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I . INTRODUCTION 

The idea of the dynamic spontaneous-symmetry-breaking in 

quantum field theory, originating in the papers by Bogolu-

bov /1,21, gains much impcrtance. In the fiel(l-theoretical inves­

tigations/ the Bogolubov method has first been applied 131 to 

elucidate the 'dynamic origin of fermion masses x. The possibi­

lity for generating composite particles from the fundamental 

fields of the initiaL Lagrangian has beeri mentione~ in the sub­

sequent papers/5-7 I .such particles appear in the Hal.-tree-Fock­

Bogolubov approximation. 
· The method for determinirlg anomalous vacUum eXpectation 

values for multi-component fields has been developed in 

ref. 16(The present paper is aimed at studying the dynamic 

spontaneous-symmetry-breaking of the four-fermion theory with 

(V-A)-interaction. We show that in the mean-field approxima­

·tion besides the collective vector field there arises a cdl­

lective complex (pseudo) scalar field which plays the role 

of the Higgs field. Our model has all the :features of the 

Higgs phenomenon in the Abelian case. We would like to stress 

that the coupling constants in the effective;: Lagrangian ob­

tained turn out to be known functions Of ehe two parameters: 

the vacuum expectation value of the HiggS field and the re­

normalized Yukawa coupling constant. 

-z. ANOMALOUS GREEN FUNCTIONS 

AND BOGOLUBOV's COMPENSATION EQUATION 

We consider the theory with four-fermion (V-A)-interaction 

- -t-y5 - 1-y5 
:£~'1'1~'1'->. 0'1'--y '1'-'1'--yi''l'. (2.1) 

2 ~ 2 

Using the method described in ref.181, one can obtain the va­

cuum generating functional Z for this theory, expressed as 

a path integral over the collective_ boson fields V11 and B 

x For the role of the Bogolubov theory of superfluidity 111 

in understanding the phenomena related to spontaneous symmetry 

breaking see, for instance, the review by Higgs 141 
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Z{~,~,J*,J,j )=NfDV DB*DBexp{i(S[V,,B*,B) + I' I' r 

+J*B+B*J+ Sl'vl' -";jG 0 ~)1, (2.2) 

where 
2 

M o 2 i . -1 ) S[V ,B*,B)=fdx[-(B*·B+V )--Spln(iG 0 ), I' 4 I' 2 (2.3) 

- 1-y) p-e V~'-y -0 I' 2 

l-y5 
-g c--B* 0 2 

(2.4)* 

Note, that the actionS (2.3) is invariant under the U(l)­transformation 

·B ~ B exp(ia), 

B*~B*exp(-ia). 

The condition of stationarity (2.3) is 
M 2 o'G -l 

- 0 v _.!....Sp(G 0 l+ 3 =0, 2 I' 2 ° av~' ~'-
M 2 "'G-ot 0 i u '"TB - ySp\Go .....,tl"'s"'·-l + J = o. 

(2. 6a) 

(2.6b) 

(2.7a) 

(2. 7b) 

With the sourc~s off (J=J#=O),the system of equations (2.7) ad­mits the nontrivial solution B0 ,f O••, V~=O. Finally, the Bogo­lubov compensation equation is (within the dimensional regula­rization scheme) 

(2.8) 

-fi Here, 
•B 2 1 2 --;;r ="o • 8 o = ygo (2.5) Mo 

~The non-zero vacuum expectation value gives rise to pairs in the qnp and qTip channels with opposite momenta and spin ori­entations of particles, that is in complete analogy with the phenomenon in superconductor. 
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where 

f(m2,~2)= m22ln ~: , 
(4") m 

(2.9) 

and 

m2 -g2·B*·B 
- 0 0 0' 

(2. I 0) 

~ is the dimensional regularization parameter. 
Then, we use the Laplace method to expand the integral 

(2. 2) in an asymptotic series about the mean-field B 0 and V f:. 

3. GREEN FUNCTIONS OF COMPOSITE PARTICLES 

IN TRE LOWEST ORDER OF PERTURBATION THEORY 

In the lowest-order of perturbation theory the functional 

S plays the role of the geneiating functional of all one­
particle-irreducible graphs. Substituting the variables in 

the functional integral (2.2) 

B = p exp (i¢), (3. Ia) 

B *= p exp (-i¢ ), (3. !b) 

we pass to new fields p a~d ¢.The functional is stationary 

with respect to the field¢ and the condition of stationarity 

with respect top gives eq. (2.8), eq. (2.10) taking the form 

m=goPo· 

Now we find the inverse propagator for the field ¢ 

im 2q 2 

(2") 4 

1 2 
Jdp f dx . p -

o [ p2+ q 2x(t -x)-m2] 3 

(3.2) 

(3.3) .. 

*The solution for the vacuum expectation value m is similar 

to the expression of the energy gap in the theory of supercon­
ductivity; here g= z%: go is the renormaliz'ed coupling constant 

g 0 and Z is the renormalization constant of the field p. 
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Since 

(3.4) 

the field ¢ is massless. It corresponds to the Golds,tone bo­son associated with spontaneous breaking of the continuous U(I) symmetry (3. I) of the action S. The field p acquires mass as 

(3. 5) 

The inverse propagator for the field V~ has the form 

_1 0 2s M~ 2ieil f p(J>+q)gev+m 2
g. ev-Pi!>+Vv-Jl,(P+q)~ 1

, 

D ( q) = - = - - g + -- dp ;:,c:,_:;.i'-"'':---C:,c.:_--"'-:::-....:.......:.._-<: W iiV~BVv 2 ~v (2>7)4 (m2-p2)(m2-(p+q)2) 
and the transverse (3,6) 

(3. 7)"' 

- -I> which under the renormalization of the fields V~ =Zv Vp. cor-responds to the kinetic term - ..!._J :Jilv in the Lagrang~an. 4 ~v 

IV, EFFECTIVE INTERACTION LAGRANGIAN 
AND DEFINITION OF COUPLING CONSTANTS 

To construct the effective interaction Lagrangian, we note that the coupling constants of the interactions without deri­vatives are determined by the divergent vertex functions in the momentum space at zero external momenta. The functional derivatives in expanding integral (2.2) are calculated at the saddle point p 0=m/g0 , Vb::~:O. Therefore, using the formula 

~=fdx~l 
dg iig(x) g(x) = g=o const (4. I) 

•Here 

(3. 8) 

4 



we apply the usual differentiation of ·expressions (2. 7) with 

respect to the fields p , rp and yP. and get the one-particle­

irreducible Green functions at zero external momenta in the 

lowest-order. T~en using the expressions 

a2 s a2 s 
~o ---~ 

(4.2) 
8p8¢ 8p 8VI' 

and 

a2s 2e 0m2q~ f dp . 1 

8¢8V~ (2") 4 (m 2_ p 2j(m 2-(P+q)2) 
(4.3) 

we find the Lagrangian of composite fields 

" comp. 1 ( 2 1 ( m) 2 ( ) 2 
., ~--av-av)+-p+- a¢+2eV + 

4 ~ v v~ 2 g ~ ~ (4.4) 

Substituting of variables 

w ~v +-1-a ¢ 
~ ~ 2e ~ 

(4. 5) 

makes the quadratic part of the Lagrangian (4.4) diagonal. Fi­
nally, we have 

!£ comp. ~ _l.(a w -a w ) 2 + 2e2(p + E!.) 2 w 2 + 
4 ~v v~ g ~ 

1 2 g2 m 2 m2 2 
(4.6) 

+-<a p) - -l(p +-l - -l . 
2 ~ 2 g g2 

The Lagrangian (4.6) is just the Higgs Lagrangian in the 
Abelian case. Moreover, as is seen from eqs. (2.5), (3.8) and 

(4.4), we get the relation between the gauge interaction cons,­

tant e and the renormalized p self-coupling 

(4.7)* 

2 
"*In this case at ~ < 1 the expansion over the loops in 

"2 
this model gives just corrections to the tree approximations 

and does not change the structure of spontaneous s~etry 

breaking. Cf., the lectures by Coleman 191 
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5. CONCLUSION 

In this section we briefly comment on the fermion sector of the theory. Spontaneous symmetry breaking leads to the ge­neration of massive spinoi particles; their description re­quires both left and right spinors. Therefore, one should add to the Lagrangian (2.1) the extra four-fermion (V+A)-interac­tion. Performing the Pauli-Giirsey tranSformation I!OI 

(5. Ia) 

- -
IJI'~a*'l'-b*y5CIJI, (5.1b) 

where 

2 2 1•1 +lbl =1, (5.2) 

and the chiral transformation expCify5), we get the theory with massive fermions. Note, that the transformation (5.1) is similar to the Bogolubov canonical transformation in ·the theo­ry of superconductivity 12 1 , 
It is rempting to interpret the fundamental fermion field as the neutrino field. As it is seen from eq. (2.4), as a' re­sult .of the dynamic spontaneous syrmnetry .breaking, the Weyl spinor lJIR acquires Majorana mass /11/, WL being massless. The given formalism can easily be extended to the non-Abe­lian case in particular to the U(2) group, that leads to the stacydard SU(2)xU(J) unified theory of weak and electroma_gnetic interactions. However, it is a subject of the subsequel).t' paper. 

The author is grateful to V.G.Kadyshevsky and M.D.Mateev for interest in this work and fruitf:ul discussions'" 
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