


1. INTRODUCTION

Some two-dimensional field theoretical models possess hid-
den symmetries which give an infinite set of local conserved
quantities. Such models are the sine-Gordon model’l/, nonli-
near sigma models®’ and all other complete-integrable models.
For the nonlinear sigma models, it has been shown’®/ that there
exist also nonlocal conserved quantities generated by nonli-
near and nonlocal field transformations”/.Such nonlocal cur-
rents were found in papers’S/ also for the supersymmetric
sigma-models. In the four-dimensional case such symmetries
are found for Yang-Mills fields on contours in paper’®/ as
well as for a self-dual sector in paper 7.

In the present article the problem of existence of hidden
symmetries in the case of field theories invariant with res-
pect to global abelian gauge transformations is investigated.
For this purpose a class of "local" gauge transformations with
respect to which the action is invariant without including
additional compensating fields are considered. In general,
invariance of the corresponding equation of motion with res-~
pect to these transformations is not required. The problem
of finding the explicit form of the transformations under
consideration is reduced to the solution of one partial dif-
ferential equation. In the two-dimensional case the general
solution of this equation is found. However, the transforma-
tions found in such a manner are symmetry of the action only
on the extremals (solutions of the equation of motion). As
in the case of chiral models, these transformations are non-
linear and nonlocal. According to the Noether theorem to any
one parametric transformation of this class there corresponds
one nonlocal conserved current.

In the case of three and four-dimensional space~time the
solution of the invariance equation is found only on two-
dimensional manifolds.

Our considerations are applicable also to field theoretical
models which are invariant with respect to abelian local gauge
transformations.
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II. THE CONDITION FOR EXISTENCE
OF HIDDEN SYMMETRY

Suppose that a set is given of classical fields ¥, (x) (k=
1, ..., N) in a D-dimensional space-time. For these fields
the Lagrangian function is given by ‘

™= L%, 9, (2.1)

The invariance of (2.1) with respect to the global gauge
transformations

Y=o %W (9, W) =T VPR, (malM)
(2.2)

P ®= ‘PM+k(x). (k=1,....N=M)

is required. Here the fields ¥y, (k=l, ...,N~M ) are gauge
invariant, i.e., they are real. As is known, according to the
Noether theorem to the transformation (2.2) there corresponds
the following current :
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that is conserved(a“hl=0):when the equations of motion
98 - 3@ ‘
0 e - £Xa () (2.4)
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are satisfied.
Consider '"local" gauge transformations
=" v v Y v,
(2.5)
(x) ‘PM+k() (m=1,...M), (k=1,... N-M),

where the function n(¥) is determined by the invariance condi-
tion of the Lagrangian (2.2) with respect to the transforma-
tions (2.5) without including compensating fields. The in—
variance of the equations of motion (2.4) is not required.

The invariance condition for the Lagrangian £ with respect
to the transformations (2.5) has the following form

AL (0=3" (09,1 (9 =0, (2.6)

where the current j (@ is given by (2.3). Consequently, the
problem of ex1stence of hidden symmetry of type (2.5) is re-
duced to finding of nontrivial (n+ const) solutions of eq.
(2.6). If such a nontrivial solution exists, then according to
the Noether theorem it follows that the quantity

-

2.7)

1s‘conserved if the equations of motion (2.4) are satisfied,
i.e., Ela ju. =0. In the formula (2.7) to any linear—independent
solution of (2.6) there is introduced the corresponding infi-
nitesimal constant parameter wX, i.e.,

(=3 1" o
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Suppose that jy(%)

10 @=3, 00®

(2.8)

decreases on space—infinity so that the

charge
D-1
Q= [ dx Jo(n . (2.9)
is conserved, i.e., Q. =0. Then the charges
D-1
Qs rax jo0n® @ (2.10)
are also conserved if the following boundary conditions
0@ s M < (2.11)
hold. o=
From (2.5) and (2.8) it follows, that
() (x) = ‘?T(“’)l o ' . (2.12)
d” W=
consequently, n“)(m are generators of the transformations

(2.5).

3. EXPLICIT FORM OF GENERATORS
FOR TWO—DIMENSIONAL MODELS

In two-dimensional case eq. (2.6)-in general can always be
solved. Note that for constructing, in an explicit form, the

-conserved currents (2.7) it is sufficient to find the soluti-

ons of (2.6) only in the case a“Ju =0, i.e., on the extremals.
In the last case the correspondlng to (2.6) characteristic
differential equation is reduced to an:equation for the total
differential. The first 1ntegra1 of this equatlon can be

written in the following form
X
1

(%) = Ty ig (g y) (3.1)
As is known, the general solutlon of (2 6) is given by » ‘
n (®=F(®), (3.2)

where F is an arbitrary function satisfying the boundary con-
dition (2.11) at space infinity. :



One infinite sequence of functions s ®(x) (k=1, 2, ...)
can be selected from (3.2) if

7™ (9 = f 8y,3 (%07, Y, (k=23,., (3.3)

where we, start from1ﬂ1)~const Corresponding conserved currents
are given by

120 =i, @ ® @, k=120, (3.4)

Here J&D~ Ju(ﬂ. This set coincides in form with the known
infinite set of nonlocal conserved currents for the chiral
models 8/, As in the last case the currents (2.4) are nonlocal
and are generated by the nonlocal and nonlinear transformations
(3.3).

From (2.9) and (3 1) 1t follows that

2 (xo,m)=Q (xo), (k=1,.), . (3.5)

which are conserved charges corresponding to the currents
(3.4). Consequently, the boundary condition (2.11) is satis-
fied if the first conserved charge exists.

It can be checked that the generating function n(K)(@ com—
mutes with respect to the Poisson bracket and consequently
7(K)(¥) are generators of the infinite-parametric Abelian
group and the corresponding charges are in involution.

4, GENERATOR FUNCTIONS n(ka) IN THE
D-DIMENSIONAL CASE

When D>2 eq. (2.6) have no nontrivial solution in all the
space-time. As an example, consider the three-~dimensional
(D=3) case. The corresponding characteristic system of eqgs.
(2.6) can be written in the following form

Jpdr, +j,dxy=0,

o .1
Jgdzy + jpdx, =0. ‘

One first integral of the system (4.1) can be found if

a) §,=i,(. % +axy), (2=012), (4.2)
A

b) J; *tal, -2 f dy, aog(xo.ylmx) 4.3)

where a. is an arbltrary parameter and g an arbitrary function
of X; +aXy . Then the corresponding first integral of (4.1) is
given by :
s : 4.4)
©, = [ &y %y ¥y +aX,), 4.
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Cl)b= —L dylg(xo.y1+a1x2). (4.5)

As in the two-dimensional case, any function of ®,or @,
when there are satisfied conditions (4.2) or (4.3), obeys eq.
(2.6).

In the four—dimensional case the conditions (4.2) and (4.3)
have the form

a’) J,(0=j, (g% +aXy +B%y)  (u=012.3) (4.6)
and j
B+ aiy+Biy =2 fdyl«},g(xo.yﬁax +Bxg). 4.7
The first integrals are given by ‘
X
®,= [ O Jo(xo.y +axy +Bxg). (4.8)
X1
(dy 8(%g. ¥, +aX, +Bx ), (4.9)

where a,B are arbitrary parameters and g is an arbitrary

‘function.
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