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INTRODUCTION 

There are by now a great amount of papers of both physical 
and mathematical nature devoted to the nonlinear SchrOdinger 
equation (NLS): 

(0) 

For the simplest version U(l) symmetry NLS has been studied 
in detail on the classical leve1 11.21 as well as on the quan­
tum one /3/. In the quantum case it describes Bose gas with 0 -

function pair interaction. The properties of such a gas were 
considered in refs/4•51 where the ground state and excitation 

spectrum have been found. Remind also that in the continuum 
limit (0) describes a great body of various physical phenome­
na: from waves on water and spin waves in ferromagnets up to 
vertices in superfluids and laser beams in glass fibres 1171, 

Hare recent investigations dealt with the two component 
NLS with U(2) isogroup on both the classical~/ and the quan­
tuml71 levels. In the first case we have elliptically polari­
zed wave _,.in non-linear media with dispersion relation w = 

= k2-2K IE 12 ; in the latter • a gas of Bose particles possess­
ing an internal degree of freedom. 

Both U(l) and U(2) versions of equation (0) have been shown. 

to be integrable Hamiltonian systems with all appropriate con­
sequences 18!. In the first case the complete integrability of 
the system was in addition set up 191• 

In the present paper we will convince that in the more comp­
lex case of noncompact U(p,q) isosymmetry group the integra­
bility of the system is preserved. In particular U(l,l) va­
riant the equation describes, for example, one-dimensional 
Hubbard model in long-wave approximation/10/, as well as the 
system of two interacting Bose gases, "gravitating" and "anti­
gravitating". The properties of such systems are considerably 
richer even in this simplest variant 1111. 

The present paper will have three parts. In Part 1 we give 
a general analysis of equation (0} with U(p,q) isosymmetry 

group. In section 1 of this part we present two variants of 
the associated linear problem: in the Lax form (L-A pair) and 
in the form of the flatness condition (Riemann problem). In 
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section 2 we study the internal symmetry of the ~roblem. We 
find n2 local conservation laws corresponding to this symmet­
ry. In section 3 the scattering data are obtained for the va­
nishing boundary conditions. In this case the infinite set 
of local conservation laws exists and all of them are in in­
volution. In Appendix 1 we construct the Hermitian generators 
of the pseudounitary group U(p,q). In Appendix 2 we derive 
the infinite series of conserving quantity in more detail. 

In Part 2 of this paper we will study the properties of 
U{l,l) version. The soliton solutions, their dispersion rela­
tions and spectra will be described in detail. The simplest 
physical interpretation will be given on the quasi-classical 
level. 

In Part 3 the exact solution of the U(I,I) variant will be 
considered. 

I. STATEMENT OF THE PROBLEM 

Let us consider a set of n coupled equations with cubic 
nonlinearity for the complex functions lJI(a)(x,t) on the axis 

-O<l <X<+ t>O : 

,. _, psq 1 "'(b) !2 J"'<•> = o 
b=p+1 

(I ) 

a=·l, .... n; P+ q, n. 

For further discussion it is convenient to rewrite themin the 
matrix form. Introduce the column vector w·of n complex func­
tiori.s('l') a= w<a>(x,t) and the Dirac conjugate row vector 'P'::::'P+ y , 
where y 0 ::::diag(+l ..... +l.;-l ..... -\) and the cross+means 0 

h 
. . .P q . t e Herm~t~an conJugate operat~on. 

Defining inner product 

<.P"'J= ~'"'(b)1•- ps-q, "'(b),. 
b=l b=p+l 

we can write set (1) in the conventional form of NLS 

(2) 

then conjugate one is 

-iW, + .P,, +2K(ii'''I'J'ii =0. (3) 

These equations correspond to the Lagrangian density 
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(4) 

In terms of canonically conjugate variables W(a) and l}t(a)(a.:t, .• n) 

with the Poisson brackets 

1 'I' (a) (x), 'l'(b) (y) I =·ioab o (x-y) 

the Hamiltonian of system (2) assumes the form: 

It is easy to see that the Hamiltonian equations 

·w<•J -·tH w<•J 1- oH 
1 t -1 • - ~·· 

8'1' 
.;;;(a)_ .IH lji(a), __ oH 
lTt-1. 1- CS'PCaJ 

(5) 

coincide with systems (2) and (3) if the Poisson brackets for 
two functionals A and B are defined in the conventional manner 

. 0 oo 8A oB oB 8A 
IA,BI=',;l.:,_ dx(awt•>aiii\•5- aw<•>-aw<·l· 

The Lax pair for equation (2) consists of (n+ 1) x(n+ 1) matrix 

differential operators 

L = [-1 ~ ~ ~ ____ -] i /. + [ _o __ + _w ____ -I 
1(l-s)l 0 

'I' , O·ln 
I 

(6) 

[ 

- I J ('I' 'I') . I i W -:: ._- +-- ~ -®~-i-
-l'l'x 1 - ---

1 1- s 

- a2 
A=-sl - + 

n+la.x2 

(7) 

with '¥®'I' being the nxn matrix_of the direct (Kronecker) pro­

duct of the column 'I' and row W, In is th~ uni_!. (.,nxn) matrix 

and K =(1-s2 J 1 *.Then the Lax equation Lt=i[L,A} ,is equivalent 

to equation (2). 
The system (2) may be also presented as the flatness con­

dition for certain c'onnection 181, Then the corresponding linear 

problem is the couple of (n+l) -component equations 

*Linear problem in the Lax form has been constructed ear­

lier by the authors and Makhaldiani for the U(1,1) system 

in /12/, for U (p,q) system in /13/, 
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f ~ u f 
X 

f t ~ v f 

with their compatibility condition Ut -Vx+[fi.VJ ... o being 

equ:::lte::~~~Asy['~T,~,;~ 'Jhe:e [-~~- J -~~- -] 
0 1 -1 0 -- I 0 ·I 0 , 1-s 1-s ! 

1 -
-- 'Px 1+8 

_i __ 'P ® qi' 
1-s2 

(8) 

(9) 

We may now use the method of the Riemann problem/Sf searching 
for solutions to system (8). But we shall follow the tradi­
tional scheme suggested in the early papers by Zakharov and 
Shabat 11·21. 

Substituting 

f(x,t) = exp(-i~~)'r .p(x.t). 
1- s 2 

and T= [ _(~6-set(l+;~i'!2i;--1 b=1 ..... n 

in system (8) we come to t.he couple of linear equations 

4 
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U(a-1+S) 
1-s2 

iq 

iq 

<>2 < ·(- 2il.s - -
---'4-"- -1 qq) ---- q+ q 

(l+s)2 1 1-s2 x 

-----------~-------------
2i\s i>.?s I . ---q-q _, ___ , + lQ ®q 
1-s 2 x (1-si' n 

<13) 

(14) 

It is convenient to have the Wronskian of the first equp­
tion of (12) space independent, the condition for it is SpU,.Q, 

which yields a-1 + .n::.L s in eq. (II). Introducing f = 
0+1 

2n As ) d . . h b . I . . ( 13) 
=- fitT (T-"'82 an om~tt1.ng t e su scr1pt 1.0 equat1ons 

and (14) we obtain 

U(x,t;fl= -=~~~~-- , V(x,t;fl= --~-----·-i·-~----~- (15) [ . : -l [ c"+1)2if~i(qq): -W.~q:.;q: ] 

1q 'if! n+1,c I . -
I n n - -u ~ q -q X ' 1 q ® q 
' I 

here we haye ';!Sed,....the freedom in defining matrix V under trans­
formation V ... V+ c I (with arbitrary,, c ) . The (n+l)x (n+l) linear 

problem governed by the operator U is the n -fold degenerated 

one ( n identical eigenvalues). In the next section we show 

that this fact is related to nontrivial isotopic properties 
of system (2). 

2. ISOTOPICAL SYMMETRY 

The form of Lagrangian (4) implies that space-time indepen­
dent linear transformations 'I''= R'P when conserve the inner 
product 

(16) 

are the transformations of the system symmetry. As is known/14~ 

the Hermitian form (16) is conserved under the transformations 

of pseudounitary matrix group U(p,q), Matrix R,;;_ U(p,q) satis­
fies the following condition 

('ii'l!'')= ('iiRR ll')=(ilil!') 

whereby RR ~I. (I 7) 
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where 
R =y R+ y • 

0 0 
Then U(p,q) is the linear transformation group of (p+ q) -dimen­
sional complex space C P+q with constraints 

where 

R ~ U (p,q). 
. . 2 The number of Independent parameters of U(p,q) group 1s (p+q) 

and there are n2 (D=P+ q) related conserving local currents J ~k 
(!1<= 0,1). Indeed, the difference, the k -th equation of system 
(2) multiplied by tp(i) minus the i -th equation of system 
(3) multiplied by 'l'(k) , gives continuity equations (conserva­
tion laws) a

11 
J~k = 0 for a matrix current J11 with the components 

Jik_ iji(i)'l'(k), (19a) 0 -

(19b) 

or in the matrix form 
- -

J 0 = 'I' "' 'fl ' J I= •j ( 'fl X ® 'fl - 'fl "' 'I' X ), 

The corresponding conserving charges form the (nxn) matrix 
with the components 

Q ik = 7 dx J ik (x) = r dx q,(i) (x) 'l'(k)(x) (20) _..., 0 -ooo 

which Poisson brackets with the Hamiltonian vanish 
ik I Q , H 1=0. (2 I) 

Besides, they satisfy the commutation relations of the gf(p+q,R) 
Lie algebra: 

as well as the conjugation conditions: 

where 

6 

+1 if 
-1 if 
-1 if 
+I if 

I $ is; p, I ~ j ~ p 
I s i $. p < i s;, p + q 
IS i S.P < i S.P + q 

P+l,;) <:.P+ q, P+ l,;j <:.p +Q · 

(22) 

(23) 



il< 
Equations (22) and (23) imply that Q- fom the Lie algebra 
of U (p,q) group /14/, 

As shown in Appendix I n2 conserving the Hermitian charges 
(Hermitian generators of U(p,~ group) may be constructed 

~-

N i ~ Mii =-_L 'l'(i) 'l'(i) dx, ( i = 1 , .• .,n ), 

Nij=_!<>ii;\)'l'(j)+'l'(j)'l'(i))dx, cii = il(W(i) 'l'(j)-iii(j) 'l'(i))dx, 

(where 1 s i, j o:; p. or P+ 1 s, i, j s P + q) 

(where IS i::; p < j s p + q or 1 :5 j $.p < i O::,P + q ) , Diagonal 
"charges" N i are the numbers of "i" type particles which are 
positive 

~ 2 
N; = L dx I 'I' (i) I > 0 when 1.:;; i ~ p 

and negative 

The physical meaning of that will be given in Part 2. Nondia­
gonal charges generate transformations that mix different 
11 pure" charge states. They belong to the subgroup SU(p,q}C U(p,q). 
Taking particular solutions to the system (2) 

I 
'l'(i) = '1', 1 :;;;· i 5: p, 

I 
'I'( f)= 0 i,ij 

or 
(25) 

'I'. = 0 j ;: i ~n="'(j) P+1sisP+q 
(J) 

one may construct a whole set of solutions using transforma­
tions R1 E SU(p,q) generated by N , C , T and K charges. But 
solutions (25-) are those to the one-component nonfinear SchrO­
dinger equations with positive and negative coupling constant, 
respectively, whereby the overall set of its solutions may be 
used to find solutions to system (2). 

Consider, for example, single-soliton solution to the U(l,O) 
NLS - ;e -

'P (x,t) =a e sech ax, 

where X= x- vt- Xo ' (J = _y_x-w t 
2 ' 

v 2 
2 w=--a 

4 
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Making an isotopic rotation we get one-soliton solution to 
the U (p,q) NLS 

- ·o 'Pi == aci e l sech ax·. i , 1· •••• , n, (26) 

where ci are the components of the unit vector 

(cc)~ 
p 2 n 
~ f c I - ~ 

i.=:l l ' i=p+l 

For the case p,2. q ,o we recover the ·solution obtained ear­
lier by Manakov in ref. A>l. 

Under isogroup rotation R the linear problem is trans­
formed 'by means of the (n+l)x(Il+l) matrix 

:R~[~ ~]· 
Whence the operators L and A in equations (6) and (7) are 
transformed as follows 

Cc'I'J ~ L'C'I'J~LC'I'' J ~ :RLC'I'J!ii. 

AC'I'J ~ kc'I'J= AC'I''J= :RAC'I'J :R. 

where ~=I~ ~]=r~:R+r0 _ and ro ~ [ ~ ~J 
The operators U and V of linear problem (~) 

in a similar way. 

(27) 

are transformed 

It follows from the structure of the operator 

(28) 

where 

~ ~ [-~-~--;-- 1 . Q ~ r-~-.~~-~q--1 
0 -nin IQ , O·In 

that the n -fold degeneracy of the matrix f eigenvalues is 
directly connected to isogroup properties. Indeed, the condi­
tion 

U(Rq(x,t))= :R U(q(x,t)) :R __ 
may be fulfilled only if :R ~ :R = ~ 
that (see equation (17)) R~U(p,q). 
racy of a linear problem implies an 
inherent in the system* 

or RR=I. But this means 
Therefore, the degene­

isotopic symmetry to be 

*The analogous fact has been stated independently for the 
particular case of U(2) symmetry in /15/. 
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3. SCATTERING DATA AND CONSERVATION LAWS 

Further investigation of equation (2) closely depends on 
the boundary conditions. The str·ucture of system (2) admits 
the zero-value~ boundary conditions for the fields (poten­
tials), various constant-valued ones and the number of such 
combinations is large. 

The simplest situation occurs for vanishing boundary con­
di-tions q(±fX}).,. 0. We examine this case in more detail. Let 
us consider two sets of Jost solutions ¢i(x,t) and lJii(x,t) 
(i=l, ... , n+l) to the system of equations 

d • • 
-d ¢.(x.n+i£'S¢.(x,£')=Q¢.(x,t) (29) 

X l 1 1 • 

with the following asymptotic behaviour 

as x _, -"" (30a) 

and 

as x -++oo (30b) 

(for· the definition of Q and f see equation (28)). 
The system of equations (29) with boundary conditions (30a) 

and (30b) is equivalent to the ~ystem of integral equations 
for the matrix Jost solutions ¢ (x.f;) and 'l'(x,£') respecti-
vely 

• -ii'Sx x -i£'fcx-y) • 
¢(x.n~e . + r e Q(y)J;(y,£')dy, (3la) 

. ~ 

• -i£'S x oo -i£'S (x-y) 
'l'(x.O= e - 1 e Q(y)'l'(y,£'lcty, (31b) 

X 

• [ 0 iq(y)] 
where Q(Y:= iq(y). 0 is the (n+l) x (n+l) potential matrix. 

Matrices ¢ and 'P c-onsist of (n+l) columns of the corresponding 
Jost solutions. 

The conjugate equation 
d • :; • 

--if> (x,,/)-iry* ¢ (x,ry) S ~-¢ (x,ry)Q 
dx 

(32) 

for the matrix ¢=lo;+ f'0 follows from the matrix version of 
(29), i.e., 

(33) 
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and the anti-pesudo-hermiticity condition 

(34) 

where 
- '+ 
Q ~ ro Q ro 

Using equation (32) and (33) one can easily find 

gxc$cx.~)¢(x,f))~ i(~*-f)(i(x.~)i ¢ (x,{)). (35) 

This equation, when ry*=(, is reduced to 

(36) 

The completeness of both the sets of Jost solutions I ifJ i land 
IWi l means that they have to be linear dependent 

' ' ' 
¢ (x,f) ~'I' (x,f) S((l. (37) 

Here S(f) is a transition matrix. Its matrix. elements (SScf))ik= 
,.,gik (f) may be expressed through the Wronsk1.ans of var:tous 
Jost solutions 

The second equality in (38) follows from the 
= Sp6 =0 (i.e., in equation (32) Wronskians 
dent) and 

W(¢
1 ... ¢ ) = lim W(¢ ... ¢ ) = 1. n+l x--oo 1 n+l 

relations Sp i 
are x indepen-

(39a) 

(39b) 

It is clear that the transition matrix S(,;) is also x in­
dependent. It satisfies the unimodularity condition 

detSCO=l C40) 

(which follows from equations (37), (38) and (39)), as well 
as the pseudounitarity one 

S(f) S(f) = I (41) 

10 



(the consequence of equa~i~n~ (36), (37) and the equation 

conjugate to the latter ¢ ~ S 'I' ) • 

The Jost solutions ¢ 1(x,e-J, '1'2(x.f), •... '1' 0 +1(.x.() allow 

analytical continuations into the upper half of e~plane and 

¢ 2 (x.n ..... ¢n+l (x,(), '1'1(x,f) into the lower half of f-

plane. This provides the analyticity of Su(f)~W(¢ 1'1'2 ••• 'l'n+l) 

in the region Imf;,; 0. The zeroes of Su(fl in the upper half 

of e -plane define the discrete spectrum of the linear problem 

and if ~11 (<:) ~o . then 

¢1 (x, ~)~ 0 12'1'2(x,() + 0 13 '1'3(X. () + ... + c l.n+!" n+l (x,(). 

The coefficients c (0 may be obtained using the relations 
Ia· 

cta.<O·S ~a.<<:)- W(¢., '1'2 , '1'3 ..... '1'0+1 )(,;). (a~2 ...... n+l). 

The set of scattering data S ij <e). c 1a. describes completely 

the linear problem. Let us find their time dependence. The 

evolution of the transition matrix is given by the operator V 
(see (15)) according to the equation: 

(42) 

' i/CLx , -i/'ix 
where v + = lim e · V e · Then the boundary conditions 

- X-+ ±O<l 
(30) for the Jost solutions are independent of t and· the poten­

tial evolution governs that of transition matrix (42) accord­

ing to non-linear equation (3). It follows from equation (15) 

that ~ + = V _ ""'V 0 
and hence equation (42) goes to 

Whereby the 

sro ~ [ 

matrix elements 

8113
]. (a·.f3=2,3 ...... n+l). 

S a/3 
have the following time-dependence 

(43) 

(44) 
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For the coefficients of the discrete spectrum we obtain 
. 0+1 f 2 c 1a((, t) ~ exp(1(-

0
- ( t)c

1
a ((,0) 

(45) 
(a~ 2,3 .•.• ,n+1). 

Such a simple time-dependence of scattering data allows us to state the problem of reconstr-ucting potentials at every in­stant of time 161 (see Part 2 of the present paper). However, we focus below on the conserving in time matrix elements. One of them S 11 (() generates infinite series of local conserva­tion laws. The conservation laws ( n2 infinite series) which are generated by the block SaB(g) are nonlocal barring first n2 of them which coincide with the isotopical currents ,Jik cOnservation. a 
The method for obtaining the integrals of motion is given in Appendix II. Thus, the functions ln S ii (f) -;;:; ell 1 (+ oo) = 

~ r <!>. (x)dx 
- 'x 

are generating functions of 11diagonal 11 integ-
rals of motion, which numerable infinite set is related to asymptotic expansion as ( .. oo 

~ l(k) 

InS;; (f)~ L 
11 

• 

k~l ( !!ti:-i d (46) 

n 
n+! The condition detS,., 1 gives rise to .~ 1 lnS ii =0, and then only n series of "diagonal" integrals of-motion are indepen­dent since 

n+l (k) 
L I ~0. 
i=d ll 

(47) 

i.e., the k-th local integral of motion equals the negative sum of n non local k -th integrals. The local integrals of mo­tion Ii~) are in involution with one another* 
II(kJ I( 1Ji~O 

11 ' 11 
and with all nonlocal integrals 

I {kJ I(IJ I~ o 
11 ' af3 ' 

where k,l ~1.2 .... but a·./3 ~2,3, ... , n+!. The nonlocal integ-rals of motion are obtained through the asymptotic expansion near ( ... oo 

*This result would be published separately. 
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(k) 

Sa/3~~ ~_I~-
sa •. <O k=t < n+l it) 

n 

(48) 

and hence are generated by the conserving block S {3(~). 

Infinite sets of involutative integrals of motlon rik{ form 

an infinite-Rarameter Abelian group while nonlocal integrals 
of motion I~$ are not involutative and generate non-Abelian 
transformations of a rich algebraic structure. Thus, for 
'example, the Poisson bracket 

generates single translation along the spectral parameter ~. 
Using equations (46) and (48) we get 

l I ICk+t-mJ {mJ I= ik I ikJ 
m=l 22 ' 23 23 

Let us write down some first terms 

II 111 I(l) l-'I(I) 
22 ' 23 - 1 23 • 

(I) (2) (2) (2) (I) 
I I 

22 
, I 

23 
I= 2 i I 23 - I I 

22 
, I 

23 
I , 

II 11l Il 3ll=3ii
13

J -II 121 I 12li-II18l IO>l. 
22 ' 23 23 22 ' 23 22 ' 23 

We have obtained the hierarchy of the Poisson brackets of which 
only one for k""l contains the local integrals of motion coin­
ciding with isotopical charges (20) of U(p,q) 

II I) . Q . f - d 
22 = l 11"" l -oo q lql X, 

I~~)= iQI2 = i _[ q lq2dx 

with their Poisson brackets being I Q 11 , Q 12 !"" Q 12 . The remaining 
Poisson brackets in (49) include higher IMs I1"1(k> 1) which 
correspond to the diagonal elements S of the t~~nsition a a 
matrix. 

A method using the integral equations (31) for deriving t<k) 
.aa 

conserving densities is presented in Appendix II. Here we g1ve 
the first five generated by 8 11((): 

Ii1{ = I (qq)(x,t)dx, 
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r (qq )(x,t)dx, 
X 

I 
(4) 00 - - -
II ~ L (( q q xxx) + 3( qq)( q xq))( x,t)dx, 

(49) 

00 

!}(qq xxx)+(Qq)3 -(ix (qq))2-6(qxqx)(Qq))(x,t)dx, 

where 

(q q) = '}: ! q( a) 1
2 - i I q (a) 1

2 • 
a;=l a=P+l 

We also show in the Appendix that they are generalization of the familiar U(l,O) integrals of motion '11 for the case of U(p,q) isosymmetry. In the second part of this paper we shall present the recurrent formula for them when P"" 1. q ::::L Before describing some concrete systems we note that the particular variants of system (2) discussed earlier are the following: 
I) nonlinear SchrOdinger equations (83+) or U(l,O) with positive coupling constant '1 ': /;2f 2) the same with negative coupling constant (83_) or U(O,l) 3) Manakov's system or U(2,0) 'li' and its ge-neralization, the so-called vector version of NLS U(p,O) 
Then we shall see that our system even in the simplest case of U(1,1) group possesses a rich variety of soliton-type solu­tions and manifests some characteristic properties of the ge­neral system (2). 

APPENDIX I 

Let us consider the block structure of matrix Q in the form 

[ 
Q( +) (-) 

l 
(A. I) 

p Qpq 
Q ~ 

o<-) Ql+) 
qp q 

with 
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( Q(+) ) .. 
q ') 

if 1-<:i,j~.P 

if P+1.$.i, j ~p+q 

(QH\. 
(A, 2) 

pq "'iJ 

(Q(-)) .. 
qp lJ 

The conjugation conditions (23) yield: 

(Q(+) ).~ 
p 'l 

(Q(-) ).~ 
pq lJ 

~( Q(+))" 
p l' 

(-) 
~-(Qpq )ji 

( Q(+))•· ~(Q(+)) 
q lJ q ji 

(Q(-))* (Q(-)) 
qp ij =- qp ji ' 

where the signs (+) or (-) imply that the corresponding gene­
rators are Hermitian and anti-Hermitian, respectively. 

Using the matrix elements Qij one can construct n2 Hermi­
tian generators Mij of the U(p,q) group: 

~ 
(Q(+)) 1.$, j,; p 

Mii ~ (Q:+l)i·i· 
P+1.$ i~P+ q, q n 

(+) (+) . (+) (+) 
Mij ~(Qp)ij+(QP )ji Mij~l[(QP )i;-(QP l;il. (A.3) 

Q
(+) (+) 

Mi;~( q )ii +(Qq l;i 

where indices i,j lie in the domains defined by formula (A.2), 

APPENDIX 2 

Let us consider the problem of finding conserved densities. 
For this purpose we use the integral equations (31) rather 
than the system of differential equations (29) as usual. We 
introduce the following matrices 

(A.4) 
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with ¢ex.() being the Jost solution matrix and with the fol­
lowing asymptotic behaviours 

;:(x.O~f as 

; ( x, f) ~ S(f) . as 
(A. 5) 

Substituting (A.4) in equations (31a) we have an equation 
for ~ in the closed form 

, , X if~y , -if~y, 
x(x,f)~l+ { e Q(y)e x(y,g)dy. (A.6) 

The integral equation (A.6) with boundary conditions (A.S) is 
the most -convenient for our purpos-es. Conditions (A. 5) provide 
the diagonal elements to be presented in the form 

x 11 (x,.;) ~ exp(<l>; (x,()) 

with 
<1>1 (-~)~0. <1>1 C+~J=lnS;; 

Functions 

lnS 11 CeJ ~<1>1 (+oo) ~ { <1>
1 

(x)dx 
-~ X 

are the generating functions of the "diagonal" integrals of 
motion which numerable set consists of the. coefficients of 
the series 

I(k) 
JJ 

InS .. (()~ ~ l k 
JJ k~! (.::::_;g) 

(A, 7) 

as '..,.. oo • n k) 
The nonlocal integrals of motion I{ af3 are defined by the 

expansion 

\a·,f3 ~ 2,3, ... .,n+l) (A.8) 

as ' .... oo • 

All integrals of motion (A.7), (A.8) can be obtained from 
equation (A.6). Most easily it is performed for local conser­
vation laws generated by S11((). 

The matrix equation(A.6) for the first column components 
yields 

X ill~(y - _ 
x

11
(x.O·l+_!dye (iq x +iii x .... +iq 

~ 1 21 2 31 n X n+l,l ) 
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X 

X (x.O= r 
21 

x -i-1~:;_l[y 
X (x, /;) = r dy e n -

n+L 1 

(A. 9) 

i q X • 
n 11 

Upon. substitutir;tg x2..l' ... , x n+,l, 1 in the first equation we 
obta~n an equat1on tor Xtt 1n the closed form 

. n+1 < 
x y 1 ---.,. (y-z) n 

X (x)=l- r dy I dz e n :£ q (y) q (z)x (z). (A. 10) 
11 -oo -oo a=l a a 11 

For a generating function <ll1 (x) == ln x (x) this leads to the 
f 11 

. . 0 11 
o ow1ng 1ntegral equat1on 

q, (x) X Y i!:!:! f<y-z) n <I> (z) 

e 1 = 1- r dy r dz e n :£ q (y) q ( z) e 1 
a=l a a 

(A. II) 

The equations for the generating functions of nonlocal con­
servation laws become more complicated and involve extra in­
tegral terms, which lead to nonlocality. A more detail study 
of these questions would be considered separately. 

Differentiating n+ 1 times and eliminating n -variables 

Y -i!:!:!_~ z II> (z) 
Aa= r dze n q

0
(z)e 1 (a=l,,..,n) 

one obtains a differential equation of the (n+l). order for the 
function 4>1(x)" This equation leads to recurrent relations 
for integral densiti.es ql:f(x) where 

~ <~>W(x) 
<t>

1
x (x) • ., (A.IZ) 

k=1 (-n;lil;) 

as (~ oo.The corresponding integrals of motion follow from 

(k) ~ (k) 
1 11 = r dx¢

11 
(x). 

-~ 

(A. 13) 

Let us illustrate the above procedure using as an example the 
case n=l, since, as we known, such an approach has not been 
considered yet. Then we show that going to the case of arbit­
rary n is straightforward if one redefines the inner product. 
In Part 2 of this paper we obtain recurrent formulas for n=2 
(in the case of U(l,l) isogroup). 

Now, let us put n~l. Upon differentiating twice equation 
(A. II) we get 
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Eliminating now the function A(x) we· obtain from (A.14) the 
equation _ 

q 
2i~<!> 1 =1iQ+(<I>

1 
f +<1>1 - 2<!>1 (A. IS) 

X X XX q X 

h . h . . d . h h b . d . f 111 Th. . w 1c co1nc~ es w1t. t at o tatne 1n re . . ts equatton, 
already, allows us to compute the coefficients of the asymp­
totic exp-ansion (in 1/2i( ) of <ll 1x using (A.l2) andre­
current relations 

(A. 16) 

q,<1) = qq 

The integrals of motion are then governed by equation (A.I3). 
The first four of them assume the form 

11) ~ -
r11 = -~ (qq)(x.t)dx. 

(2) ~ -
I 11 ~ ( (qqx)(x,t)dx. (A.Il) 

(3)' -~ - - 2 
I11 = -~ ( .qqxx +(qq) )(x.t)dx. 

I;·;= l (qq XXX + 3(Qq)(q XQ))(X,t)dX. 

Now if in final equations (A.17) (but not in recurrent formulas 
(A.I6)) we mean by QQ= q* q the U(p,q) group inner product 

p n 2 
(q\1) = ~ I q (a) 12 - ~ l q (a) I , then we produce exactly the poly-3""J a=p+ 
nomial 1ntegrals of motion for the case of arbitrary D=P+q.To 
show this let us return to the basic equation for generating 
function (A.IJ). Upon differentiating once we have 

4>
1
(x) X iE:tl((x-y) n <J> (Y) 

<!> 1 (x) e ~ ( dye n ~ (q (x) q (Y)l e 1 . 
x a=l a a 

Integrating now the right-hand side of this equation k -times 
over y and using conventionaJ. formulas (see ref. /16/ ) 

J(A)=te''' f(,)d'= ~ (~ tceiA•r<m·1)(a)-eiAbf(m-1)(b))+<k 
a m=l t\ 
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with the remainder being 

, = < .L J' r\ iA, r<'J <' l d, 
k A- a 

we obtain an asymptotic expansion 

-<I> (X) n _ <I> (x) 
e 1 ( :Eq (x)(q (x)e 1 

a=l a a 

as ,;--.oo. In this 
rewritten as the 
leading to 

equation 
(k-1) -th 

the (k-1)-th derivative may be 
power of an operator D = _.2._+1P1 X dX X 

(A. 18) 

Using this relation the coefficients ~{lk) of the expansion in­
to a power series of 1/, can be calcu ated. Substituting the 
sum of the r first terms of the function ct> 1x expansion into 
the right-hand stde of (A.l8) and combining the (1+1)-st po­
wer we obtain <P~t 1 >. Starting with ct>f0).,. 0. we should have the 

X 

bilinear parts of the infinite set of conserving densities 

~ 1 k 
<1>1 ~ :£ (qq< -1)) 

x k=l (in~l~/ 
which are related to higher integrals of motion of the line­
arized system (2). 

The contiriuation of the recurrent procedure gives higher 
integrals of motion of nonlinear equation (2), those first 
four are given by (A.l7). 

'The structure of relation (A.l8) is such, that the integ­
rals of motion associated with equal powers of 1 /~ at diffe­
rent n look identical. The only difference consists in the de­
finition of the inner product. It is interesting to note that 
this fact also follows from the following remark: the transi­
tion matrix is transformed un~er the U(p.~ isotopical group 
as 

S(~l ~ s·<~l =:Rs<~J'ii 

with :R=[~ ~], R<:U(p,q). The element S11 (f) generating the 

polynomial conservation law is invariant under this transfor­
mation, so are the latters. Therefore, in our case the isoto­
pic group commutes with the infinite-parameter Abelian group, 
generating high integrals of motion. As we could see, this is 
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not true for the block Sa$(() and, hence, for the nonlocal 
conservation laws associated with it. 
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