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I • INTRODUCTION 

A unique experiment, which is a part of an experimental 
program of a precise measurement of the 2s-2p energy differen­
ce in muonic hydrogen by laser spectroscopy, has recently 
been reported 111. Earlier measurements at SIN '2 / proved the 
absence of a long-lived, i.e., metastable, P/L(2s) state at 
150 and 600 Torr. Now the authors managed to extend the mea­
surements to low densities ( < I Torr) to diminish the collisi­
onal quenching of pµ (2s) ll / , 

It was proposed earlier to use the transfer process from 
the pµ(2aj to the heavier nuclei as a probe for the presence 
of the small fraction of muons of pµ (2s) atoms t.3 / , This should 
be reasonable if the transfer process were fast, as it is 
expected to be in the case of the reaction 

pµ(2s)+d ➔ dµ(n=2)+p. (I) 

In the energy interval between the thermal (room temperatu­
re) energy ET and I eV the motion _of the pµ -atom is adiaba­
tic. The adiabatic potential curves together with the matrix 
elements accounting for the breakdown of the adiabatic picture 
~re now available~1. Two facts, a large polarizability of the 
pµ(2~state and a charge symmetry of nuclei (gerade-ungerade 
classification of the adiabatic states~/ ) make the process 
(I) rather fast. 

In this paper we first formulate the basic ideas of the 
adiabatic-state approach to the reaction (I) in the low col­
lision energy interval. We start from the approximation of 
adiabatic states which include all pµ ( n =2) and dµ ( n =2) 
asymptotic states ( n-atomic principal quaatum number). Only 
two of these six states apper to be important for the low 
energy collisions. The equations of the two-state-adiabatic 
approximation were solved numerically in a pure quantum manner. 
The effect of two other equations was incorporated analytical­
ly in some way. The last two equations (of total six) accoun­
ting for the rotational coupling were neglected. 

II. ADIABATIC STATES AND POTENTIALS 

Three-body problem of proton,deuteron andµ- with masses 
m8 ,md and µ,with center of mass motion separated,has a Hamilto­
nian 



H=--1-A ➔- _1_£\ ➔ __ L_...!.+L 
2M R 2 m r r p rd R 

(2) 

with (fi=e= 1) 

1 = 1 + 1 , 1 = 1 + 1 __ . 
M m P m d m µ mp + m d 

(2a) 

Here r is the position vector of muon with respect to the 
CM of the nuclei and Ris the internuclear vector. The dis­
tances between muon and heavy particles are given by rp and 
rd • 

Next ·we introduce the adiabatic Hamiltonian ho .adiabatic 
states ¢a(r;R) and adiabatic potentials Wa(R), all of them de­
pending parametrically on the internuclear distance by Schro-
dinger equation · 

h0 ¢a(r;R)= Wa<R)¢a(r; R) (3) 

with h0 as a part of H 

ho= - _1_ i\ ➔ _,_L, __ 1_ + .!._. 
2m r rp rd R 

(3a) 

The solution of the original Schrodinger problem 
➔ ➔ ➔ ➔ 

H IJ1 (R, r ) = E IJ1 (R, r) (4) 

is tried in the form 

11'(R.1> =; f: <R)¢! <r: a>+ !ifrJ <R)¢~<r:R). <s> 
Here a specific quantum number ( g - gerade, u - ungerade) of 
the adiabatic states is introduced. It accounts for the charge 
symmetry of the problem (3), where the nuclei do not move, 
thus being identical. 

To meet asymptotical requirements of the process (I), we 
should examine at least all the solutions ¢i(r;R) of the 
adiabatic problem (3) which turn into linea~' combinations of 
"muonic hydrogen" wave functions with principal quantum num­
ber n =2, as R goes to infinity. These are gerade 2 s a , 3 d a , 
3d" states and ungerade 3pa, 4fa, 2p" states in the united atom 
classification of the adiabatic statesA>~ If we take m=I 
we have for large R 1151 

w "' w .. _ . ..L+ ..L. - ..L+ ... 
2sa 3pa 8 R2 R3 

(6a) 

w "'w .. _..1.,_.a._,_ . ..Q...+ ... 
3da 4Ca 8 R2 R3 

(6b) 

w "'w ,._..L+ ..L.+ ... 2P71' 3d71' 8 R3 (6c) 
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Fig. Wada(R) adiaba­
tic potential in com­
p~rison with the ground 
W 1sa(R) curve. The 
powerful longrange at­
traction of W ada{R), 
see formulae (6b), 
makes the reaction 
(I) fast and unlike of 
the reaction (7). 

The potentials 
W3d0 and W4 ra are po­

werful and attractive 
as R ➔ 00 ,the other four are powerful and repulsive. As far as 
we are interested in low energy collisions, we can neglect 
the repulsive states in some reasonable approximation. Actual­
ly the 3da potential curve is pictured below, and it is 
easily seen that the collision energies in the interval 
0 < E < I eV are negligible not only in comparison with the 
depth of the potential but also when compared with the power­
ful tail of the potential given by (6). This means that in 
the adiabatic representation only two of six asymptotically 
adequate states (6) are "open" for low energy reaction (I). 
In the following we shall have some numerical test of this 
assumption. 

The other potential pictured with the 3da potential is the 
ground solution of the adiabatic problem (3), the gerade 
1 sa - state potential. It is used (with un,erade 2pa-state) 
in the calculation of the processes like 16 

pµ (ls)+ d ➔ dµ(ls)+ p (7) 

of the low energy muon transfer from pµ atom in the ground 
state. In what follows our consideration will be very·similar 
to that from our earlier· paper 161• 

III. EQUATIONS FOR NUCLEAR MOTION 

We take solution of the original Schrodinger equation (4) 
in the form 

➔➔ - -
IJ1 (R ,r)= ifr/R)(¢g +¢u)/v' 2 + iµ2 (R)( ¢g -¢u )/v 2 , Y ~o (0 ,¢) (Sa) 

with ¢g=¢ada and ¢u =¢4ra which suffices to form pure atomic 
states from their gerade and ungerade combination as R ➔ oo • 

The substitution of this form into equation (4) with further 
integration over 1-coordinates and partial-wave analysis, 
produces the system of radial equations 
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Here 

d2 2 f(f+ 1) dX2 
(7 +kl - 2 )X1=K11X1+K1~2 + 2Q12--
dR R dR 

d2 2 . f(f+l) dX 1 <dR2 + k2 - -T)X2 = ~22x2 + ~1x1 - 2~2dir • 

Xi (R) = ,f, i (R)/R. 

1 K11 (R)= M(Wg +Wu)+ 2 (Kgg+ Kuu-Kgu -Kug), 

K12(R)= M(Wg -Wu) +-} (Kgg-Kuu + K gu - Kug ), 

1 K21(R)=M(W -W ) + -(K -K -K + K ), g u 2 gg uu gu ug 

K2iR)=M(Wg+Wu)+ ~ (Kgg+Kuu+Kgu+Kug)• 

Q12(R)= - Q gu · 

(8) 

(9) 

The adiabatic corrections Kgg••·· Kuu•Qgu are defined by the 
equations ➔ 

K ij = < i I - ~ R I j >:, Q ij = : < i I - V R I j > , (I O) 

i,j=g,u 141 and are now available . Their asymptotic form is known analy­
tically171 

1 2 1 2 K .. K .. ~ (1+6. ) - --(1+3~ ), gg uu 16 2R2 (11) 

K .. K ,,,_(J..,_,2..)~. 
gu ug 8 R2 

md-m 
~ = p '• 

md + mp 

The matrix element Q gu{R) 
linear momenta k1 and k2 

decreases exponentially as R➔~3he 
according to equations (9) and (11), 

are given by 

kf= k: + ~/4, 2 
k

2
= 2ME. (I 2) 

That is 6./SM represents isotopic energy difference, Eis CM 
collision energy. Now we introduce the matrix formulation of 
the scattering problem (8) 

LX= KX+2QX' (12a) 
with L being a free motion operator of the left-hand side of 
equation (8), and Kand Q being two by two matrices whose mat­
rix elements are given by (9). Following Baz et al. 181, we 
form the regular solution of equation (8a) with an asymptotic 
behaviour 

x ... [J<->_,;,<+>sJ. (13) 
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where J<±>are incoming and outcoming spherical waves in the 
form of diagonal matrices. They are the solutions of the 
equation 

L J<±>= O. (14) 

Then Sis a usual S-matrix. An important feature of reaction 
(1), which makes it totally different from earlier studied 
reaction (7), is the infinite range character of the poten­
tials involved in the calculation. This follows from equations 
(6), (9) and (II). The Eada potential pictured in fig. I in 
comparison with Elsa used for reaction (7) clarifies what 
we mean. Actually the ... powerful attractive tail in diagonal 
matrix elements of matrix K(R) from equation (8a), see for­
mulas (9), forms in the 1-th partial wave effective potential 
(R large) 

K .. (R)+ f(f+!L.,,, -6M + f(f+l) (15) 
11 a2 R2 

which appears to be still attractive for O ~f < 6. This means 
that six partial waves are scattered without repulsive bar­
rier even at E ➔ 0 limit. For f ~6 the potential tail (15) be­
comes repulsive, i.e., the pair of adiabatic potentials cho­
sen.(3da,4fa) should be treated in this case on the same 
footing as the other adiabatic potentials (6a) and (6c) of 
the n=2 family, 'that is,should be omitted. That is indeed 
the fact we have experienced in our numerical solution of 
equation (8a) with the scattering condition (13). We have 
found that only f<6 partial waves contribute to the muon ex­
change cross-section due to reaction {I) for E.:s;I eV, i.e., 
in the energy interval under investigation. This circumstance 
justifies our two-state ansatz introduced earlier. 

We should mention two important numerical details. Because 
of the already mentioned specific attractive character of 
the channel potentials (15), the bessel functions of the ima­
ginary index should be involved in the calculation for f < 6 
partial waves 19(This was done in the framework of the two 
channel phase function method 161

, 

IV, SPHERICAL AND PARABOLIC HYDROGEN-STATE S-MATRIX 
The S-matrix of the previous section is that of the process 

Pµ(n=2,n 1 =0,n 2 =1)+d ➔ dµ (n=-2, n 1=1, n 2=0)+p, (la) 

where n1 and n2 are parabolic ·quantum numbers. This follows 
from the asymptotic behaviour of the adiabatic 3da and 4fa 
states, which are gerade and ungerade combinations of the 
(la) parabolic states. Let us suppose the four state approxi­
mation of 3 da , 4 fa, 2sa and 3pa adiabatic states introduced 
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and the scattering problem (8a)· with appropriate asymptotic 
condition of type (13) solved. Then recalling our argu­
ments for the role of the 3 da and 4 fa potentials in the trans­
fer process (la), we should innnediately state that four by 
four scattering matrix should have a form 

s11 S 12 0 0 
~ I s21 8 22 0 0 S4= 

(16) 

0 0 S33 0 

0 0 0 S44 

with the upper left-hand submatrix coinciding with S-matrix of 
the process (I a). Now what we need is the matrix transforma­
tion between parabolic and spherical hydrogenic states/to/, It 
is simple in our case 

(
2p\ =-~-, (1· -1)(02=1). (17) 
2s} V 2 1 1 n 

2 
= 0 

With the help of _(17) S-matrix for the process (1) between 
spherical states S can be expressed in the form 

S = AS4 A- 1 , (18) 

where 
1 0 -1 0 

A=,J~-1: 
1 0 -1 

0 1 0 

(19) 

0 1 0 1 

This leads to the S-matrix of the process (1) 

8 11 +S33 812 8,_ CS 33 812 

_, 1 I 
821 &z2+S44 821 822-S44 

S=--
2 

811-S33 S 12 811+S33 8 12 
(20) 

8 21 822- 844 8 21 822+ 8 44 

in which the column numbering corresponds to thepµ(2s), dµ(2s), 
Pµ(2p) and dµ-(2p) physical state sequence. If follows from 

(20) that a!x =ail pµ(2s) ➔ dµ(n=2)l, that is the partial 
cross-section of the reaction (1), is given by 

6 

e 2" r 2 
"ex ... -2 ( 2r + 1 > Is 12 I 

k2 
(21) 

We have introduced index f of the partial matrix element of 
S-matrix for the first time. It was suppresed in previous 
consideration for simplicity. 

V. RESULTS AND CONCLUDING REMARKS 

The Schrodinger equation with the potential 

R a 1 
V( )=-- a> -

R2 ' 4 (22) 

has some specific ·features both for bound solutions ISi and 
for the scattering problem~1. Some of these features are due 
to the R ➔ O singularity whereas the other are caused by the 
R ➔ oobehaviour. We shall list these latter ones: a) Total 
elastic cross-section does not exist (diverges), b) Scattering 
parameters become constants as collision energy goes to zero, 
c) As a result of (b) partial cross-sections exibit const/E 
threshold law as E ➔ o. d)Several partial waves should be taken 
into account in the E ➔ 0. limit if a, of (22)· is sufficiently 
large. If sunnnarized, the low energy scattering cross-section 
should be large and abnormally behaving. 

In our case we had to solve a two-channel scattering prob­
lem (8) with diagonal matrix elements of the potential energy 
matrix of type (22). For c,:>llision energies O< E ~I eV six 
partial waves proved to make a contribution to the muon trans­
fer cross-section aex· These were the partial waves which had 
satisfied the condition a> f(f+ 1) with a-s slightly different 
for different channels but somewhat greater than 30,0, The 
const/E law proved to be valid for the muon transfer cross 
section. Thus 

5 f -17 2 
aex = 2 aex :::0.85/E (eV) x 10 cm (23 ) 

f=O 
which is our main result.· This formula can be used in the 
wholeE,fE~.1 eV energy interval. AtE=IO eVa =O.JJx10- 17 cm 2 , 

that is the formula (23) still approximately
8
:orks. 

To end the discussion, we give the muon transfer cross­
section due to the reaction (7) which has a .. canst/ v'E low ex 
energy law 

-· ' -18 
aex = 0.23/,JE(eV) x 10 cm 2 • (24) 

At E=IO_-2 eV aexlGax ,.,400. 
The multichannel problem of the type 

H(2s) + d ➔ D(2s) + p, (25) 
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which coincides with the problem considered in this paper, 
when electron is substituted by muon, was given some atten­
tion in atomic physics. The references can be found in the 
recent paper/12/, 

But the pure quantu~ calculation of the low energy capture 
of the light particle, when both classical and semiclassical 
treatment should fail, was given here for the first time. 

Our analysis does not take into account the vacuum polari­
zation corrections to the Coulomb interaction1131• This effect 
should destroy the const/E law for energies E less than 
0.2 eV, that is, for the energies compared with the vacuum 
polarization splitting of the pµ(n=2) multiplet. 
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