith 
/29/,) . t t 

ref. an Lmpor an 

GcV, if the po:.;sible re~mrw.nce \'lith rna~;n 
2..,-2. 

interpreted az the ( Si; ) - :.;tate. In 

large energy-JnoLlentwr. tranafers ( see, e.g., 

role may be played by virtual many-baryon 

clunters vJith the mean density of "quark matter". For the estima

tion of the probability of formation of such cluster8 in real 

nuclei of great inportance ia the ratio of the nverage density 

of 11 quark" matter to the usual "nuclear'1 matter. Let R"' be the 

radius of sphere vlith an equivalent uniform distribution of the 

matter density for an N-que.rk state 

R~ = 
" 

~ <.'l.') - 5 1'1-1 _,_ 
:3 N -z;· N. <:<,. 

(4. 22) 

Then, the wanted ratio 

Taking 

values 

(4.23) 

l'lp = 0.94 GeV, 
(o) 

of El'l = Nt-1 and 

varies from 3.7 

'RPt\"' 'to P.Y~ ( 1. 0 = 1. 2 fm ) and corresponding 

d.. r4 from Table 5, we find that the ratio 

to 6 for the quark states with baryon number 

varying from B = 2 to B = 4. This is considerably larger than 

corresponding values obtained in the MIT - bag model ( there the 

ratio is almost constant and equals 2). 
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5. Conclusion 

We summarize now the main results of our consideration. 1. The potential picture of the light quark dynamics together with the universality hypothesis for the qQ- potential gives very encouraging results. The consistent nonperturbative inclusion of the spin-dependent quark interactions is necessary for further development of the scheme. 
2. In the multiquark systems the self~onsistent field approximation results naturally in the iterative definition of the statedependent effective quark interactions. In the first approximation the effective two-body potential is derived, which is related through Equation (2.15) with the basic qq -potential. 3. The principal result of the variational approach proposed, Equation (3.10) for the energy functional and the extremum conditions (3.11) and (3.12), unifies the virtues of the nonrelativistic models, consisting in the comparative simplicity of dealing with the multiparticle featw-es of the problem,- and the relativistic description of the constituent quark motion. The quasinonrelativistic form of Equation (3.10) offers more insight into the nature of striking adequacy of many relations between the hadron observables derived from nonrelativistic quark models. 4. The model formulated indicates the effects of more deep breaking of the flavour unitary symmetries. We take the mass difference of the constituent quarks to be the only origin of the SU(~)flav. symmetry breaking. The qualitatively new result of the model, which reflects the multiparticle treatment of the problem and seems not to be implied by the independent particle models, is the 

quark 
variation of static 

due to environment, 
parameters 

especially by 
of' a 
mass 

given 
of the 

spectator quarks. For example, the erfective magnetons of the light quarks and the isotopic mass splitting of hadrons due to internal mass difference of the u- and d- quarks are 'Predicted to change considerably while we go from light hadrons to heavy ones. These results provide a better agreement of theory and experiment for the magnetic moments of baryons and the radiative vddths of the magnetic dipole transitions in light hadrons. The future measure-D" ~ ment of the C(~) _.,. De({) r ) Pc(l)--'"> t=!c(() y decay Widths will be crucial for testing the model predictions because here the errects are especially strong. 
5. The "quark 11 radii of hadrons, dependent on the spatial extension of the quark wave functions, are substantially smaller 
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than the experimental charge radii of hadrons. This means that 

the constituent valence quarks are "dressed" particletJ with their 

ovm internal structure. 

6. In the model considered the masses of the multiquark states 

are somewhat larger while the density of the "quark matter 11 is 

much larger than the values given by the MIT bag model. 

The author wishes to thank A.M.Baldin, A.B.Govorkov, 

V.A.Meshcheryakov, I.T.Todorov for helpful discuGsions of various 

aspects of this work. 
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