


INTRODUCTION

There are by now a great amount of papers of both physical
and mathematical mature devoted to the nonlinear Schrddinger
equation (NLS):

v, --¥ 2 9% w . @)

For the simplest version U(1) symmetry NLS has been studied
in detail on the classical level1#/ as well as on the quan-
tum one 3. In the quantum case it describes Bose gas with & -
function palr interaction. The properties of such a gas were
considered in refs. 4.5/ yhere the ground state and excitation
spectrum have been found Remind alsoc that in the continuum
limit (Q) describes a great body of various physical phenome-
na; from waves on water and spin waves in ferromagnets up to
vertices in superfluids and laser beams in glass fibres/17/,

More recent investigations dealt with the two component
NLS with U(2) isogroup on both the classical’®/ and the quan-
tum’?/ 1levels. In the first case we have elliptically polari-
zed wave 1n non-linear media with dispersion relation W =

=k%. 2KIEI . in the latter, a gas of Bose particles possess-

ing an internal degree of freedom.

Both U(1) and U(2) versions of equation (0} have been shown.
to be 1nt%§rable Hamiltonian systems with all appropriate con-—
sequences °'. In the first case the complete integrability of
the system was in addition set up ¥

In the present paper we will convince that in the more comp-
lex case of noncompact U(p.q) isosymmetry group the integra-
bility of the system is preserved. In particular U(l,1) va-
riant the equatlon describes, for example, one-dimensional
Hubbard model in long-wave approx1matx0n“°f as well as the
system of two interacting Bose gases, "gravitating" and "anti-
gravitating'. The properties of such systems are considerably
richer even in this simplest variant 11/

The presemt paper will have three parts. In Part 1 we give
a general analysis of equation (0} with U(p,¢y isosymmetry
group. In section 1 of this part we present two variants of
the associated linear problem: in the Lax form (L-A pair) and
in the form of the flatness condition (Riemamn problem).



section 2 we study the internal symmetry of the ‘problem. We
find 0¥ Jlocal comservation laws corresponding to this Symme t—
ry. In section 3 the scattering data are obtained for the va-
nishing boundary conditions. In this case the infinite set

of local conservation laws exists and all of them are in in-
volutien. In Appendix 1 we construct the Hermitian generators
of the pseudounitary group U(p,q). In Appendix 2 we derive
the infinite series of conserving quantity in more detail.

In Part 2 of this paper we will study the properties of
U(1,1) wversion. The soliton solutions, their dispersion rela-
tions and spectra will be described in detail. The simplest
physical interpretation will be given on the quasi-classical
level. .

In Part 3 the exact solution of the U(l,l1) variant will be
considered.

1. STATEMENT OF THE PROBLEM

Let us consider a set of n coupled equations with cubic
nonlinearity for the complex functions W{8(x ) on the axis
—oo < x <400 .

P b P+q
¥ Lw @ a3 e ® Bl s e 2@ m
xx b=1 bep+1 _

del,...n; p+g=n.

For further discussion it is convenient to rewrite themin the
matrix form. Introduce the column vector ¥ of n complex func-
tions(¥) =~ ¥ (xt) and the Dirac conjugate row vector V9", |
where Yo=dag(+l, . +1, =1,..., 1) and the cross + means

f e A =

. .P .
the Hermitian conjugate operation.
Defining inner product

- p p+q b
(¥¥)- s e®e_ 3 @2
b=1 b=p+1

we can write set (1) in the conventiomal form of NLS

1, + ¥ 4 2« (FY)Y -0 ' (2)
then conjugate one is

1%, + P 2 (TUHT .o 3

These equations correspond to the Lagrangian density
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£=LUFY ) - (B, )~ (V)4 x (V9P . )

In terms of canonically conjugate variables ¥ and T®at, .n)
with the Poisson brackets

1240, ¥ (9 121527 5 (x-y)

the Hamiltonian of system (2} assumes the form:

He [ ax((# ) - (P71 (5)

—0

It is easy to see that the Hamiltonian equations

&H

—a:’
. . S'I’:j
i']’ga)=i“‘1, gy o —g-‘%lz(-gr

i![’(ta) =i{H‘. l‘p(a) }=

coincide with systems (2) and (3) if the Poisson brackets for

two functionals A and B are defined in the conventional manner
R SA 88 - 8B SA

AN SF A TOF )

The Lax pair for equation (2) consists of (n+1)x(n+1) matrix
differential operators

[}
b+s, - L
’ [ === === .0 M ___ _
L = ] | . - (6)
' d.£ X .
) A-91p ¥ o'o0.1,
'
AT &
- 82 1+S ' l llpx
A=—51n+1"—"‘2+ halhaiaiinddi b (7)
dgX . [] ‘lj ® IP
-i¥, | ——
1 1-8

with %e ¥ being the nxn matrix_of the direct (Kronecker) pro-
duct of the column ¥ and row ¥, I, is the unit (pxn) matrix
and « =(1—52]'1 *, Then the Lax equation Lr_=i{L,A} is equivalent
to equation (2).

The system (2) may be also presented as the flatness con-
dition for certain connection’®/. Then the corresponding linear

problem is the couple of (n+1) —component equations

* Linear problem in the Lax form has been constructed ear-
lier by the authors and Makhaldiani for the U({i,1) system
in/12/ for U(p.@ system in/1%3/.



f -0Of1,

X

- (8)
f,=Vt .
with their compatibility condition ﬁL-—§X+[ﬁ,G]-O being
equivalent to system (2), where .
L v 1Y
. : s, © R
R e R D I e p , (9)
o 'l i¥ oy g
115" 1-s | I
- g . 1 .
-, 0 0 l_,i_z?uf____
~ . : 1-s i+s 10
V(LAY =~ia° E&@4~-_ + 2iA ,___h_}t__ﬁ-tl_( )
LI ] LY
gt rrwet B
1 (1-s (1-s9(1-s) !

! by
1-s2 \ 1+ %
+ it o ok e i i
' .
~aw o0 g, y
1-s % ' _1-—s2

We may now use the method of the Riemann problem’®’ searching
for solutions to system (8). But we shall follow the tradi-
tional scheme suggested in the early papers by Zakharov and
Shabat /L2,

Substituting

L) = emp(-1 S22y T gy,
i-s (1)

2 Mxt) = (15232 W (5

and '
(1_5)1/2 : 0
T _,....‘_,...;_;T..——--.?—:--‘—:-—— B b =1,¢o.,n
0 y (Lemlrer
in system (8) we come to the couple of linear equations
= U -V 12)

qsx “U1¢ -9y "V1¢ (

with
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— - - -y

iq
Uy (B1A) = fmm s im m b i = . 3
!
ia R
! i-s2
X b o2ia
-JAS g 2 1.5 8
H ro)? (CLY rpipar b R
V3G = | mmmmimie = TR (14)
2irs 1 iA%s
e ==l + 14 8q
1-s2 ¥ I og-sp "
i

It is convenient to have the Wronskian of the first equa-—
tion of (12) space independent, the condition for it is SpU=0,

which yields a=1 4 l‘—:——i—- s im eq. (11). Introducing £ =
g'—% ) and omitting the subscript 1 in equations (13)
4) we obtaln
i 2,2, - |
e g ayie iy ! - “*115 &,
U(x,t:d)= -—--:--—- , V(s s - mmim i e b i (13)
i P & I -
1q :IE—ID _l_1+_11§q qx' 1q®q

here we haye used the freedom in defining matrix V under trans-
formation V-Vascl (with arbitrary ¢ ). The (a+l)x (n+1) linear
problem governed by the operator U is the n-fold degenerated
one (n identical eigenvalues). In the next section we show
that this fact 1is related to nontrivial isotopic properties

of system (2).

2. ISOTOPICAL SYMMETRY

The form of Lagrangian (4) implies that space-time indepen-
dent linear transformations ¥'=RY¥ when conserve the inner
product

CATE P SRLNL SOV LR L S (16)

P+g
are the transformations of the system symmetry. As is known’/l%
the Hermitian form (16) is conserved under the transformations
of pseudounitary matrix group U(p.q). Matrix Rz U(p.q) satis-
fies the following condition

(F¢ )= (PRRY)=(TW) _
whereby RR =1, (a7)
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where
R-y RYy .
Yo" Yo . _
Then U(p,q is the linear transformation group of (p+ @ —dimen~
sional complex space C™9  with constraints

RH,OR*},O , (18)

where

R G U(prq)" 2
The number of independent parameters of U(p.q) group is(p+®_
and there are n®(n=p+q) related conserving local curreats J;F
{u=10,1). Indeed, the difference, the %k -th equation of system
(2) multiplied by ¥ minus the i-th equation of system
(3) multiplied by ¥ gives continuity equations (conserva-
tion laws)qLJ:‘=D for a matrix current J, with the components

J;k= g g {19a)

J:k SHC IR ARIEICE O PR (19b)
or in the matrix form

Jo=¥e ¥ ., J-i(V oW _¥oy)

The corresponding conserving charges form the (nxn) matrix
with the components

e . de()“‘(x): [odx W (g By (20)
which Poisson brackets with the Hamiltonian vanish.
1a® mi-0. (21)

Besides, they satisfy the commutation relations of the gl(p+q.R)
Lie algebra: o

!Qik ’Qj[’ 2=8kaiY ‘5tf’.ij (22)

as well as the conjugation conditions:

_ 2
Q’;‘j =€y jS , (23)
where +1if 1<5i<p, 1<j<p
e, =1 "1if 1<igp<jgpaq
H ~lif  1<ig<p<i<p+q
+1 if p+1<i<.p+q, p+ 1I€j €< p+q



Equations (22) and (23) imply that Q¥ form the Lie algebra
of U(p,q) group 14/,

As shown in Appendix i1 n® comserving the Hermitian charges
(Hermitian generators of U(p,qQ) group) may be constructed

N, = f ' (]) dx ,” (i=1,...,n).

” (1) (n*q’(n‘p(xﬂdx Cy =1 ” SRR L

(where 1<i,j<p, of p+1gi, i<p+q)

7 (24)
= 1{ (‘F(l) (5)*“(})‘1’(1) ydx, K {(‘I‘“ ‘[’ 1[’ )dx

T
{where 1<i<p<j<p+q or 1£jgp<i<p+ q }. Diagonal
"charges" N are the numbers of "i" type particles which are
positive

- dx[‘l’(i)!2>0 when 1<1i<p
and negative
= 2 h 1<iz< =0.
Ni"‘deIq’(i)l <@ when p+1<i<p+g=n

The physical meaning of that will be given in Part 2. Nondia-
gonal charges generate transformations that mix different
"pure" charge states. They belong te the subgroup SU(p,q}C U(p,q9).
Taking particular solutions to the system (2)

¥, =¥ 1gigp, V=0 4]
(25)
=0 P ¥, =¥, Ppelsiseg
one may construct a whole set of solutions using transiorma-—
tions R, &€58U(p,q) generated by N, C , T. and K charges. But
solutions (25) are those to the one-component nonlinear Schr-
dinger equations with positive and negative coupling constant,
respectively, whereby the overall set of its solutions may be
used to find solutions to system (2).

Consider, for example, single-soliton solution to the U(1,0)
NLS _ _

‘l’(x,t):aele sechax,

- 2
where 3'_ y_ g i5 . 9_—2-x—mt, m'-—-—-‘; -a? .,



Making an isotopic rotation we get one-soliton solution to
the U(p,q) NLS

¥ ~acie'? sech a¥,  i~li..n, (26)
where c; are the components of the unit vector
p : o
(co)zzlciia- p3 !ci]?’zl,
i=1 i=p+1

For the case p=2, q=0 we recover the solution obtained ear-
lier by Manakov in ref.®’.

Under isogroup rotation R the linear problem is trans-
formed by means of the (n+1)x(n+1) matrix

5R=[10 e
0 R

Whence the operators L and A in equations {(6) and (7) are
transformed as follows

~

~

L(®) - L ¥)=L ) - LR,
R R R R 27
AW)+ AY(M)=AF )= RAW R,

- 1 0
where ?={1 0 =T ] Ty and I, = .
0 R 0 ¥
The operators U and V of linear problem (8) are transformed
in a similar way.
It follows from the structure of the operator

Gixt:&)=—ifs 4+ 8, (28)
where , )
- L, ¢ ~ 0o iﬁ
Sz |mmma—a=-a ], Q=i \
o '-Llr, ia ! 0.y

that the n-fold degeneracy of the matrix 3 eigenvalues is
dlrectly connected to 1sogroup properties. Indeed, the condi-
tion

U(Ra(x,t)=R Ocaxe)y R . . _
may be fulfilled only if RXI R < or RR=I. But this means
that (see equation (17)) R & U(p, q) Therefore, the degene-
racy of a linear problem implies an isotopic symmetry to be
inherent in the system®

*The analogous fact has been stated independently for the
particular case of U(2) symmetry in 15/,
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3. SCATTERING DATA AND CONSERVATION LAWS

Further investigation of equation (2} closely depends on
the boundary conditions. The structure of system (2) admits
the zero-valued boundary counditions for the fields (poten-
tlials), various constant-valued ones and the number of such
combinations is large.

The simplest situation occurs for vanishing boundary con~
ditions q(f=~)= 0. We examine this case in more detail. Let
us consider two sets of Jost solutioms ¢,(xt) and ¥;(xt)
(i=1,..., n+1) to the system of equations

Lo x4 163,58 =05, (x8) (29)

with the following asymptotic behaviour
(& ) =8 exp(~i¢ Ty x) as X~ - {30a)
and
W o5 e £ 5. x 3
i =0k @("“1 ik ) as X +toe (Ob)

(for-the definition of @ and X see equation (28)).

The system of equations (29) with boundary conditions (30a)
and (30b) is equivalent to the system of integral equations
for the matrix Jost solutions ¢ (x.£€) and ¥(x,{) respecti-
vely

- _{-‘ﬁ x -ifﬁ(x—) ~ -~
dx&ree T [ e " Qe )y, (31a)
. i3 : w i (xey)
Fnerme 571 T Gty gy, (31b)
. X
where é(y):[iz(y)l%m] is the (n+1) x{(n+l) potential matrix.

Matrices ¢ and ¥ consist of {o+l) columns of the corresponding
Jost solutions,
The conjugate equation

LB -in* E(xm) T ==F (x,9)Q (32)

for the matrix 5;[6é*'ﬂ] follows from the matrix version of
(29), i.e.,

E%(—J(x.f)—if irﬂ(&é)mécﬁ(xf; (33)
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and the anti-pesudo-hermiticity condition

G--4 ‘ (34)

Using equation (32) and (33) one can easily find

L@ @ExE)=iln=OE(x0)E & (2,6). (35)

This equation, when p*=¢, is reduced to

FxOF(xE) - 1L (36)

The completeness of both the sets of Jost solutions {p;1 and
{¥; | means that theéy have to be linear dependent

B(x,€) =¥ (x,£) S(£).. (37)

Here 8(¢) is a transition matrix. Its matrix elements (5(&),, =

. h ik
=8, () may be expressed through the Wronskians of various
Jost solutions

W, Y Y, )
Sik(‘f)z 1 i-19Pk"im n+1 EW(,{,I ‘"lpi-1 d)k‘]}iﬂ 'Pm-l)" (38)
WY LY ) ‘

The secend equality in (38) follows from the relations ﬂlﬁ =
= 8pU=0 {i.e., in equation (32) Wronskians are x indepen-
dent) and

; 39
W LY Y= ImW (¥, LY )=, (3%a)

Wby by, )= Im Wy oo (398

It is clear that the transition matrix §(§) is alse x in-
dependent. It satisfies the unimodularity condition

n+1 )=1.

det § (£)~ 1 (40}

(which follows from equations (37), (38) and (39)), as well
as the pseudounitarity one

. ~ ~

5(6)56) - 1 (41)
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(the consequence of equagiong (36), (37) and the equation
conjugate to the latter #=8Y¥ ).

The Jost solutions @1 (%8), ¥ (X&), ¥y (X €) allow
analytical continuations inte the upper half of ¢-plane and
Do (X, ENreees b gy (26D, ¥ (2 E) into the lower half of £ -
plane. This provides the analyticity of 8116)=W(s, ¥ .. ¥5iy)
in the region Imé2 0. The zeroes of 8y1({) in the upper half
of &-plane define the discrete spectrum of the linear problem
and if 8,,({)=0 .then

6, (x0=e B, (80 + 0 ¥ m) +mrey W (5

The coefficients cm(g) may be obtained using the relations

Cmﬁ€)=sla (=W . ¥,. ¥, v ¥y KD (=2 S T8 ) R

The set of scattering data Sij &) ©ia. describes completely
the linear problem. Let us find their time dependence. The
evolution of the transition matrix is given by the operator V
(see (15)) according to the equation:

§,(6)=v,8&)~-8Hv_, (42)
~ in_f‘-ix ~ —ifﬁx ..
where v, = 1im+e Ve . Then the boundary conditions
= x> too

(30) for the Jost solutions are imdependent of t and the poten-—
tial evolution governs that of tramsition matrix (42) accord-
ing tg non-linear equation (3). It follows from equation (15)

that v,= v_ =v, and hence equation (42) goes to
§, (€)= vy .8 (D). (43)
Whereby the matrix elements
,\ Sii S
8(6) = s (2.B=2,3,.....n41).
Sai SaB

have the following time-dependence
Sll(f’r')=sll(€o0)- SC:B("C";)=SG:B(§ .0).

Slﬁ(f,t)=exp(i(-n-‘;-"1—)2 £20)8,4E.0), . (44)

8,; (¢.1)=em(-i(BHF £20)S (£ ,0).
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For the coefficients of the discrete spectrum we obtain

.okl 2 e
(€0 = e~ e, (£,0)

(45)
{a=2,3.....n+1).

Such a simple time-dependence of scattering data allows us to
state the problem of reconstructing potentials at every in-
stant of time”®/ (see Part 2 of the present paper), However,
we focus below on the conserving in time matrix elements. One
of them 8,,(¢) generates infinite series of local conserva-
tion laws. The conservation laws {(n® infinite series) which
are generated by the block Sas(f) are nonlocal barring first
n? of them which coincide with the isotopical currents jik
conservation, “

The method for obtaining the integrals of motion is given
in Appendix IT. Thus, the functions In 5,i)=0, (+=)=

= tIBix (08X  are generating functions of "diagonal"” integ-

rals of motion, which numerable infinite set is related to
asymptotic expansion as ¢
(k)
WS, (&)= -3.1;_— : (46)
gt

- n+1
The condition detS = 1 gives rise to 2 1InS;; =0, and then
only n series of "diagonal™ integrals of motion are indepen-
dent since

n+1
k
p3 I(ii) =0, (47)
i=1
i.e,, the k-th local integral of motion equals the negative
sum of n nonlocal k~—th integrals. The local integrals of mo-—
tion ngl) are in involution with one another *

® 1ty

!I“.IHE-O . @

and with all nonlocal integrals IaB:
(ky b,

ZI“ ,IaBF-O.
where k,?!=1,2.. but «.8=2,3,....0+1. The nonlocal integ-
rals of motion are obtained through the asymptotic expansion
near {aw '

*This result would be published separately.
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SaB(ff) .3 af

8aa(6) E=1 (_“_;_l_ig)k

(48)

and hence are generated by the conserving block S (E)

Infinite sets of involutative integrals of motlon I(k}form
an infinite-parameter Abelian group while monlocal integrals
of motion I( are not inveolutative and generate non-Abelian
transformatlons of a rich algebraic structure. Thus, for
‘example, the Poisson bracket

108, (€). S5y (€18, (== 2 (S5 (98,6

generates single translation along the spectral parameter ¢ .
Using equations (46) and (48) we get

(k+1 m) (m} 3 (k}

- ikl (k=1.2,...).

Z SI 23 23

m=1
Let us write down some first terms

{I(l) I(1) } (1

g 1=1lyg
(1) 2Y | _o; (2) (2) Y
{{22 s 123 }_21123 - 3122 .123}'
(n (3) () (2) () (3) (1
ng I i_SI 1122,1 N SR S I

We have obtained the hierarchy of the Poisson brackets of which
only one for k=1 contains the local integrals of motiom coin-
ciding with isotopical charges (20) of U(p.q)

(D : .

I = :(Ql1 = i f q 94 dx,

—r20

(1 .

123_ iQ, = 1_& qlqzdx
with thelr Poisson brackets being {Q,,.Q 5= Q. Ehe remaining
Poisson brackets in (49) include higher Ms f (k> 1) which

correspond to the diagonal elements 3, of the transition
matrix.

A method using the intepral equations (31) for deriving I(“
conserving densities is presented in Appendix I1. Here we glve
the first five generated by 8, (£}

=
Ly = 1 (ag)(xbdx,
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.7 (g t)d
LRI

1(131) = [ (@, )+ (q )5 xt)dx,

4y » _ - (49)
1 = [ Caa, ) +3(aa)(T a)(xt)dx,

(& T = 3 9 . 2 - .
11 =_L((qqxxxx)+(qq) =57 (99D -6(T, 0 ) (T9))(xndsx,

where
11
@0=2 14 |22 3 jqm 2
am] a=p-

We also show in the Appendix that they are generalization
of the familiar U(1,0) integrals of motion?’ for the case
of U{p.q) iscsymmetry. In the second part of this paper we
shall present the recurrent formula for them when p=1,q=1,

Before describing some concrete systems we note that the
particular variants of system (2) discussed earlier are the
following:

1) nonlinear Schrédinger equations (53,) or U(1.0) with
positive coupling constant 17 Y
2) the same with negative coupling constant (83_) or U(0,1)

3) Manakov’s system or U(2,0)%’  and its generalization,
the so-called vector version of NLS U(p,0). '

Then we shall see that our system even in the simplest case
of (1,1} group possesses a rich variety of soliton-type solu-
tions and manifests some characteristic properties of the ge-
neral system (2),

APPENDIX I

Let us comsider the block structure of matrix @ in the form

- (A.]
Q(p+) Q;q) )
Q=
{—} (+)
qu_ Qy
with

14



(Q(;))ij if 1<i.j <p

° J (Q57);  if peisi,j<ped
i. =
! @G0y, i l<isp<i<p+q (a.2)

(=) . L .
(qu )ij if 1£j<p<i<p+q.

The conjugation conditions (23} yield:

(+) -+ () (+)

=)\« (= (=Yye __ql)
(qu % ==Qpq g+ (Qgp ) =—Qgg Vg -
where the signs (+) or (-) imply that the corresponding gene-
rators are Hermitian and anti-Hermitianm, respectively.
Using the matrix elements @j; one can construct n® Hermi-
tian genmerators M;; of the U(p,q) group:

(+) -
( @y 15i<p
Wi = Qt 15 i
( q )ii p+15i<sp+q,
{+) {+} . + )
My = @) (@) )y o My =il@)-@)” )y (A.3)

' (+) .
My = @), + @)y, - My = 1[(Q(q+)) i -(Qf;))ji].

(=)

: (=) (=) (=)

q

e () (-) (- (=)
My; =il@Q ap )ij + (@gp )il ij“ (qu)ij - @ ap )ji !

where indices i, ] lie in the domains defined by formula (A.2).

APPENDIX 2

Let us consider the problem of finding conserved densities,
For this purpose we use the integral equations (31) rather
than the system of differential equations (29) as usual. We
introduce the following matrices

¥ (&) =ep (i€ 1) ¢ (%¢) (A.4)
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with é(x,f) being the Jost solution matrix and with the fol-
lowing asymptotic behaviours

;’(X:f)"’f as X 3 =m0

A -~ (A.5)
Y(xsf)“‘s(f) . a8 X oo,

Substituting (A.4) in equations {31a) we have an equation
for ¥ in the closed form

N .~ x iESy . -i€Zy .,

¥ (%&)=1+ 1 € Q(y)e ¥ (v.£)dy. (A.6)
The integral equation (A.6) with boundary conditions (A.5) is

the most convenient for our purposes. Conditions (A.5) provide
the diagonal elements to be presented in the form

)(li(xl'f)=em(®j(xl§))
with

¢i (—oo):D, q)i (+W)=1nsii .
Functions

W8y (£) =@ (+=) = [ D, (x)dx

are the generating functions of the "diagonal" integrals of
motion which numerable set consists of the coefficients of
the series

k
I()

ll'JS (f)ﬁk_im
as {:-»ao u
The nonlocal integrals of motion I é are defined by the
expansion

(A.7)

(k)
S.8(6)° 23 1.8

Saa€) bt Bel ol

as £sx,

All integrals of motion (A.7}, (A.8) can be obtained from
equation (A.6). Most easily it is performed for local conser-
vation laws generated by 8,(¢).

The matrix equation(A.6) for the first column components
yields

" (2.8 = 2,3,.0e0ns1) (A.8)

SRE S -
¥, (%&)=1+ [ dye (10 xpy #10x, v i, ¥

—_—r

)

n+1,1
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21 o
.......... e (4.9)
b g
X, &)= e ig .
Yn+1,1( ) _Ldy A X1y
Upon substituting y £ Xuag o in the first equation we
obtain an equation for wy;; 1in the closed form
i2leg-n 0 _
L@=t-rayiaze PENOLRCIES (A.10)

-—oa 00

For a generating function @ (w._lnxf (m this leads to the
following integral equatlon

P (xn x oy iBlegon g @ (z) .
Va1~ 14y fdze " 2 qWa e b (A.11)
0 —r) a=]

The equations for the generating functions of nonlocal con-
servation laws become more complicated and involve extra in-
tegral terms, which lead to nonlocality. A more detail study
of these questions would be considered separately.

Differentiating n+1 times and eliminating n-variables
. o+t

y i z ¢

= [ dze 1 ¢ q(z)e

—0

one obtains a differential equation of the (n+1) oxrder for the
function &,(x. This equation leads to recurrent relations
for integral demsities ¢()(x) where

o (k) ) .
k_1(n+11£)

as £+ .The correspondlng integrals of motion follow from
- r axg ) (x) . (A.13)

Let us illustrate the above procedure using as an example the
case n=1, gince, as we known, such anr approach has not been
considered yet. Then we show that going to the case of arbit-
rary n is straightforward if one redefines the inner product.
In Part 2 of this paper we obtain recurrent formulas for n=2
{(in the case of U(l,1) isogroup}.

Now, let us put n=1. Upon differentiating twice equation
(A.11) we get

17



®;

D, e :_ﬁ(x)eZi‘fo(x),
x

- ¢ (x - ., 2
@, +@, f)e —A@am e L@ T+ d 16T Fapm, B-14)
with
A= [ aye HEq(eM Y

Eliminating mow the function A(x%) we obtain from (A.14) the
equation

i 3 4 (4.15)
21§q>1x = qq+(®1x ¥ - = ®

which coincides with that obtained in ref./l’l- This equation,
already, allows us to compute the coefficients of the asymp-
totic expansion (in 1/2i¢ ) of fIJix using (A.12) and re-
current relations

l(k+1)_“§§ y, 4 & 5 qs(kp (kg )
¢ q ¢ dx i ky+k,=k (A.16)

o't = qg _
The integrals of motion are then governed by equation (A.13),
The first four of them assume the form

1(1: = [ (g9)xt)dx,
2 o A, 17

1§1)= f{ga)(xt)dx, ( )
8) e - - 2

L= J"( 44,, +(49)7)(x.t)dx,

4

14 "r"(qqm +3(39)(T @) (xt)dx.

How if in final equations (A.17) (but not in recurrent formulas
(A. 16)) we mean by Jq= q*q the U(p.¢¢ group inmer product
I
(Qq) = 2 lg® |2 - i q‘® 1 , then we produce exactly the poly-
El."[H—
nomlal integrals of motion for the case of arbitrary n=p+q.To
show this let us return to the basic equation for generating
function (A.11). Upon dlfferentlatlng once we have
Pyx) = 15 (x~y) D &
¢ (el —(dye Z@,ma e !

Integrating now the right-hand side of this equation k-times
over y and using conventional formulas {see ref. 16/ )

kooom i - i m-
Ih)= re”" tdr= X )t Pa D) oy oM APAM D L
m=1 A’

18



with the remainder being
(kz(%)kr irr ()(r)d
a

we obtain an asymptotic expansion

o0 =@ (x
®, (M=~ 3 1o 1
b3 k=1 (n+1 1€)

} oo, ) k—
(23,00 me " )

as £+, In this equation the (k—1)-th derivative may be
rewritten as the (k-1) —th power of an operator D = 4 .o
leading to dx x

oo 1 jt) - k-1
= X D 2 D . (A.18)
1y ke 1 (n+1 if)k a,=1(qa x 9, ) .

Using this relation the coefficients qs of the expansion in-
to a power series of 1/¢& can be calcu}.ated Substituting the
sum of the { first terms of the function ¢,, expansion into
the right-hand sg.de of (A.18) and combining the (f+1)-st po-

wer we obtain ¢ *!.Starting with 0(0) 0, we should have the

bilinear parts of the infinite set of conserving densities

¢; (k— 1))

14 k—l “’*“I‘_T(ln+ P (aq

which are related to higher 1ntegrals of motion of the line-
arized system (2),

The contirnuation of the recurrent procedure gives highex
integrals of motion of nonlinear equation (2), those first
four are given by (A.17).

'The structure of relation (A.I18) is such, that the integ-
rals of motion associated with equal powers of 1/¢ at diffe-
rent n look identical. The only difference consists in the de-
finition of the inner product. It is interesting to note that
this fact also follows from the following remark: the transi-
tion matrix is transformed under the U(p,q) isotopical group
as s

56 -8 -R8©®R
with R= [1 0] , ReU(p,). The element S (f) generating the

polynomial conservation law is 1nvar1ant under this transfor—
matlon, so are the latters. Therefore, in our case the isoto-
pic group commutes with the infinite-parameter Abelian group,
generating high integrals of motion. As we could see, this is

19



not

true for the block Saﬁ(f) and, hence, for the nonlocal

conservation laws associated with lt
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