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I, INTRODUCTION 

Among approaches to defining the Feynman integral, various 
sequential methods are probably the most popular ones. Here 
we consider that one based on product formulae, the original 
idea of which belongs to Nelson 111, This method is powerful in 
the sense that it enables to prove the strict version of 
Feynman's basic dynamical formula for a wide class of poten
tials/2,3 / including time-dependent ones 14 1 in comparison with 
other known methods(see,e.g.,refs .~ •6 1 ).On the other hand,the 
method does not correspond exactly to Feynman's heuristi c 
prescription because it replaces the exact action along poly
gonal paths by its Riemannian approximation. Moreover, one 
can regard as an unsatisfactory feature that it employs the 
"equidistant" time-interval partitions only. 

In the present paper we show that the last mentioned sour
ce of arbitrariness can be removed: the product formula for 
perturbations of propagators by Faris 14 1 remains yalid if the 
limit is carried out with any "crumbling" sequence of partiti
ons uniformly w.r.t. the partition "norm" given by the maximal 
subinterval length. In particular, it gives the uniform 
ver s ion of the Trotter formula l'7 / in the important special 
case considered in ref / 11 when sum of the generators of con,
tinuous contractive semigroups (CCSG) involved is closed . and 
generates itself a CCSG. , 

Applying these resul~s to the F-integral we- make one more 
generalization: we assume potentials not onl y time-dependent 
but complex (obeying the dissipativity condition). This is 
an alternative way how to treat non-isolated systems; such 
a description is not mere_ly useful phenomenologically but 
can be embedded into the standard quantum-mechanical frame
work within the pseudo-Hamiltonian approach ~ I.Our goal is t o 
establish validity of the Feynman-Ito formula with the F-in·
tegral defined in terms of the mentioned product formula fo r 
three classes of complex potentials (cf. Theorems 2, 3 below). 
Let us remark that for some particular cases analogous re
sults have been recently obtained using other definitions of 
the F-integral 19 1, 
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The last introductory item concerns notation: we shall use 
Jt=[O,t]. t>O, 
r, =lri: O=ro <, 1 < ... <r 0 = t I partition of l ;the set of all 

these partitions is denoted as P(Jt 

o k = r k+l - 'k , k =0,1, .•.. ,n-1, 

o(r,) = max lok: k=0,1, ... ,n-11. 

2. THE PRODUCT FORMULAE 

' Theorem I. Let ~ with a norm 11-11 be a Banach space, and assume 
that for ea'ch t i;J-b, ', A(t) and B(t) 'ar'e genera tots of CCSG' s 
1-e-A(t)s: s ::::,0 I and I e-B(t)s : s ~ 0 I. respectively.· Let ·further · 
C(t)=A(t)+B(t)be a closed operator for each t~Jb,the domain of 
which is a dense·: subspace· D in X independent of t. Assume· tha't 
for every u i;;D, A(.)u and B(.)u are c0 on, Jb. Let exist a cont-
raction:.:.valued propagator, V(.,.) on X (cf.

141 
) such that 

V (t,s) DC D fri'r all· t,s i;; Tb. Let us denote u (t) = V (t,O) for u i;; D 
and assume· that Q(.)u(,) is c 0 on J b and that 0 u(.) is C1 on (O,b) 
and there obeys 

du(t) +C(t)u(t)=O. 
dt 

(I) 

Finally, let u(.) be c0 on Jb w. r. t. the Banach norm 11 .Jl0 ' b 
in D , llull 0 =llull+IIC(t-0)u II for some t 0 i;;Jb .Then,' for any ti;; J , 

V(t,0)= s-lim R(rn-l' 8
0

_
1 

)R(r
0

_:;,2 ,o0
_

2
) ••• R(O,o 0 ), (2) 

,, o(r,) ➔ O · · 

where R(r,o)=e-A(r)8 e-B(r)o for r i;;Jb, o>-.Oand 'k•ok in (2) 
refer to a partition. (1 i;;P cl). 
Remark. The operator C(t 0 )above can be replaced by any closed· 
operator C on X, the domain of which is D. If p(C) is nonempty,· 
then in order to check the 11-110 -continuity of u(.) it is 
enough to show that Cu(.) is II . II -continuous on J b {cf.' 141 

Prop.I and the remark following Th.I). 

Proof of the theorem: We abbreviate Pk= exp(-A(rk)ok)' Qk = 

=exp(-B(rk)ok), Rk=PkQk=R(rk,ok) ,k=0,1, •.. ,n-1, .and S(r,) = 

= R0 .1R 0 • 2 ... R 0-V(t,O). Relation (2) now reads s-limS(r, )=0. We shall 
show first that for any ui;;D, S(r,)u ➔ 0 with o(r,) ➔ O. Using 
the equal~ty 

n-1 
S(r,) ;,,,·k=O Rn•l ..... Rk+l (Rk-V(rk+l''k))V(rk'.~) 

together with l]Rk 11 ::.1 and A(rk)+ B(rk)=C(rk) we obtain . 
n-1 

2 

11S(r,)u]I.$ I okJl(E1(rk,ok)+E2 (rk,ok)-E3(rk,ok))V(rk,O)ul! , 
k=O 

' 

where 
-A(r)o -1 , 

E1 (r,o)=(e -I)o + A(r), 

E
2 

(r, o) = e -A(r) 0( e-B(r)o -I) o-l + B(r), 

E3(r,8) = (V(r+B ,T )-I)a- 1 + C(r). 
n-1 

Now I ok = t so that we have 
k=O , 3 . . 

11S(r,)ull~t I sup{l!Ej(r,o)V(r,O)ull: (r,8)~ M(a) r. 
. j=l 

whereM(a)=l(r,o): O<o<o(a-), 0~r ~ t-o I. Faris 141 proved that 
under stated _continuity assumptions 

lim Ej(r,o)V(r,O)u=O, j=l,2,3, 
o➔O · 

for each u i;; D uniformly in r ;; J b. This implies easily 

lim sup 11 Ej (r ,o) V ( r, 0) u II= 0, 
O(CT)➔O M(CT) 

j = 1,2,3, 

i.e., lim S(a) u = 0. Finally, D is assumed to be dense· in X 
o(a)➔ 0 

and . II S(a)II~ IJ R 0 _ 1 ... R011+11V(t,O)II.S,2 for each partitionr,-; 
thus hmS(a·)u=O for ui;;X as well, i.e., relation (2) holds. 

o(r,) ➔ O ■ 
In particular, if A. B are t -independent, we obtain the 

following uniform version· of the "special" Trotter formula: 

Corollary. Let A,B be generators of CCSG's on a Banach space 
X. If the sum C= A+B generates a CCSG, then for each t>·o, 

-Ct 
e = s-lim R(o

0
_

1 
)R(o

0
_

2
) ••• R(o

0
), 

O(CT ) ➔ 0 
(3) 

R -As -Bs . . a, t 
where (s) = e e and o k refer to a part1. t1.on a<; J (J ). 

3. APPLICATION TO THE FEYNMAN INTEGRAL 

Now we specify the Banach space X to be J{ c= L2 (Rd) and set 
A= - j_ii (independently of t ) and B (t) = i Vt for each t ,;;. J b , 2 . . 
where (Vt ¢)(x)=v(X.t)¢(x). We assume that 

(a) the Borel function v(.,.) onRdxJvis complex-valuedand 
such that v(.,t) is almost regular on Rd for each t G- Jb 
(cf/

81 
) , t ➔ v(.,t) is 11-11 00 -continuous, and the dissipativity 

condition 
Imv(x,t).$ 0 

b 
holds for each t ~J and almost all x ~ R ~ 

(4) 
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The rhs of (2) can be expressed now more explicitly: using 
the free propagator corresponding to Ho=- ~ A we obtain for 
if, = V(t,0) <f> the following relation 

t 

n -d/2 
i/,t(x) = lim ((2rri) 80 8

1 
••• 8

0
_~) f ... J expliS(a ;v, , ••• 

o(a) ➔O Rd Rd 0 (5) 

•··• Y n)l<f> (yo) dyo dy 1 ·•• d Y n-1' 

where Yn = x, the integrals are in g?neral improper ones, 

f dy = lim f dy, all limits are understood in the L2 -sense, 
Rd. m➔oo lYl .Sm 
and 

. n-1 y -y-
S(a, y0 , .... , y ) = I [ .!. (---1Ll:.L k 

· n k=O 2 Bk 
/ -v(yk ,rk)]~k · (6) 

One can interpret the last expression as the'Riemannian appro
ximation to 

t 1 2 
Sv (y ) = f [ 2 l y ( r) I - v (y ( r), r) ] d r ( 7) 

0 , 

if the latter makes sense. A particular case of the relation 
(5) appeared first in ref • 11'.' ; this is wliy we calf the rhs 
of (5) the uniform Feynman-Nelson integral and abbrev_iate it as 

J ufn exp I iSy(y) I</> ( y (0)) ~Y (for discussion of relations to 
other definitions of the F -integral cf /lO/ ) • 

With these prerequisites Theorem I can be reformulated for 
the considered particular case. Clearly I exp(¥ A): s ~ 0 I 
is a CCSG and the same is true for {exp(-isVt): s ~01 due to 
(4), further the assumption (a) implies that t ➔ Vt<f> is conti
nuous for each ¢, i;;; D. Thus we have: 

Proposition. In addition to (a), assume that 
(b) for each t i;;;Jb, the domain D of H(t)=Ho +Vt is dense in He, 
independent oft, and the operator H(t) is closed; 
(c) there exist a contraction-valued propagator V(.,.) on }{c, 
which preserves D for all t,s ~ Jb, and with the following pro
perty: let i/lt = V(t,0)<f> for an arbitrary ¢,i;;;D,then the function 
t ➔ H(t)if,t is c0 on Jb, further t ➔ i/lt is c1on (0,b) and there 
satisfies 

i..2... it,t = H(t)i/, = -1-Ait, + Vtif,t; dt t 2 t (8) 

(d) the function t ➔ it,t bis continuous w.r.t. 11-llo corresponding 
to H(t 0) for some t

0
.; J 

4 

-A.-
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I 
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,, 

Then for each </> i;;; }{ c , i/lc is given by ~5), i.e., 

- , . ufn ffi 
it, t ( x) = J exp I i sv (y) I </> c y (0)) '.Vy • _ 

Let us exhibit now some class~s of potentials for which 
the conditions (b)-(d) are fulfilled. As to (b), it can be 
easily verified in the following cases: 

(9) 

v(.,t) bounded for each t ~ Jb (IO) 

trivial\y !'1-ith D=D(Hci), _ further 

v(.,t)i;;;L2(Rd)+ L
00

(Rd)for each t and.d~3. (l I) 

where again D=D(H0)(for proof see ref.181, th. 7) , and finfillY 

v(x,t):e x,B(t)x, B(t)= A(t)-i W(t); , (I 2) 

are positive symmetric dxd matrices (linear operators on Rd) 
for each t.; J b, A(t) strictly positive. As to the last case, 
one verifies first that (fo'r fixed t ) H0 + x. A~t) x · is self
adjoint on D(H

0 
)n D(Q2), Q2 being the operator of multiplica

tion by r 2= Xf+ .,.. + xa on }{ c , then the Kato-Rellich-type lemma , 
(cf.12I sec. X.8; ref.181 ) is applied successively to prove 
that iH(t) is closed (on D = D(HoY. D(Q2)) and generates a CCSG; 
details of this proof will be given elsewhere. - . 

Each operator iH(to) corresponding _to some of' the poten
tials (10)-(12) with fixed t 0 i;;; Jb gener,ates a CGSG, and there
fore its resolvent set is nonempty due· to Hille..:.Yosida theo
rem. Using now the remark following Theorem I together with 
the fact that the operator Ve f D is clofiable on£ can show . 
eaiily that the conditioh (df is 'satisfied for fhe.above clas
ses of potentials, whenever· (c) is satisfied. 

As to the condition (c), let us consider first the case 
(IO), where its validity can be established under a slightly 
strengthened smoothness assumptions: 

Theorem 2. Assume (a) and (IO), further let t ➔ v(., t) be a 
ll -11 00 - continuously -differentia~le function with the deriva.:.. 
tive bounded in (0,b). Then for each <f>i;;;D(Ho), the rhs of (9) 
makes sense and expresses the solution t ➔ if, t of eq. (8) corres
ponding to the initial data </> • 

Proof: In view of Proposition and the above considerations it 
is sufficient to verify (c). This can be accomplished by virtue 
of Theorem X. 70 from ref / 21; standard arguments show that its 
assumptions are fulfilled under the stated requirements on v. 

■ 
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As to the unbounded potentials (II), (12), we limit our
selves in the present paper to the. simplest possibility when 
they are time-independent. The above-mentioned results imply 
that H=Ho+V generates a CCSG in this case, and therefore 
the condition is fulfilled automatically. We obtain thus the 
following res~lt: 

Theorem 3. Let V be an operator of multiplication by a 
lex-valued almost regular Borel function v which obeys 
dissipativity condition (4) a.e. in Rd. Assume further 
either q::;3 and v~L2 (Rd)+L00(Rd)or' v(x)=x,(A-iW)x · with 
ly positive and W positive. Then the rhs of (8) makes 
and expresses the solution t ➔ t{, t of the equation 

i -2.. t{, = _ l._/j,t{, + Vt/, 
dt t 2 t t 

comp
the 
that 
A strict

sense 

(13) 

corresponding to initial data. ef,~D, where D=D(H0 ) in the first 
case and D=D(H0}1>D(d!) in the second one. 

4. CONCLUDING REMARKS 

The assertions formulated in the previous section remain 
valid if we use some other -reasonable polygonal'-path approxi
mation instead. of 'the uniform one, because the latter is the 
"strongest" one among theni101• ,There are several ways in which 
the presented results ·could be generalized, e.g.: 

to treat unbounded time-dependent potentials .of the type • 
(I I) uncler suitably strengthened . t-smoothness conditions, 

- to drop the restriction d ~ 3 in ( 11) with replacement of 
L2 by a. suitable LP , 

- to prove (and apply).the uniform version of the general 
Trotter formula (where the sum is not assumed closed - cf.171 ) 
and of its generalizations lll;l21• 

Let us finally remark that according to the mentioned re
sults of ref. 191 the UFN-integral coincides with the ·F~integ
ral in the sense of refs. 15 •61 for potentials v ~ j'. (Rd) as ·. 
well as for the damped harmonic oscillator. It is desirable 
to find some weaker sufficient conditions under which a value 
of the F -integral will be independent of the used Riemannian 
approximation to the action. 
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