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I. INTRODUCTION 

In the first part of this paper~ / we have studi ed proper­
ties of the sub set of polygona l paths in the Hilbert space 
J{ =AC0 [ Jt; R d] referring to a d-dimensional quantum-mechanica l 
system. In particular, we have shown that each e l ement of H 
can be approximated in the H-norm 11 -!I by polygonal paths, 
and that this approximation is uniform w.r.t. 80), the maxi­
mal-subinterva l length of partition r, of the time interval 
Jt =10,t]. 

Here we shall use the results of Ref.~ 1 for di scussion of 
various types of polygonal -path approximations whi ch appear 
in the f unctional - i nt egration theory, in particular those of 
Cameron / 2 ,3 1, Cameron and Storvick 14 1

, Ge 1' f and and Yaglom1" 
1
, 

Babbitt 16 1 , Nelson 17 1, Combe et al. 18 1
, Truman~· 11 1, Elworthy 

and Truman'121, Johnson and Skoug113 1
, Tarski114 1 and others. The 

uniform appr oximation of Cameron appear s to be the " stron­
gest" one of them; we shall apply it to extend domain of the 
Feynman maps introduced 1n ref. 116 1 and to prove consistency 
of this extension . 

Two particular cases of these maps are especially interes­
ting : the F1-map or the Feynman integral and the F _i -map . As 
to the latter, we shall give some sufficient conditions in 
the next section under whi ch it can be identified with the 
Wiener integral . For d=J the F_i-map is closely related to 
the sequential W-integral of Cameron~1. In the last section 
we shall show that the basic theorem concerning the latter 
must be improved; we shall give strengthened conditions on 
the order of growth under which its assertion holds. Applica­
tion of the polygonally extended F-integrals to solving 
Schrodinger-type equations will be discussed in the subsequent 
paper / 17/, 

Throughout this paper we used the notation of ref/11 freely. 
The relations, theorems and propositions of that paper will 
be indicated with I, e.g., (1.4) means the relation (4) of 
ref.111, etc. 

2. POLYGONAL-PATH APPROXIMATIONS 

The main purpose of the polygonal-path methods is to de­
termine the Feynman integral and related objects. The term 

. . , } 
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"approximation" is thus a little misleading, because it means 
_ at the same time definition of the "approximated quantity". 

too. The ideology of polygonal-path definitions of the F-in­
tegral is essentially that of the Riemann-integral theory, 
however, since there is no analogy to the Darboux sums 1181 he­
re the definitions must be formulated in terms of limits 
w.r.t. sequences or nets of partitions. 

Let us consider now in more detail the problem how to de­
fine the F-maps, i.e., the one-parameter family of complex­
valued maps f.-<l>

8
from a suitable set of functions f on H. 

which correspond to the formal_ functional integrals 

. 2 
<1> = f exp c ..L. 11 y 11 ) r c y) ~ Y 

8 J{ 2 s 
(I) 

with s non-zero, Im s ::; 0 (this subset of s in C was denoted as 
CF in ref (16/ ). F -integral clearly refers to the case s =I, 
if we set for simplicity the Planck constant J{ as well as 
the mass(es) equal to I. Each polygonal-path approach to this 
problem starts from a choice of mappings cf, 

8
: P • ➔ C which assign 

to every partition a of some subset P'in P (Jt) "finite-dimen­
s ional approximations" ct, (a) to the functional integrals (1). 
The following step consi

8
sts of taking a limit of cf, sCa), which 

corresponds in some sense to gradual refining of a: if this 
limit exists it is identified w:ith <I> 8 • 

It is therefore clear that there exist at least two points 
of view for classification of polygonal-path methods: 

(i) according to a choice of ¢ 5 , 

(ii)according to a choice of the limiting procedure. 
The first one will be discussed only briefly here (see also 

remarks in_ the following section); we limit ourselves to the 
case which is physically the most interesting, i.e., s=I and 

t . 
f(y),. expl-i f V(y(r) + x)dr I u(y(O)+ x), (2) 

0 . . . 
where Vis a potential on Rd and u belongs to some subset of 
L2 ( Rd). Then different choices of ¢ 1 (a) are possible (of cour­
se, for those V,u for which the corresponding expressions 
m.ike sense), e.g., 

cp 1 (a):= I 1 (f o P (a)), (3a) · 

whe_re 11(.) is_ the F-integral of Albeverio and Hoegh-Krohn119 •2~
1 

or 

2· 

-n/2 
¢1 (a):= (211i) f 

P(a) J{ 
exp I~ 11 y'll 2 1 f(y')dm(y') = 

= (2rri)-n_l2 ( exp l.iS{y'+x) I u(y(O)+ x)dm(y' ), 
P(a) J{ 

(3b) 

where y' .. ~(a)y, n== dimP(a ), further S(y) is the action along 
the path y and the integral in (3b) is understood in the 
improper sensel!l-121, or finally 

cf, (a):=(2rri)-n12 f expliSa(y'+x)!u(y(O)+x)dm(y' ), (3c) 

h l_ h ' Pfa)J:{ 1 d b R' . ' . were t e action S is rep ace ya ~emannian approximation 
Sa (in fact, it concerns the potential part only) correspond­
ing to the partition a. and the integral is again the impro­
per one /6-8_.14/. 

The last choice admits use of the Lie-Trotter-Kato formula 
and gives thus stronger results than the previous two (in the 
sense that the corresponding functional integral exists and 
expresses dynamics for a much wider class of potentials). The 
expression (3b) is in turn applicable to more potentials than 
(3a); if the latter exists and the integral in (3b) conver­
ges in the proper Lebesgue sense, then they equal each 
other110,161. On the other hand, (3c) does not correspond exact­
ly to the heuristic prescription of Feynman/21/ and choice of 
Sa burdens the definition with an additional arbitrariness. 
Except for that,the improper integrals in (3b, c) are sensiti­
ve to the defining prescription/16,22/ so it is desirable to 
get rid of them. 

Let us turn now to discussion of possible limits w.r.t. 
the partitions a. Again various possibilities arise: 
(a) the n-l - and 2-n-approximations: the simplest choice is 

to take the sequence la;l;.,1 of "equidistant" partiti-
ons15-101, i.e., with rfn>=itln and to set <1>

8
: =limcf, (ane). 

The same can be performed with any subsequence 'bT I 
8
a~ 1;'=1, 

in particular that one with B}m> = 2-m t. 
(b) thee -approximation: one assumes all crumbling sequences 

and sets <1> 8 : = lim ¢ 8 (am) if the limit exists for each 
m->oo 

laml:=l Ee (Jt) and does not depend on a .particular choi­
ce of the sequence. 

(c) the ~-and eR -ap~roximations: are analogous to (b) with 
e(Jt)replaced by R,the subset of refining sequences in 
eci ),i.e., with ain+1_)C1in for all m, or bl some subset 
eRceR. This is the method of Tarski 114 if we identify his 
path space with our J{ and his_ projections with P(a),aE-P(Jt ). · 
He employs increasing sequences of projections with unit 
limit, it means just the assumptions formulated above in 
view of Theorems I.I and 1.2. His reference families cor­
respond, of course, to subsets eRceR . 

(d) the P -approximation: the set P (Jt ) is partially ordered 
by ), further to each a·,a-'E !P(Jt) there exists 
a"~P(f),say a"= au a:' so that a Ca'~ and a 'Ca". In other 
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words, P (Jt) with ) is a directed set, and one can define 
<1>

8 
as a limit along it,<l> 5 :=lf1¢s(a). More exJ>licitly, 

there exists a E P(J t) to each f > 0 such that I <I> _.-1.. (a)I <E f s 'f's 
for all a )af . 

(e) the uniform approximation: one assumes' again all sequences 
lain I ;=l E- e (J t ), but requires now the convergence to 

be uniformw.r.t. the "norm"o(a) of a,i.e., <l> 5 :=limrf, 8(a), 
o (a )➔O 

where the limit is understood in the same sense as in 
Theorem I. 2. This approach belongs to Cameron

12
•
31 

and was 
further used, e.g.,by Johnson and Skoug131; a similar ap­
proximation, however, with a not very clearly specified 
subset of e(Jt)was recently used by Elworthy and Truman

1121 

Proposition J: Mutual relations of the above listed limiting 
prescriptions are given by the following diag-
ram u 

✓ 
J) 

~ 
c 

C' ✓ ~ 
R n-1 

✓ 

e~ 
~ ✓ 

2-n 

where the arrows denote implications. 

Proof: (U) "9"( P): there exists o( d to each f> 0; we choose 
a( E-:P(Jt) such that o(a() <o (f], then we have o(a) <o[d, 
for alla:laf, and therefore l<I>:-¢s<a)l<f for alla)af ,i.e., 

1~m rf, s (a)= <l>ll
8 

:!! lim rf,
8
(a). (U) ,_,. ( e ): let us take E>O, to which 

J o (a)➔O 00 t 
some o[ d corresponds, and an arbitrary lam I m=lG- e (J \ ) ; since 
the latter is crumbling there exists mo(o[E]) such that 
o(ain)<o [f ] for all m >ino, and consequently I <I>~ -¢s<am)1 <c for 
m>mo, i.e. ,lim ¢ (a· ) = <l>ll independently of la 100 

• The re-
. -.m➔ 00 s m s m m=l 

m~ining implications are trivial. ■ 

We postpone cotm11enting these relations to the next section • 
Now we shall use the uniform-polygonal-path approximation in 
order to extend domain of the F-maps introduced in paper 1161 

to which we refer for the notation. 
. A function f:J< ➔ c is said to belong to J;(J<) for a given 
s~ Crif the following conditions are fulfilled: 

4 

(i) the "cylindrical· projections" f o P(a) belong to J(}{J, the 
B -algebra of F -integrable functions, for all a ,;.P (J t ), 

(ii) the uniform limit 
0

lim ~s( f O P(a)) exists. Then we define 
naturally the uniforml/aJitended F 8 -map in the following way 

I~: J
8
ll(J<) ➔ C , Ill (f): = lim I 

8
( f O P(a)), (4) 

s o (a)➔O 
in parti'cular, I~(,) will be again called the Feynman integ­
ral. 

Of course, one must check consistency of this extension. 
Another problem which arises here concerns relations between 
I~i(,) and the Wiener integral; it can be solved under sui­
table smoothness and boundedness assumptions. Let us denote 
P[Jt :Rdl=IYa :yrz =P(a)y, aE-P(Jt), y.E-J< 1. the set of all poly-
gonal paths in J{. further w and I l, II.., will be the Wiener measu­
re (understood as the n-fold product measure of w-measures 
with unit dispersion on C0 [Jt; R]- cf/231 ) and the uniform 
norm on C0 [J 1; Rd]. respectively. 

ll 
Theorem I: (a) Let sE Cr, then 1

8
(H)) J(}{) 

each f~'.f(J{). 
and Ill (f) =I ( f) 

s s 
for 

(b) Let fE~f.~\(J<) be a restriction to J{ of a w-measu­
rable function F: C0 [Jt ;R ] ➔ C which is uni_formly 
continuous with exception of aw-zero subset of 
C0 [J 1 ; Rd], P[Jt; Rd]. If there exists K>0 such 
that lf(y)I::; K for ally ~'.P(Jt; Rd],. then 

Ill_(f)= f dF(y)dw(y) 
-1 Cn[.Jt:R ] 

(5) 

and llll_(t) I~ K. In particular, if f<e-J(J<), f(y) 
= ( exp-(i(y,y')) dµ(y'), µ '=:l!l(J<J, then 
J{ 

J F(y)dw(y)= l exp(-1-i!Yll2)dµ(y). 
CrJ[Jt;Rd] R 2 

(6) 

Proof: (a) Let f E J (H), then the same argument as in the proof 
of Theorem 2 in1161 shows that the condition (i) is 
fulfilled.As to (ii), it follows itm11ediately from 
Theorem I. 2 together with Theorem I (c) of /16/, 

(b) The setP[Jt ;Rd] is 11-11 00 -dense in c0 (J1 ;Rd]: 
assume some y E Co(Jt; Rd ] and an arbitrary E>O, then 
according to the Weierstrass theorem there exist poly-

1 -1/2 
nomials "j such that l1rj(r)-y/r)i< 3 d f for all 

J t . f 
r E , J =I, ••• , d, so the path 1r : rrE {,)= (1r 

1
(r), ... ,1rd(r)) 

obeys , 

ll1rf -rll
00 

< ! f. ( *) 
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Further e;pch "j can be 
if rr. (r)= l akrk , one 

J n k=0 k-l 

approximated by Pc(a)rrj (cf. (I.4)): 
obtains easily I rr/r)-( Pc(a)rrj )(r)I $ 

$ 2o(a)I k la,k It 
. k=1 

thus there exists 8
0
(!) such that 

llrrf -P°{a)rrf II < .le 
00 3 (**) 

for all a with o (a) < 80 ( c ) • Finally, the inequality 

IIPC(a)y!loo:S::l!yl!oo' y~Co[Jt;Rd], (7) 

together with(*) give l!Pc(a)rrf -Pc(a)y!I < ..Lf combining 
00 3 

it with(*),(**) we arrive at the rplation 
C t . 

liml!y-P (a)yjj =0, y EC
0

[J ;Rd]. (8) 
o~) ➔ O . · 00 

Now the assumed continuity of F implies 

lim F(P°(a)y) = F(y) w-a.e. in c
0 

[Jt ;Rd], (9) 
o (a) ➔ O 

and 

I F(y) I !S K for w-almost all y • (10) 

Further we take F(Pc(a)y)= F(Pc(a)y , ... , Pc(u)yd ); owing 
to the definition of was a product measure and using the 
Fubini theorem we get 

J F (Pc (a)y) dw(y)= 
GJ[Jt; Rd] 

C C 
= f dw1(y 1) ... J dw1 (yd)F(P (u-)y , ... ,P (u)y ), 

[ t] t 1, d 
Co J ;R . Co[J ; R] ' 

Applying now d -times the standard · formula to the above cylin­
drical integrals w.r.t. w1 and using the Fubini theorem once 
more we can rewrite the last expression as follows 

n-1 d/ 1 n-1 
[ (277 )° II Ok r 2 r exp I - -2 I I y k+l -y k 12 8-k 11 f (yo, ... 
· k=0 · Rnd· k=0 a 

n-1 o · n-1 
.. , y )dy ... dy , 

•· 0 n-1 . • C • 
where fa.CY , ... ,y ). = F(P (u)y). On the other hand, one 
has f0 (y0, ... ,y0 -1)=f(P(a·)y) for yE-R.Further the relation 
(I. 10) makes it possible to express P(u)y in terms of the 
orthonormaln_!>fs~s (I. 17): 

P(u-)y = I .t a- 112 cl+1 -? )J y 
1 • k=0 j=t k · kj 

so we can make the substitution (yo, ... ,yn-l ) ➔ y . = P(cr-)y 
the last integral and obtain u 

6 

in 

l I} 
{ 

1 I 
j ( 

c -nd/2 · f F(P (a)y)dw(y)=(2rr) J exp!- ..lily 112 1 f(y )dm(y ) 
2 a a cr 

c
0

[Jt,; Rd] P(a)R 
(11) 

= I . ( f o P (a)), 
-1 

where m is the Lebesgue measure on P(a)K the last equality 
follows from sec. 3 (ii, iv) il16< Due to the assumption the 
rhs of (11) tends to I~i (D with o(a) ➔ 0, further (5) and the 
related bound follow from the dominated convergence theorem, 
(8), (9) and the normalization of w, Finally, if · f E 1 (H), 
then I f(y) I ::; II f !lo for ally ER due to Proposition 2 of1161 

and the assertion (a) together with (5) and the definition 
of I_i (J prove (6). ■ 

3. CONCLUDING REMARKS 

The polygonal path-methods are not, of course, the only 
tool of the F -integral th~ory. Their results must be compared 
with the results of other approaches, in particular with the 
methods of Ito1241, · DeWitt-Morette122 ,25 ,26/ and those based 
on analytic continuation of the Wiener integral (e.'g., Came­
ron'2,3,27/, Cameron and Storvick14,28/, Johnson and Skoug 113/). 
Anyhow we feel that, though"the situation on this field is 
a little better now than that described by Dyson~9/ nine 
years ago, the existence of different "weakly interacting" 
concepts and of many ,scattered results represents the chal­
lenge to deal with for both mathematicians and physicists. 

In conclusion, let us make some comments on the matters 
discussed in .the previous section: . 
(a) On the choice of c/, 8 (a) : starting from (3a) one.can avoid 

complications with improper integrals in definition of the 
F-integral. Except of that, the analogous approach.to the 
F-maps· (cf. condition (i) of the above definition) allows 
to treat them on the equal footing for all s E CF including 
the real ones. On the other hand, the definition under 
consideration applies to those f only for which all. 
f O P(a)are continuous (cf. Propositton f oJ. ref,/16/), and 
this seems to be too restrictive. from· the viewpoint of 
physical interest~ An aiterri'ative way 

0

is to consider the 
case of real s , i. e·. · the F-integrals, separately; it was 
pursued,.e.g.,.by Cameron/2,27/ Cameron and Storvick 141 . 
or by Johnson and Skoug131. In this 'approach one defines 
the .F 8 -:maps for · Im s.< 0 by polygonal-path approximation 
based 6n ¢id) defined in the analogy .with (3b); obviously 
improper integrals are not needed for a reasonable class 
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(b) 

(c) 

of functions f. The F-integral ~ 1 of f is then defined 
as lim~ l-if . The idea of this definition is thus near 

(➔ 0+ 

to that of Gel'fand and Yaglom151, however, with replace­
ment of the erroneous measure-theoretical determination 
of cp 

8
(a) by the sequential one. Let us mention finally 

that a similar procedure can be applied to </>
8
(a) defined 

in the analogy with (3c). Such a method could be promising, 
if only independence on a chosen Riemanriian approximation 
to the action has b'een established. A certain pwgress in 
this direction was achieved by Cameron131, 
On the limiting prescriptions: Proposition I illustrates 
the dominating role of the uniform approximation. As to 
the P-approximation, we have not found it used in the 
literature, however, it represents one of the natural 
choices. Let us remind in this connection the Ito's 
definition1241 of tne F-integral, where the limit is taken 
along the directed set of all trace-class covariance ope­
rators. Let us further stress out that there is no direct 
correspondence between the P -• and eR -approximatio_ns, 
because in general convergence of a net, the index set of 
which is not fully ordered, does not imply convergence of 
its subnets (in particular, subsequences) and vice versa. 
In the same sense one cannot assert that the Ito's defi­
nition yields a sequential approximation (cf. P.6, sec.2 
in ref,/201) without an extra proof. 
On Theorem 3: a somewhat stronger assertion can be formula­
ted, namely instead of bounded functions in part (b) one 
can assume those with limited order of growth. For this 
purpose one has to know the distribution of'IIYlloo w.r.t. 
w: if d = I then the deduction of Cameron121 can be adapted 
(see below), the general case will be discussed elsewhere. 
However, ·as presently states, the assumptions of the part 
(b) cover most of the physically interesting functions 
(cf. the rhs of the Feynman-Kac formula /30/ ) • Let us 
further notice that the function F can be discontinuous 
(on a w-zero set), but· only outside P[J t ; Rd}.,The analo­
gous assumption is not stated explicitly in the mentioned 
paper of Cameron, however, it is clear from the proof. 
Finally the relation (6) was first obtained (for d=l, and 
in a slightly weaker form) by Truman/10/, 

(d) On the Cameron's sequential.Wiener integral: it is defi­
ned (for d=l) by the uniform polygonal-path limit of 
cp_/a) analogous to (3b). Cameron:'21 deduced sufficient. 
conditions under which it can be identified with the usual 
Wiener integral; they are alike our Theorem l(b), · 

8 

however, the modulus JF(y)J is allowed to grow w.r.t. JlyJJ
00 

polynomially or even exponentially (cf. Theorem I of the men­
tioned paper). Proof of this assertion depends essentially on 
the distribution w of JJyJJ 00 w. r. t. the Wiener measure w1 bor­
rowed from Erdos and Kac /311, The Cameron's argument is wrong at 
this place: one can check easily that it is not Theorem I,but 
Theorem II of Erdos and Kac which gives w.Consequently, only 
a much weaker assertion can be proved (and, of course, the 
assumptions of Theorems 2,3 and 5 of ref.121 must be corres­
pondingly strengthened): 
Proposition 2: Let d=l and F be the same as in Theorem I(b) 

with exception of the boundedness condition 
which is replaced by the following one: ther·e 
exists a measurable· non-decreasing if>: R+➔ R+ such 
that !F(y)J.$c/,(IIYll

00
) for allyE'1'[Jt;R]and 

~: ~(u)=<f>(u)u-3 belongs to L(uo,"") for some 
u0~0.Then the sequential W-integral of F 
(which is equal to I~. (ft J<), if the latter 
exists) exists and equals to the W-integral 
of F (the rhs of (5) with d =l ,w=w1). 

The core of the proof is to justify use of the dominated con­
vergence theorem for 

~f ;i] (Pc (a)y)dw1 (y). 
Cb. . () . h The inequality 7 together with t e assumed monotony of </> 

imply !F(Pc(a)y)l.$</> (Jlyl! 00 ) for all yEC0[Jt;R)so one has 
to check that the integral 

La f.[ t cp] (II y II "") dw 1 (y) 
Co J ;R "" 

is finite. The image-measure theorem gives l=f cp(u)w(u)du and 
the mentioned Theorem II of Erdos and Kac ass°erts particularly 
that . , 

lim w1 I y: Jy(ktm)I ~ 
Il ➔"" 

a 
a., k= 0,1, .•• ,n-11= J w 

0 
4 "" (-l'm· = - ~- ~

2
-

1
· exp(-(2m+l)ir2t!8a 2 ). 

" m=O m+ 

(u)du 

Now one has to sum the last series and to take its derivative 
w.r.t; a. in order to obtain 

. 1 3 2 2 -1 
w(u)=-TTt[u ch(TT t/8u )J .• 

2 

It holds O<w(u)<.!.."tu-
3 

for u>O, and the rhs of this inequali-
2 

ty gives the asymptotics of w for large u; thus using the 
assumptions about cp we obtain finally 

I< '.f° </> (u)w(u)du + ..!.,17t r </> (u)~ -s du< oo. 

0 2 u0 
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