





The last introductory item concerns notation: we shall use
_[0 t], t>0

g ~{r : 0_.10 <7 <a. <rp = t} partition of I : the set of all
these partitions is denoted as fP(J )
Sx=Tpp1=Tg+ k=01,..n~1,

8(0) = Mmax {Bk : k—.=0,1,...,n—1 L
- 2. THE PRODUCT FORMULAE

Loy

Theorem 1. Let X w1th a norm {{.|]] be a Banach space, and assume

that for each t &l ‘A(t) and B(t) ‘are genératoi's of CCSG’s
{e~AM8:.3501 and le (M8 . 5501, respectively.: Let ‘further -

C(t= A(t)+B(t)be a-closed operator for each tcJ° the domain of
which is a-‘dense“subspace D in X 1ndependent of t. Assume that
for every ucD,A()u and B()u are c® on'J°.Let exist a cont-
raction-valued ' propagator V(.,.) ~on X (cf. 47y such that -
V(,s)DC D for allitsel. Let us denote u(t)=V{t,0) for ue D -
and assume’ that C()u() is ¢° onJ - and- that- u(.) is G! on (0,b)
and there obeys N : E

%_‘;QJ,C(t)u(t) -0. L R W

Flnally, let u() be C° onJ ‘w.r.t, the Banach norm {|.{lg" b
in D', HuH0 _HuH+||C(t0)u|l for some t; . I® .Then," for any te J

V(tO) S— hmR(r_*l.‘o‘n 1)R(r
B(a)»o ‘

where R(r,8)=e 20 B8 ror  1®  520and 1,5, in (2)
refer to a partltlon o €?dNH. K

neg+Opog)-R(0,80), ’A | (2)

Remark. The operator G(ty) above can be replaced by any closed
operator G on X, the domain of which is D. If p(C) is- nonempty,‘
then in order to check-the }|.]|; -continuity of u() it is
enough to show that Cu(.) is  [||.|| -continuous on b (cf A
Prop.! and the remark following Th.1).

Proof of the theorem: We abbreviate Pk=exp'(-A(rk)8k),“Qk =
=exp(-B(r8y) , Ry=P, Q =R(7;,8,) ,k=01...,0-1, and S@) =

= Ry R s ...Rg=V(1,0). Relation (2) now reads s-limS(¢)=0. We shall
show first that for any ueD, S(s)u- 0 with 8(0)-0.Using .
the equallty ;

8@) = 5 hg oo k+1(Rk ~V(ry 4 TV 0)

together w1th ”Rkﬂsl and A(ry)+ B(ry)=C(ry) we obtain.

HS(LT)UHS kzz()akh (E1(rk 18 k)+E2(rkv6k)_Ea(rk-Bk))v(rkvo)uH )

where
E,(r.8)=(e 2% _1ns™'y ac),
E,(r.8) =& 2V%e P2 15~ LB,
E (1,8)=(V(r+8.r)—1)8—1+C(r).
Now k%()ak so that we have

l1S@)ull<t’ z sup{HE .5V 0ull: (1.5)€ M@) L

/47

where M(U)_.i(r 6) 0<8<8(@), 0<r < t~51}. Faris proved that

under stated continuity assumptions
1%m E;(r,8)V(,0)u=0, j—123
for each ueD unlformly in s .:J . This implies easily
lim sup HE (r- 8)V(r Oui|=0,  j=1,2,3,
8(0)>0 M(o)
1.e.,8];,1;n S(o)u =0. Finally, D is assumed to be dense in X

and HS(U)||<HRH_ < RollV(t0)ll<2  for each partltlona,
thus 181?;) (t(f))ll for ue X as well, i.e.,:relation (2) holds.
3 3 o . ¥ . - 3 : - .
In particular, if A,B are t-independent, we obtain the
following uniform version of the "special Trotter formula:

Corollary. Let A,B be generators of CCSG’s on a Banach space

X. If t\he sum C=A4iB generates a CCSG, then for each t>0,
-Gt '
€ = s=lim R(3,_, JR(5,_,)-..R(5,). N E))
8(0) 0 B '

. s ’ : :
where R(g)=¢ ~A56T5 and &y refer to a partition ¢¢ ?(Jt).

3. APPLICATION TO THE FEYNMAN INTEGRAL

Now we ‘specify the Banach space X to be He= L? R ) and set
A-- 1A (independently of t ) and B(t)=iV, for each tcJ
where (ths)(x) (%, (X). We assume that

(a) the Borel function v( ) onR%«JY is complex—valued and

such/st;hat v(.t) . is almost regular on RY for each teJ®
(cf. ~)st-v(.t) is ||||,, -continuous, and the dissipativity
condition

Imv(x,t)< 0 : ' 4)

holds for each te3® and almost all xecRY



The rhs of (2) can be expressed now more explicitly: using

the free propagator corresponding to H0=- =A we obtain for
¥, =V(,0) ¢ the following relation
G = dim @ni) 88,5 ] fis(
X = lim wi o[ exp tiS(o iy, ,... -
t 8(0‘)-’0 n-1 RJI; {d yo (5)

yous yn)}(f) (yo) dyo dy1 e dy n—t’

where y =X,

kfdfiy:ml*ig: [ dv.
: lyl<m

the integrals are in general improper ones,

all limits are understood in the L? —-sense,

‘and
n—-1 y -y; ‘g ’ :
S(U;yo',....,tyn) - kfo [_;_ (__%:L‘) ~v(y, "k”?k - (6)

One can interpret the last expressmn as the’ R1emann1an appro-
ximation to

S(y)-r[-—ly(r)l—v(y(r)r)]dr' S )

if the 1atter makes sense. A partlcular case of the relation
(5) appeared first in ref, /17 . this is why we call’ the rhs
of (5) the uniform Feynman-Nelson integral and abbreviate it as

J ufn exp liS,(v) } & (y(0)) Dy (for discussion of relations to.
other definitions of the F-1ntegra1 cf./10/ ).

With these prerequisites Theorem | can be reformulated for
the considered particular case. Clearly fexp(i8 A): 520 }
is a CCSG and the same is true for [exp(—lsvt) s >0} due to
(4), further the assumption (a) implies that t- V ¢ 1is conti-
nuous for each ¢ cD.Thus we have: :

Proposition. In addition to (a), assume that

(b) for each t cJP, the domain D of H(t)=Hp +V, is dense in K,
independent of t, and the operator H(t) 1is closed;

(c) there exist a contraction-valued propagator V(.,.) on X,
which preserves D for all t,sc¢ Jb, and with the following pro-
perty: let ¢ =V(t,00¢ for an arbitrary ¢cD,then the function

t-H()y, is Cc0 on Jb,further to is ¢clon (0,b) and there
satisfies : ’
1_d_(/, - H(t 1 . .
dt t ()dlt == E—A(!,t +V£‘/’t' . (8)

(d) the function t..(/,t

. {l.]lop corresponding
to H(t,) for some 0&7J

is continuous w.r.t

4

Then for each ¢ c K, ¥, is given by (5), i.e.,

) , - uf A o . -
b, (92 [ e 18,616 (yO) Dy . | 9)
Let us exhibit now some classes of potentials for which
the conditions (b)-(d) are fulfilled. As to (b), it can be

easily verified in the following cases:

v(.,t) bounded for each tGJb . . - (1'0)

trivially with D=D(Hy, further

v(.',t)‘ng(Rd)ﬁL L”(Rd)for each t and..d<3, - . . (U)
where again D=D(Hy)(for proof see ref./S/, th.7), and finally

v(x,0)= % B()X, B(t)= A(t)-xW(t) : , - ~(12)
are positive symmetric dxd matrlces (linear operators on R Y )
for each tcJ A(t) strictly positive. As to the last case,
one verifies first that (for fixed t') Hy+x.A{)x . is self-
adjoint on D(H;)n D(Q®), Q2 being the operator of multiplica-
tion by r2= xf o xﬁ on K¢, then the Kato-Rellich~type lemma
(cf£.”2/ ‘sec. X.8; ref’® ) is applied successively to prove
that iH(t) is closed (on D= D(Ho)ﬂ D(Q%) and generates a CCSG;
details of this proof will be given elsewhere.

Each operator iH(tg) correspondlng to some of ‘the poten-
tials (10)-(12) with fixed 't GJ generates a CCSG, and there-'
fore its resolvent set is nonempty due to Hille-Yosida theo-
rem. Using now the remark follow1ng Theorem | together with
the fact that the operator Vtof Dis closable one can shaw
easrly that the condition (d) 'is satlsfled for the above clas—
ses of potentials, whenever (c) is “satisfied. -

As to the condition (c), let us consider first the case
(10), where its validity can be establlshed under a slightly
strengthened smoothness assumptlons.

Theorem 2. Assume (a) and (10), further let t-v(,t) bea

|| Hoo = contlnuously ‘differentiable function with the deriva-
tive bounded in (0,b). Then for each ¢€ D(Hyp), the rhs of (9)
makes sense and expresses the solutlon t-(// of eq. (8) corres—
ponding to the initial data ¢ . '

t

Proof: In view of Proposition and the above considerations it
is sufficient to verify (c). This can be accomplished by virtue
of Theorem X.70 from ref./?/; standard arguments show that its
assumptions. are fulfilled under the stated requirements on v,

. ‘ A .




As to the unbounded potentials (11), (12), we limit our-
selves in the present paper to the simplest possibility when
they are time-independent. The above-mentioned results imply
that H=Hp +V generates a CCSG in. this case, and therefore
the condition is fulfilled automatically. We obtain thus the
following result: A

Theorem 3. Let V be an operator of multiplication by a comp-
lex-valued almost regular Borel function v which obeys the
dissipativity condition (4) a.e. 1n RY. Assume further that
either d<3 and ve L2(RA}LLY(RY or’ v(x)=x(A~iW)x  with A strict-
ly positive and W positive. Then the rhs of (8) makes sense
and expresses the solution tsy, of the equation
; d 1
bgr Vo= VY (13)
corresponding to initial data ¢€D, where D=D(H,) in the first
case and D=D(H0)ﬂD(Q2) in the second one. .

4. CONCLUDING REMARKS

The assert1ons formulated in the previous section remain
~valid if we use some other ‘reasonable polygonal-path approx1—
matlon instead of the uniform one, because the latter is the
“"strongest™ one among themf1%/, There are several ways in which
the presented results could be generalized, e.g.:
- .= to treat unbounded tlme—dependent potentials .of the type
(11) under su1tab1y strengthened t-smoothness conditions,
‘= to drop the restr1ctlon d<3 in (]]) with replacement of
, L2 by a 'suitable L ,
- to prove (and apply) the uniform version of the general
Trotter formula (where the sum is not assumed closed - cf:n/)
and of its generalizations 11,12/

-

Let us finally remark that accordlng to the mentioned re-
sults of ref.”/ the UFN—1ntegral coincides with the 'F- ‘integ-
ral in the sense of refs.””®  for potentials vcF(R?) as
well as for the damped harmonic oscillator. It is desirable
to find some weaker sufficient conditions under which a value
of the F-integral will be independent of the used Riemannian
approximation to the action.
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