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I • INTRODUCTION 

Some two-dimensional field theoretical models possess hid­
den syrrnnetries which give an infinite set of local conserved 
quantities. Such models are the sine-Gordon model 111, nonli­
near sigma models -'21 and all other complete-integrable models. 
For the nonlinear sigma models, it has been shown131 that there 
exist also nonlocal conserved quantities generated by nonli­
near and nonlocal field transformations~1.Such nonlocal cur­
rents were found in papers 151 also for the supersyrrnnetric 
sigma-models. In the four-dimensional case such syrrnnetries 
are found for Yang-Mills fields on contours in paper Al / as 
well as for a self-dual sector in paper 171• 

In the present article the problem of existence of hidden 
syrrnnetries in the case of field theories invariant with res­
pect to global abelian gauge transformations is investigated. 
For this purpose a class of "local" gauge transformations with 
respect to which the action is invariant without including 
additional compensating fields are considered. In general, 
invariance of the corresponding equation of motion with res­
pect to these transformations is not required. The problem 
of finding the explicit form of the transformations under 
consideration is reduced to the solution of one partial dif­
ferential equation. In the two-dimensional case the general 
solution of this equation is found. However, the transforma­
tions found in such a manner are syrrnnetry of the action only 
on the extremals (solutions of the equation of motion). As 
in the case of chiral models, these transformations are non­
linear and nonlocal . According to the Noether theorem to any 
one parametric transformation of this class there corresponds 
one nonlocal conserved current. 

In the case of three and four-dimensional space-time the 
solution of the invariance equation is found only on two­
dimensional manifolds. 

Our considerations are applicable also to field theoretical 
models which are invariant with respect to abelian local gauge 
transformations. 



II. THE CONDITION FOR EXISTENCE 
OF HIDDEN SYMMETRY 

Suppose that a set is given of classical fields IPk(x) ( k = 
1, •.• , N) in a D-dimensional space-time. For these fields 
the Lagrangian function is given by 

£ (x) = f('Pk, cJµIPk). 

The invariance of (2.1) with respect to the global 
transformations 

'P~(x)= eiaq,m(x), IP""(x) = e-ia,,P~(x), (m==l, ... ,M) 

. IP~;k(x) = IPM+k(x), (k=l, ... ,N-M) 

(2. 1) 

gauge 

(2. 2) 

is required. Here the fields IPM+k ( k '!"I, ••• , N-M ) are gauge 
invariant, i.e., they are real. As is known, according to the 
Noether theorem to the transformation (2.2) there corresponds 
the following current 

a£ a£ 
j (x) = i(----11'* - -
ll acaµ. 'I'~ ) m aaµ.'Pm 

'I'm) (2. 3) 

that is conserved (all j = 0) when the equations of motion . ll 

all a£ - a£ "'0 (2.4) 
a all IP a .q, 

are satisfied. 
Consider "local" gauge transformations 

, ilJ(X) . * -il](X) 
'I' (x) = e 'I' (x), 'I' '(x) = e 'I'* (x), m - m m m 

(2. 5) 

'I'' (x)= 'PM k'(x), (m= l, ... ,M), (k =l, .... ,N-M), M+k + 
where the function 1J(x} is determined by the invariance condi­
tion of the Lagrangian (2.2) with respect to the transforma­
tions (2.5) without including compensating fields. The in­
variance of the equations of motion (2.4) is not required. 

The invariance condition for the Lagrangian£ with respect 
to,the transformations (2.5) has the following form 

~£ (x)=/(x)a.7J(X)=0, (2.6) ll 
where the current jll(x) is given by (2.3). Consequently, the 
problem of existence of hidden synnnetry of type (2.5) is re­
duced to finding of nontrivial ( lJ,/ canst) solutions of eq. 
(2.6). If such a nontrivial solution exists, then according to 
the Noether theorem it follows that the quantity 
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/K) (X)=j (X)lJ(K) (X) 
ll ll (2. 7) 

is con.served, if the equations of motion (2.4) are satisfied, 
i.e., allj ll· =O. In the formula (2. 7) to any linear-independent 
solution of (2.6) there is introduced the corresponding infi­
nitesimal constant parameter wK, i.e., 

lJ(x) = :l lJ(K) (x)w • (2.8) 
K K 

Suppose that j0 (x) decreases on space-infinity so that the 
charge 

D-1 
Q= f dx j

0
(x) (2.9) 

is conserved, i.e.,~ =O. Then the charges 
D 1 dt 

Q(K)=fdx- jo(X)l](K)(x) (2.10) 

are also conserved if the following boundary conditions 

I lJ(K)(x) I~ M < oo (2. 11) 

hold. !xi= oo 

From (2,5) and (2.8) it follows, that 

lJ(K) (x) = aT(w) I , (2. 12) 
awK w=O 

consequently, lJ(K)(x) are generators of the transformations 
(2. 5). 

3. EXPLICIT FORM OF GENERATORS 
FOR TWO-DIMENSIONAL MODELS : 

. ' 

In two-dimensional case eq. (2.6) in general can always be 
solved. Note that for constructing, in an explicit fo~m, the 
conserved currents (2.7) it is sufficient to find the ·soluti­
ons of (2.6) only in the case alljµ.=O, i.e., on th~ extremals. 
In the last case the corresponding to (2.6) characteristic 
differential equation is reduced to an equation for the total 
differential. The first integral of this equation can be 
written in the following form · 

Xl 
<l>(x) = f dyl jo(xo,Y 1 ). (3.1) 

-00 

As is known, the general solution of (2.6) is given by 

lJ (X)=F(<I>), (3.2) 

where Fis an arbitrary function satisfying the boundary con-· 
ditton (2.11) at space infinity. 
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One infinite sequence of functions 71 (k)(x) ( k =I, 2, .•• ) 
can be selected from (3.2) if 

x1 
77(k) (X)= ( dy1j

0
(x

0
,yi )77(k-t), (k=2,3, ... ), (3.3) 

where w~ st;;'t from 77(1) = const • Corresponding conserved currents 
are given by 

(k) . (k) Jµ. (x)=Jµ(x),, (x), (k=l,2, .... ). (3.4) 

Here J~l) .. jµ.(x). This set coincides in form with the known 
infinite set of nonlocal conserved currents for the chiral 
models 13/, As in the last case the currents (2.4) are nonlocal 
and are generated by the nonlocal and nonlinear transformations 
(3. 3). 

From (2.9) and (3.1) it follows that 
(k) (k), 77 (x 0 ,oo)=Q lx 0 ), (k=l, ... ), (3.5) 

which are conserved charges corresponding to the currents 
(3.4). Consequently, the boundary condition (2.11) is satis­
fied if the first conserved charge exists. 

It can be checked that the generating function 77(K) (x) com­
mutes with respect to the Poisson bracket and consequently 
77(K)(x) are generators of the infinite-parametric Abelian 
group and the corresponding charges are in involution. 

4. GENERATOR FUNCTIONS 77 (K >(x) IN THE 
D-DIMENSIONAL CASE 

When D1> 2 eq. (2.6) have no nontrivial solution in all the 
spac~-time, As an example, consider the three-dimensional 
( D=3) case. The corresponding characteristic system of eqs. 
(2.6) can be written in the following form 

JO dx i + j 1 dx0 = O, 
(4. l) 

jodx2+j2dxo ... o. 
One first integral of the system (4.1) can be found if 

a) j µ.= j µ(Xo •Xi+ a.x2 ), (µ.= 0,1,2), (4. 2) 

. Xi 
. . lo f 

b) Jt +aJ2=- dyi a0 g(x
0

,y1 +a.x2) (4.3) 
g -00 

where a, is an arbitrary parameter and g an arbitrary function 
of x1 +a.x2 • Then the corresponding first integral of (4. l) is 
given by 

Xt 
lf>a= f dyij

0
(x

0
,y

1
+a.x 2), (4.4) 

-00 
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Xi 
<I\ = f dy i g (XO ,Y l + a , X 

2 
) , ( 4 , 5) 

-00 

As in the two-dimensional case, any function of <I> a or <l>b , 
when there are satisfied conditions (4.2) or (4.3), obeys eq. 
(2.6). 

In the four-dimensional case the conditions (4.2) and (4.3) 
have the form 

a') jµ<x) = jµ (x 0 ,xi +a.x2 +{3 x3) (µ= 0,1,2,3) (4.6) 

and . x1 
jl + aj2+/3j3 =1 ( dy/bg(Xo,Y1 +aX2+f3x3)• g -00 

(4. 7) 

The first integrals are given by 
Xt 

<l>a,= ( dyl jo(xo,Y1 +a.x2 +f3x3 ), (4.8) 
-00 

x1 
<I> , = ( dy l g ( ¾ , y l + a x2 + f3 X 3 ) , b -oo 

(4. 9) 

where a,,f3 are arbitrary parameters and g is an arbitrary 
'function. 
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