

ОбъЕДИНЕННЫй ИНСТИTYT Ядериых

 исследований
аубна

$4368 / 2-81$
$3 / / 8-81$
E2-81-265

S.M.Bilenky, G.Motz

P-ODD ASYMMETRIES

IN THE PROCESSES $\ell^{-}\left(\ell^{+}\right)+N \rightarrow \ell^{-}\left(\ell^{+}\right)+X$
AND A POSSIBLE METHOD OF TESTING OF THE WEINBERG-SALAM THEORY

[^0]1. Present experimental data on charged and neutral currents agree ${ }^{/ 1 /}$ with the gauge $\operatorname{SU}(2) \mathrm{xU}(1)$ Weinberg-Salam ${ }^{1 / 2 /}$ theory (standard theory of the electroweak interaction). It is obvious, however, that a further test of the standard theory with higher accuracy and in a wider range of energies and momenta transferred squared is an important problem of future experiments.

The experiments on high-energy muon beams are being done at present at CERN and Batavia. The q^{2} reached there is $=100 \mathrm{GeV}^{2}$. It should be quite desirable to continue in muon experiments the program of the measurement of the P-odd asymmetry in deep inelastic scattering of polarized leptons by nucleons (started at SLAC ${ }^{/ 3 /}$ for $q^{2}=1 \mathrm{GeV}^{2}$). The P -odd asymmetry grows with q^{2} and at $q^{2} \simeq 100 \mathrm{GeV}^{2}$ it becomes relatively large ($=10^{-2}$). It is advantageous to perform the experiments with high-energy muons also for they allow one to measure the P -odd asymmetry in scattering both of polarized μ^{-}mesons by nucleons (A_{-}) and of polarized μ^{+}-mesons by nucleons (A_{+}).

Based upon the transformation properties of the hadronic neutral current of the standard electroweak theory we obtain here a relation between asymmetries A_{-}and A_{+}and the deepinelastic neutrino-nucleon and lepton-nucleon cross sections. The test of this relation would enable one to test the validity of the Weinberg-Salam theory without assumptions about the strong interaction dynamics. A relation is also obtained between the parameter $\sin ^{2} \theta$ (θ is the Weinberg angle) and asymmetries A_{-}and A_{+}^{-}.
2. The effective Hamiltonian of weak interaction of charged leptons and quarks has in the Weinberg-Salam theory the form

$$
\begin{equation*}
\mathrm{H}=\frac{\mathrm{G}}{\sqrt{2}} \mathrm{j}_{\alpha}^{\ell} \mathrm{j}_{\alpha}^{\mathrm{z}}, \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{j}_{a}^{\ell}=\sum_{\ell=\mathrm{e}, \mu} \bar{\ell}_{\gamma_{a}}\left(\mathrm{~g}_{\mathrm{V}}+\mathrm{g}_{\mathrm{A}} \gamma_{5}\right) \ell, \tag{2}\\
& \mathrm{g}_{\mathrm{V}}=-\frac{1}{2}+2 \sin ^{2} \theta, \mathrm{~g}_{\mathrm{A}}=-\frac{1}{2} \tag{3}
\end{align*}
$$

is the neutral lepton current. The neutral hadron current of the standard theory is given by the expression

$$
\begin{equation*}
\mathrm{j}_{\alpha}^{\mathrm{Z}}=\mathrm{v}_{\alpha}^{3}+\mathrm{a}_{\alpha}^{3}-2 \sin ^{2} \theta \mathrm{j}_{\alpha}^{\mathrm{em}}+\tilde{\mathrm{j}}_{a}^{\mathrm{Z}} \tag{4}
\end{equation*}
$$

Here v_{α}^{3} and a_{α}^{3} are the third components of the isovectors

$$
\begin{align*}
& \mathrm{v}_{\alpha}^{\mathrm{i}}=\overline{\mathrm{N}} \gamma_{\alpha} \frac{1}{2} \tau_{\mathrm{i}} \mathrm{~N}, \tag{5}\\
& \mathrm{a}_{\alpha}^{\mathrm{i}}=\overline{\mathrm{N}} \gamma_{\alpha} \gamma_{5} \frac{1}{2} \tau_{\mathrm{i}} \mathrm{~N}, \\
& \mathrm{~N}=\binom{\mathrm{u}}{\mathrm{a}}
\end{align*}
$$

$j{ }_{a}^{\text {em }}$ is the electromagnetic current of hadrons and

$$
\tilde{\mathrm{j}}_{\alpha}^{\mathrm{z}}=-\frac{1}{2} \overline{\mathrm{~s}} \gamma_{\alpha}\left(1+\gamma_{5}\right) \mathrm{s}+\frac{1}{2} \overline{\mathrm{c}} \gamma_{\alpha}\left(1+\gamma_{5}\right) \mathrm{c}+\ldots
$$

It follows from neutrino experiments ${ }^{/ 4 /}$ that the number of s quarks in the nucleon represents a few per cent of the number of u and d quarks. The contributions of s, c and other heavier quarks into the cross sections of processes under consideration will therefore be neglected. In this approximation the electromagnetic quark current is given by the expression

$$
\begin{equation*}
j_{\alpha}^{\mathrm{em}}=\mathrm{v}_{a}^{3}+\frac{1}{3} \mathrm{v}_{a}^{\mathrm{s}} \tag{6}
\end{equation*}
$$

Here

$$
\begin{equation*}
\mathrm{v}_{a}^{\mathrm{s}}=\overrightarrow{\mathrm{N}}_{\gamma_{\alpha}} \frac{1}{2} \mathrm{~N} \tag{7}
\end{equation*}
$$

is an isoscalar.
For the treatment of the P-odd asymmetries in deep inelastic scattering of polarized leptons by nucleons it appears convenient to single out the isoscalar term v_{a}^{S} out of the neutral current $j \underset{a}{Z}$. From eqs. (4) and (6) we get

$$
\begin{equation*}
\mathrm{j}_{\alpha}^{\mathrm{Z}}=\left(1-2 \sin ^{2} \theta\right) \mathrm{j}_{\alpha}^{\mathrm{em}}-\frac{1}{3} \mathrm{v}_{\alpha}^{\mathrm{s}}+\mathrm{a}_{\alpha}^{3} \tag{8}
\end{equation*}
$$

The cross section of deep inelastic scattering of longitudinally polarized leptons (antileptons) on unpolarized nucleons

$$
\begin{equation*}
\ell^{-}\left(\ell^{+}\right)+\mathrm{N} \rightarrow \ell^{-}\left(\ell^{+}\right)+\mathrm{N} \tag{9}
\end{equation*}
$$

has the following general form

$$
\begin{equation*}
\left(\frac{\mathrm{d} \sigma_{\mp}}{\mathrm{dq}^{2} \mathrm{~d} \nu}\right)_{\lambda}=\frac{\mathrm{d} \sigma^{\mathrm{enl}}}{\mathrm{dq}^{2} \mathrm{~d} \nu}\left(1+\lambda \mathrm{A}_{\mp}\right) . \tag{10}
\end{equation*}
$$

Here λ is the longitudinal polarization of leptons (anti-leptons), $\frac{\mathrm{d} \sigma \text { em }}{\mathrm{dq} \mathrm{q}^{2} \mathrm{~d} \nu}$ is the cross section of scattering of unpolarized particles. P-odd asymetries A_{-}and A_{+}are given by the following general expressions, respectively ${ }^{/ 5,6,7 /}$

$$
\begin{equation*}
A_{\mp}=\eta\left(g_{v_{A}}^{\alpha} \pm g_{A}^{\alpha} V^{\prime}\right) . \tag{11}
\end{equation*}
$$

Here

$$
\begin{equation*}
\eta=\frac{\mathrm{G}}{\sqrt{2}} \frac{\mathrm{q}^{2}}{2 \pi \alpha}=1,5 \cdot 10^{-4} \frac{\mathrm{q}^{2}}{\mathrm{M}^{2}}, \tag{12}
\end{equation*}
$$

M is the nucleon mass, and $a_{A}\left(\alpha_{V}\right)$ characterizes the contribution of the interference between electromagnetic and axial-vector (vector) part of the hadronic neutral current into the asymmetry. We have

$$
\begin{align*}
& a_{A}\left(\mathrm{q}^{2}, \nu, \mathrm{y}\right)=\frac{\mathrm{e}_{\alpha \beta \rho \sigma} \mathrm{k}_{\rho} \mathrm{k}_{\sigma}^{\prime} \mathrm{w}_{\alpha \beta}^{\mathrm{I}}(\mathrm{p,q})}{\mathrm{L}_{\alpha \beta^{\prime}}\left(\mathrm{k}, \mathrm{k}^{\prime}\right) \mathrm{W}_{\alpha \beta}^{\mathrm{em}}(\mathrm{p}, \mathrm{q})}, \tag{13}\\
& a_{\mathrm{v}}\left(\mathrm{q}^{2}, \nu, \mathrm{y}\right)=\frac{\mathrm{L}_{\alpha \beta^{\left(k, k^{\prime}\right) W_{\alpha \beta}^{\mathrm{I}}(\mathrm{p}, \mathrm{q})}}^{\mathrm{L}_{\alpha \beta}\left(\mathrm{k}, \mathrm{k}^{\prime}\right) \mathrm{w}_{\alpha \beta}^{\mathrm{em}}(\mathrm{p}, \mathrm{q})}}{,} \tag{14}
\end{align*}
$$

Here

$$
\begin{align*}
& \mathrm{W}_{\alpha \beta}^{\mathrm{I}}(\mathrm{p}, \mathrm{q})=-(2 \pi)^{2} \frac{\mathrm{p}_{0}}{\mathrm{M}} \int \mathrm{e}^{-\mathrm{i} q \mathrm{x}}<\mathrm{p}\left|\left(\mathrm{~J}_{\beta}^{\mathrm{Z}}(\mathrm{x}) \mathrm{J}_{a}^{\mathrm{em}}(0)+\mathrm{J}_{\beta}^{\mathrm{em}}(\mathrm{x}) \mathrm{J}_{\alpha}^{\mathrm{Z}}(0)\right)\right| \mathrm{p}>\mathrm{dx}, \tag{15}\\
& \left.\mathrm{~W}_{\alpha \beta}^{\mathrm{em}}(\mathrm{p}, \mathrm{q})=-(2 \pi)^{2} \frac{\mathrm{p}_{0}}{\mathrm{M}} \int \mathrm{e}^{-\mathrm{i} \mathrm{qx}}<\mathrm{p} \right\rvert\, \mathrm{J} \tag{16}\\
& \beta
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{L}_{\alpha \beta}\left(\mathrm{k}, \mathrm{k}^{\prime}\right)=\mathrm{k}_{\alpha} \mathrm{k}_{\beta}^{\prime}-\delta_{\alpha \beta} \mathrm{kk}^{\prime}+\mathrm{k}_{\alpha}^{\prime} \mathrm{k}_{\beta} \tag{17}
\end{equation*}
$$

(p is the momentum of an initial nucleon, k and k, are the momenta of initial and final leptons, respectively, $q=k-k^{\prime}$, $\nu=-\frac{\mathrm{pq}}{\mathrm{m}}, \mathrm{y}=\frac{\mathrm{pq}}{\mathrm{pk}}$).

We will consider deep inelastic scattering of longitudinally polarized leptons on isoscalar targets. Obviously, the interference between the isovectors (A^{3} and V^{3}) and the
isoscalar V^{S} does not contribute into a_{A} and a_{V} in this case. The quantity α_{A} is now connected with the cross sections of deep inelastic neutrino processes

$$
\begin{align*}
& \nu_{\mu}+\mathrm{N} \rightarrow \mu^{-}+\mathrm{X} \tag{18}\\
& \bar{\nu}_{\mu}+\mathrm{N} \rightarrow \mu^{+}+\mathrm{X}
\end{align*}
$$

($\frac{\mathrm{d} \sigma{ }_{\nu}^{\mathrm{CC}}}{\mathrm{dq}{ }^{2} \mathrm{~d} \nu}$ and $\frac{\mathrm{d} \sigma \frac{\mathrm{CC}}{\nu}}{\mathrm{dq}^{2} \mathrm{~d} \nu}$) and with the cross section of deep indq $^{2} \mathrm{~d} \nu$
elastic scattering of unpolarized leptons by nucleons $\left(\frac{\mathrm{d} \sigma^{\mathrm{em}}}{\mathrm{dq}^{2} \mathrm{~d} \nu}\right)$.
We have $/ 5 /$

With the help of (8) and (14) we have

$$
\begin{equation*}
a_{\mathrm{V}}=2\left(1-2 \sin ^{2} \theta\right)-\frac{2}{9} a_{\mathrm{V}}^{\mathrm{S}} \tag{20}
\end{equation*}
$$

Here

$$
\begin{align*}
& a_{\mathrm{V}}^{\mathrm{S}}=\frac{\mathrm{L}_{a \beta^{\mathrm{W}}}^{a \beta}}{\mathrm{~L}_{\alpha \beta}^{\mathrm{W}}{ }_{a \beta}^{\mathrm{em}}}, \tag{21}\\
& \left.\mathrm{~W}_{a \beta}^{\mathrm{S}}=-(2 \pi)^{2} \frac{\mathrm{p}_{0}}{\mathrm{M}} \int \mathrm{e}^{-\mathrm{iqx}}<\mathrm{p}\left|\cdot \mathrm{~V}_{\beta}^{\mathrm{S}}(\mathrm{x}) \mathrm{V}_{\alpha}^{\mathrm{S}}(0)\right| \mathrm{p}\right\rangle \mathrm{dx} . \tag{22}
\end{align*}
$$

The quantity a_{V}^{S} that characterizes the relative contribution of the isoscalar enters into the expression for α_{v} with the coefficient

$$
2 \mathrm{Y}_{\mathrm{q}}^{2}
$$

where $y_{q}=1 / 3$ is the hypercharge of a quark with the fractional charge. It is easy to see that exactly the smallness of this coefficient justifies the applicability $/ 8,9 /$ of the parton model (when calculating α_{v}). Indeed, we have

$$
\begin{equation*}
a_{\mathrm{V}}^{\mathrm{S}}=\frac{\frac{\langle\mathrm{SS}\rangle}{\langle\mathrm{VV}\rangle}}{1+\frac{1}{9} \frac{\langle\mathrm{SS}\rangle}{\langle\mathrm{VV}\rangle}} \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
& \langle\mathrm{SS}\rangle=\mathrm{L}_{a \beta} \mathrm{~W}_{a \beta}^{\mathrm{S}}, \\
& \langle\mathrm{VV}\rangle=\mathrm{L}_{a \beta} \mathrm{~W}_{\alpha \beta}^{\mathrm{V}}, \tag{24}\\
& \left.\mathrm{~W}_{a \beta}^{\mathrm{V}}=-(2 \pi)^{2} \frac{\mathrm{p}_{0}}{\mathrm{M}} \int \mathrm{e}^{-\mathrm{Lq} \mathbf{x}}<\mathrm{p}\left|\mathrm{~V}_{\beta}^{3}(\mathrm{x}) \mathrm{V}_{\alpha}^{3}(0)\right| \mathrm{p}\right\rangle \mathrm{dx} .
\end{align*}
$$

It is 'obvious', that in the parton approximation

$$
\begin{equation*}
\langle\mathrm{SS}\rangle=\langle\mathrm{VV}\rangle \tag{25}
\end{equation*}
$$

and from eq. (23) we get

$$
\begin{equation*}
\frac{2}{9}\left(a_{v}^{s}\right)_{0}=\frac{1}{5} \tag{26}
\end{equation*}
$$

We introduce

$$
\begin{equation*}
\delta=\frac{\langle\mathrm{SS}\rangle}{\langle\mathrm{VV}\rangle}-1 \tag{27}
\end{equation*}
$$

This quantity depends generally upon q^{2}, ν and y and characterizes the deviation of the ratio $\frac{\langle S S\rangle}{\langle V V\rangle}$ from its parton value. Substituting (27) into (23), we have

$$
\begin{equation*}
\frac{2}{9} a_{V}^{S}=\frac{1}{5} \frac{1+\delta}{1+\frac{1}{10} \delta}=\frac{1}{5}\left(1+\frac{9}{10} \delta\right) \tag{28}
\end{equation*}
$$

If $\delta<0.2-0.3$, ${ }^{10}$ then it follows from (20) and (28) that the contribution into a_{v} of the term proportional to δ does not exceed $0.04-0.06$. At the value of the parameter $\sin ^{2} \theta \simeq \frac{1}{4}$ (in accordance with the experimental data) the first term in (20) is approximately equal to 1 . Thus, neglecting the term proportional to δ, which contributes to a_{V} at most a few per cent of the contribution of the leading terms, we have

$$
\begin{equation*}
a_{v}=2\left(1-2 \sin ^{2} \theta\right)-\frac{1}{5} \tag{29}
\end{equation*}
$$

From (11) and (29) we get

$$
\begin{equation*}
\sin ^{2} \theta=\frac{A--A_{+}}{4 \eta}+\frac{9}{20} \tag{30}
\end{equation*}
$$

Thus the measurement of the asymmetries A_{-}and A_{+}would determine the parameter $\sin ^{2} \theta$ directly from the experimental data.

With the help of eq. (11) at q^{2}, ν and y fixed we obtain the relation

$$
\begin{equation*}
\frac{1}{\eta a_{\mathrm{A}}}\left[\mathrm{~A}_{+}\left(a_{\mathrm{A}}+1\right)-\mathrm{A}_{-}\left(a_{\mathrm{A}}-1\right)\right]=1-\frac{2}{9} a_{\mathrm{V}}^{\mathrm{S}}, \tag{31}
\end{equation*}
$$

that is valid independently of the value of the parameter $\sin ^{2} \theta$. The contribution of the isoscalar, which amounts to ~ 20 per, cent of the isovector contribution, was neglected in ref. ${ }^{10}$. From the above arguments it follows that a much more accurate relation is obtained provided the a_{V}^{S} is replaced by its parton value. From eqs. (26) and (31) we find

$$
\begin{equation*}
\frac{1}{\eta a_{\mathrm{A}}}\left[\mathrm{~A}_{+}\left(a_{\mathrm{A}}+1\right)-\mathrm{A}_{-}\left(a_{-}-1\right)\right]=\frac{4}{5} . \tag{32}
\end{equation*}
$$

Only experimentally measurable quantities enter into the relation (32)- The test of this relation would be a direct test of the Weinberg-Salam theory.
3. It is possible to get the exact formula (in the u, d approximation) relating $a \underset{V}{s}$ to experimentally measurable quantities. Let us consider the processes

$$
\begin{align*}
& \nu_{\mu}\left(\bar{\nu}_{\mu}\right)+\mathrm{N} \rightarrow \mu^{-}\left(\mu^{+}\right)+\mathrm{X}, \tag{33}\\
& \nu_{\mu}\left(\bar{\nu}_{\mu}\right)+\mathrm{N} \rightarrow \nu_{\mu}\left(\bar{\nu}_{\mu}\right)+\mathrm{X}, \tag{34}\\
& \ell+\mathrm{N} \rightarrow \ell+\mathrm{X} . \tag{35}
\end{align*}
$$

For the isoscalar targets, we are interested in, we have

$$
\begin{align*}
& \mathrm{L}_{a \beta}{ }^{\mathrm{W}} \mathrm{CB} \tag{36}\\
& \mathrm{CC}=2[\langle\mathrm{VV}\rangle+\langle\mathrm{AA}\rangle]=\frac{2 \pi}{\mathrm{G}^{2}} \frac{(\mathrm{pk})^{2}}{\mathrm{M}^{2}} \frac{\mathrm{~d} \sigma_{\nu+\bar{\nu}}^{\mathrm{CC}}}{\mathrm{dq}^{2} \mathrm{~d} \nu}, \\
& \mathrm{~L}_{\alpha \beta} \mathrm{W}_{a \beta}^{\mathrm{NC}}=\left(1-2 \sin ^{2} \theta\right)^{2}\langle\mathrm{VV}\rangle+\langle\mathrm{AA}\rangle+ \tag{37}\\
&+\frac{4}{9} \sin ^{4} \theta\langle\mathrm{SS}\rangle=\frac{2 \pi}{\mathrm{G}^{2}} \frac{(\mathrm{pk})^{2}}{\mathrm{M}^{2}} \frac{\mathrm{~d} \sigma_{\nu+\vec{\nu}}^{\mathrm{NC}}}{\mathrm{dq} \mathrm{q}^{2} \nu}, \\
& \mathrm{~L}_{a \beta} \mathrm{~W}_{a \beta}^{\mathrm{em}}=\langle\mathrm{VV}\rangle+\frac{1}{9}\langle\mathrm{SS}\rangle=\frac{\mathrm{q}^{4}}{2 \pi a^{2}} \frac{(\mathrm{pk})^{2}}{\mathrm{M}^{2}} \frac{\mathrm{~d} \sigma \text { em }}{\mathrm{dq}^{2} \mathrm{~d} \nu} .
\end{align*}
$$

Here

$$
\begin{aligned}
& \langle\mathrm{AA}\rangle=\mathrm{L}_{\alpha \beta} \mathrm{W}_{\alpha \beta}^{\mathrm{A}}, \\
& \left.\mathrm{~W}_{a \beta}^{\mathrm{A}}=-(2 \pi)^{2} \frac{\mathrm{p}_{0}}{\mathrm{M}} \int \mathrm{e}^{-\mathrm{i} \mathbf{q} \mathrm{x}}<\mathrm{p}\left|\mathrm{~A}_{\beta}^{3}(\mathrm{x}) \mathrm{A}_{\alpha}^{3}(0)\right| \mathrm{p}\right\rangle \mathrm{dx},
\end{aligned}
$$

$$
\frac{\mathrm{d} \sigma_{\nu+\bar{\nu}}^{\mathrm{CC}}}{\mathrm{dq}^{2} \mathrm{~d} \nu}\left(\frac{\mathrm{~d} \sigma_{\nu+\bar{\nu}}^{\mathrm{NC}}}{\mathrm{dq}^{2} \mathrm{~d} \nu}\right)
$$

is the sum of the cross sections of the charged current processes (33) (of the neutral processes (34)). From eq. (36) it is easy to get a relation, which couples $a \underset{V}{ }$ with the cross sections of the processes (33)-(35). Taking into account that α_{v}^{S} is independent of $\sin ^{2} \theta$, we have *

$$
\left.\begin{array}{rl}
\frac{2}{9} \alpha_{\mathrm{v}}^{\mathrm{S}} & =\frac{2 \pi^{2} \alpha^{2}}{\sin ^{2} \theta \mathrm{G}^{2} \mathrm{q}^{4}} \frac{1}{\mathrm{~d} \sigma^{\mathrm{em}} / \mathrm{dq} 2 \mathrm{~d} \nu}\left[\frac{\mathrm{~d} \sigma_{\nu+\nu}^{\mathrm{NC}}}{\mathrm{dq}^{2} \mathrm{~d} \nu}-\frac{1}{2} \frac{\mathrm{~d} \sigma \nu+\bar{\nu}}{\mathrm{dq} 2} \mathrm{~d} \nu\right. \tag{38}
\end{array}\right]+
$$

where the parameter $\sin ^{2} \theta$ is given as /12/

$$
\frac{1}{2}\left(1-2 \sin ^{2} \theta\right)=\frac{\sigma_{\nu}^{\mathrm{NC}}-\sigma_{\nu}^{\mathrm{NC}}}{\sigma_{\nu}^{\mathrm{CC}}-\sigma_{\nu}^{\mathrm{CC}}}
$$

The relation (31) contains the quantities $A_{\text {_ }}$ and A_{+}and also α_{A} and $\frac{2}{9} a_{V}^{S}$. These last two quantities are related by eqs. (19) ${ }^{9}$ and (38) with the cross sections of deep inelastic processes (33)-(35). Thus, the measurement of the P-odd asymmetries A_{-}and A_{+}would enable us to test the validity of the Weinberg-Salam theory without assumptions about the strong interaction dynamics.

REFERENCES

1. See Kim J. et al. Preprint UPR-1581, Univ. of Pennsylvabia, 1980.
2. Weinberg S. Phys.Rev.Lett., 1967, 19, p. 1964.

Salam A. Proc. of the Eight Nobel Symp. J.Wiley, N.Y., 1968.
3. Prescott C. et al. Phys.Lett., 1978, 77B, p. 347; Phys. Lett., 1979, 84B, p. 524.
4. See Steinberger J. Preprint CERN/EP/80-222, 1980.
5. Bilenky S.M., Dadajan N.A., Christova E.Ch. Yad.Fiz., 1975, 21, p. 360 .

[^1]6. Bilenky S.M., Petcov S.T. JINR, E2-10809, Dubna 1977.
7. Bilenky S.M. Yad.Fiz., 1979, 29, p.982.
8. Bjorken J.D. Phys.Rev., 1978, D18, p. 3239.
9. Wolfenstein L. Nuc1.Phys., 1978, B146, p.477.
10. Bilenky S.M., Motz. G.B. JINR, E2-11829, Dubna, 1978.
11. Derman E. Phys.Rev., 1979, D19, p. 133.
12. Paschos E.A., Wolfenstein L. Phys.Rev., 1973, D7, p.91.

[^0]: Submitted to $\boldsymbol{\mu \Phi}$

[^1]: * Combining eqs. (19), (20) and (38) the relation for the asymmetry $A_{\text {_ }}$ found in ref. ${ }^{11 /}$ is readily obtained.

