


1. INTRODUCTION

In the first part of this paper’!” we have studied proper-
ties of the subset of polygonal paths in the Hilbert space
H-ACy13Y; R referring to a d-dimensional quantum-mechanical
system, In particular, we have shown that each element of H
can be approximated in the H-norm!l.!l by polygonal paths,
and that this approximation is uniform w.r.t. 8(¢), the maxi-
mal-subinterval length of partitiono of the time interval
Jt<[o,t]. (

Here we shall use the results of Ref.’!” for discussion of
various types of polygonal-path approximations which appear
in the functional-integration theory, in particular those of
Cameron 2.3/, Cameron and Storvick *’, Gel’fand and Yaglom™
Babbitt 8, Nelsonflﬂ Combe et al.%/, Truman®-11/, Elworthy
and Truman''?/, Johnson and Skoug!®’, Tarski’!4’ and others. The
uniform approximation of Cameron appears to be the 'stron-
gest' one of them; we shall apply it to extend domain of the
Feynman maps introduced in ref. 16’ and to prove consistency
of this extension.

Two particular cases of these maps are especially interes-
ting: the F,-map or the Feynman integral and the F_; —map. As
to the latter, we shall give some sufficient conditions in
the next section under which it can be identified with the
Wiener integral. For d=i the F_,-map is closely related to
the sequential W-integral of Cameron’®/, In the last section
we shall show that the basic theorem concerning the latter
must be improved; we shall give strengthened conditions on
the order of growth under which its assertion holds. Applica-
tion of the polygonally extended F-integrals to solving
Schrddinger—~type equations will be discussed in the subsequent
paper /17/.

Throughout this paper we used the notation of ref.”l freely.
The relations, theorems and propositions of that paper will
be indicated with I, e.g., (I.4) means the relation (4) of
ref./V, etc.

2. POLYGONAL-PATH APPROXIMATIONS

The main purpose of the polygonal-path methods is to de-
termine the Feynman integral and related objects. The term



"approximation" is thus a little misleading, because it means
at the same time definition of the "approximated quantity".
too. The ideology of polygonal-path definitions of the F-in-
tegral is essentially that of the Riemann—integral theory,
however, since there is no analogy to the Darboux sums 718/ he-
re the definitions must be formulated in terms of limits
w.r.t. sequences or nets of partitions. ‘

Let us consider now in more detail the problem how to de-
fine the F-maps, i.e., the one-parameter family of complex-
valued maps fes® from a suitable set of functions f .on. K,
which correspond to the formal functional integrals
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with s non-zero, Ims £ 0(this subset of s in C was denoted as
Cr in ref/18/) F -integral clearly refers to the case 8. =1,
if we set for simplicity the Planck constant -f as well-as
the mass(es) equal to l. Each polygonal-path approach to this
problem starts from a choice of mapplngs P :?°» € which assign
to every partttlon o of some subset ’in fP(J‘) "finite-dimen-
sional approximations’ ¢> (¢) to the functional integrals (1).
The follow1ng step cons1sts of taking a limit of ¢ (9, which
corresponds in some sense to gradual refining of ¢; if this
limit exists it.is identified with ®

It is therefore clear .that there ex1st at least two peints
of view for classification of polygonal-path methods:

(i) according to a choice of ¢,

(ii)according to _a choice of the 11m1t1ng procedure.

‘The first one will be discussed only briefly here (see also
-remarks in the following section); we limit ourselves to the
case which is phy51ca11y the most interesting, i.e., " s=1 and

f(y)=expl—i-f Viy@) +x)drbu(y@+x), =~ ' (2)

where Visa pgtentlal on R%and u belongs to some subset of
LZ(R ). Then different choices of ¢,(c) are possible (of ‘cour=-
se, for those V,u for which the correspondmg expressions
make sense), e.g., , o

$1(@)i= 1, (f o P{o)), | : (3a)
Whe‘re Il(.) is. the. F- 1ntegra1 of Albeverlo and Hoegh—l\rohn
or oo : :
) TR T ITP .
¢n<">-=<2m> [ expi-2~-ny P16 ) dmy” ) =

r X R € )

=@r )™ [ exp LiS(y +x) u(y(0)+ x)dm(y” ),
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where y’=P(s)y, n=dimP(o), further S(y) is the action along
the path y and the integral in (3b) is understood in the
improper sense/'9"12 ,or finally

b, (0): = @) fH exp LS, (y "+ x)lu(y (0) +x) dm(y " ), (3c)

where the actloné is replaced by a Riemannian approximation
S, (in fact, it concerns the potential part only) correspond-
ing to the partition s, and the integral is again the impro-
per one 8-8,14/ )
The last choice admits use of the Lie-Trotter—Kato formula
and gives thus stronger results than the previous two (in the
sense that the corresponding functional integral exists and
expresses dynamics for a much wider class of potentials). The
expression (3b) is in turn applicable to more potentials than

(34); if the latter exists and the integral in (3b) conver-

ges in the proper Lebesgue sense, then they equal each

other’/19:16/, On the other hand, (3c) does not correspond exact—
ly to the heuristic prescription of Feynman/21/ and choice of

S, burdens the definition with an additional arbitrariness.

Except for that, the improper integrals in (3b, c) are sensiti=-

ve to the defining prescription/16:22/ so it is desirable to

get rid of them.
Let us turn now to discussion of possible limits w.r.t.
the partitions o, Again various possibilities arise:

(a) the n—! - and 2 "-approximations: the simplest choice is
to take the sequence fo 12, of "equidistant" partiti-
ons®™ 19/ i e., with r(") 1t/n ., and to set ¥, —11m¢> (a)-
The same can be performed with any subsequence oF | agig"_
in particular that one with S(m) 2—m ¢,

(b) the € —approximation: one assumes all crumbling sequences
and sets g : _11m¢> (6n) 1if the 11m1t exists for each

lom}:_l E@(J ) and does not depend on a.particular choi-
ce of the sequence.

(c) the Cp-and Cf -approximations: are analogous to (b) with
C(J‘) replaced by Cg,the subset of refining sequences in

@4, e., withoy, ,dom for allm, or b/y some subset

CficCq.This is the method of Tarski’!* if we identify his
path space with our H and his pProjections with P(o), oefP(J‘) )
He employs increasing sequences of projections with unit
limit, it means just the assumptions formulated above in
view of Theorems I.1 and I.2. His reference families cor-
respond, of course, to subsets C{C. @R .

(d) the .‘P-approx1mat1on. the set P(t) is partlally ordered
by O, further to eacho.0’€ (')  there exists
0”c?(),5ay0”=0 vo’ so that 0 Co”’ and 6°Co”’. In other




words,  (3') with
®, as a limit along it, ¢‘51=1§Jn¢s(“)'

. t
there exists o &€ (J°) to eache¢>0 such that | - ()] <e
for all olo, . _
(e) the uniform approximation: one assumes again all sequences

lo, b €CAY), but requires now the convergence to

be uniform w.r.t. the "norm" 8(¢) of o, i.e., (Ds:=81im é (o),
. @20
where the limit is understood in the same sen/sze /as in
Theorem I.2. This approach belongs to Cameron '3/ and was
further used, e.g.,by Johnson and Skoug/!3/; a similar ap-
proximation, however, with a not very clearly specified

subset of G(J,t)was recently used by Elworthy and Truman

Proposition 1: Mutual relations of the above listed limiting
prescriptions are given by the following diag-~

ram

More explicitly,

712/
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where the arrows denote implications..

P
1

Proof: (U) wp(P): there exists 8le] to eache>0; we choose
aee?(Jt) such that &(o¢ )<8[eu], ‘then we have 8(o) <8[¢}.
for allodo, , and therefore |®g-¢ (0)l<e for allodo, Jd.e.,

lim ¢ (o)== lim ¢ (a). (U) =p( € ) 1let us take ¢>0, to which
P 8 (0)-0 i

some S[¢] corresponds, and an arbitrary lam}:=lc— G(Jf ); since
the latter is crumbling there exists mg(5le ]) such that
3(s;)<8[e ] for all m>my,and consequently [ @5 -pglop)l <e for
m>mp, i.e. .’,ET;’Ss("in) = O 1ndependent1y of fo 1o - The re-

maining implications are trivial. L]

We postpone commenting these relations to the next section.
Now we shall use the uniform polygonal—path approximation in
order to extend domain of the F -maps introduced in paper 716/
to which we refer for the notation. C S
" A function f:H-C is said to belong to F5(}) for a given
s € Cpif the following conditions are fulfilled:

5> is a directed set, and one can define

(i) the "cylindrical projections™ f o P(s) belong to F(¥), the
B-algebra of F -integrable functions, for all o cP (@),

(ii) the uniform limit _limIg(f o P(s)) exists. Then we define

naturally the uniformly(gg;:gended Fg -map in the following way

I 5 0he e L0 - dim L (10 PO, )

in particular, Il;(.) will be again called the Feynman integ-
ral.

Of course, one must check consistency of this extension.
Another problem which arises here concerns relations between
lfi(.) and the Wiener integral; it can be solved under sui-
table smoothness and boundedness assumptions. Let us denote
?[J‘;R"]={y,, Yy =P(@)y, 0€P@"), yell |, the set. of all poly-
gonal paths in K further w and |j.||, will be the Wiener measu-
re (understood as the n-fold product measure of W-measures
with unit dispersion on CO[Jt; R]- c£.?3/) and the uniform
norm on Cy[J'; RY, respectively.

Theorem 1: (a) Let s€ C, then ﬁf:(}() 3 F(H)
each fc F().
(b) Let fef (). be a restriction to N of a w-measu-
rable function F: Cy[J*;R |+ C which is uniformly
continuous with exception of a w-zero subset of
CO[Jt;Rd]\‘P[Jt; Rd ], 1If there exists K>0 such
that |f(y)]| < K  for all yeP[It; R ], then

and I (D=1 (1) for

1 ()= F(y)dw(y 5
5o cn[J_fr:Rd] () dw(y) | G)
and “l_l_i(f) | < K. In particular, if fof(}(j, f(y) =

=}(f exp (i(y,y ) du(y”), u M), then
F(y)d = L,
cO[J't[;Rd] () dw(y) }{exp( 2‘Hyfl Ydu(y). (_6)

Proof: (a) Let feF (), then the same argument as in the proof
' of Theorem 2 in/16/ shows that the condition (i) is
fulfilled.As to (ii), it follows immediately from
Theorem 1.2 together with Theorem 1 (c) of 718/,
(b) The set P[J*;R4A] is ||.]] » -dense in Coldt ; RYY:
assume some y G'CQ[JL; Rd]and an arbitrary ¢>0, then
according to the Weierstrass theorem there exist poly-

nomials w; such.that Inj (r)-yj(r)|<—{1;...d—1/25 for all
t ~
r€J, j =1, ..., d, so the patha®: s (r)= (7 (r),eee,7,(r))
obeys : : T, ! 4’
€ _ 1 ,
e =yll, <5e- . (%)
5



can be approximated by P°()s; (cf. (I.4)):

Further gach =z ;
one obtains easily !rrj(r)--(F'c(o-)r‘rj ) <.

if 7| (r)= 2 akrkJ ,

<. 28(0)2 k|ak| gkt , thus there exists 8,() such that
=1 : .
e ~P%e)nt Il < L | )
for all o- with 8(0) < §y(¢). Finally, the inequality
NP @Iyl <livll, » veg, EARY - PR v ¢))
together w1th (*) give |}P° (0)77 ~-P° (o)l —é—g ; combining

it with (*) » (#*) we arrive at the re1at10n

Smily - P @y, y €Cli' ;R (8)
Now the assumed continuity of F 1mp11es '

lim F(P(o)y) = F(y) w-a.e. in CO[Jt R4 Y. ' 9
5(@)~0 i .

and
IF() <K for w-almost all . (10)

Further we take F(P(@)y)=F(P @)y ..., P (ady )i owing
to the definition of w as a product measure and using the
Fubini theorem we get

J F(P (@)y) dw(y)=

colatirY]
=1 WG [ dw (yd)F(P @)y oo P°(o-)y )
CO[J iR ] 0[J rR1

Applying now d-times the standard formula to the above cylin-
drical integrals w.r.t. w; and using the Fubini theorem once
more we can rewrite the last expression as follows
n "=l 4/ 1% ket 2
2 -— -y K -1 0
[(@m) krioak]_ [ exp 5 kz ly. 120 M-I S (A e

Rndl =

“tyay® o @y, _
where 'ft,_(y(’,...,y-""1 ):=F(P c(o-)y). On the other hand; one
has fg(y0,..y" 1= ((P(0) y) for y € H.Further the relation
(I.10) makes it possible to express P(o)y in terms of the
orthonormal biaS]dS (I.17):

P(U)y 2 2 8—1/2( k41
- k=0 j=1 k
so we can make the. substltutlon (y°
the last integral and obtain

3.

Y ), ij

-1 ' ' .
....,yn )-ya_a P(@)y in

‘methods of Ito’?4/,:

f O FEYOIwe)=@m "
g lat: rY] . Py
-1_ (1o PE)),

ewi- 2y 1FItey )amey )
(1)

where m is the Lebesgue measure on P@)K; the last equality
follqws from sec. 3 (ii, iv) 11{ .Due to the assumption the
rhs of (11) tends to IY; (D) with 8(o')- 0, further (5) and the
related bound follow from the dominated convergence theorem,
(8), (9) and the normalization of w. Finally, if f € F(),

then [f(»)] < |Ifllg for ally€H due to Proposition 2 of 718/

- and the assertion (a) together with (5) and the definition

of I_; () prove (6). o .

3. CONCLUDING REMARKS

The polygonal bath—methpds are not, of course, the only
tool of the F-integral theory. Their results must be compared
with the results of other approaches, in particular with the
DeWitt-Morette’?2:25:26/ and those based
on analytlc continuation of the Wiener integral (e.g., Came-
ron'2.3,27/, Cameron and Storvick’4:28/, Johnson and Skoug /13/),
Anyhow we feel that, though “the s1tuat10n on this field is
a little better now than that descrlbed by Dyson”298/ nine’
years ago, the existence of different "weakly interacting"
concepts and of many scattered results represents the chal-
lenge to deal with for both mathematicians and physicists.

In conclus1on, let us make some comments on the matters
discussed in the previous section:

(a) On the choice of ¢4 (o) starting from 3a) one can avoid
complications with improper 1ntegra1s in def1n1t10n of the
F-integral. Except of that, the analogous’ approach to the
F~maps (cf. condition (i) of the above definition) allows
to treat them on the equal footing for all secplncludlng
the real ones. On the other hand, the definition under
consideration applies to those f only for wh1ch all
f OP(g)are continuous (cf. Proposition 2 of ‘ref./16/), and
this seems to be too: restrlctlve from the viewpoint of
physical interest. ‘An alternatlve way is to consider the

. case of real s, i.e. the F- 1ntegra1s, separately; it was

pursued, e.g., by Cameron/2:27/ -Cameron and Storvick’4’

or by. Johnson and Skoug/13/ In this approach one defines
the F '—maps for Im s<0by polygonal-path approximation
based on Dy (¢) defined in the analogy with (3b); obviously
improper 1ntegra1s are not needed for a reasomable class




(b)

(c)

@

of functions f. The F-integral ®; of f is then defined

as 1nn®1 ie The idea of this definition is thus near
€

to that of Gel’fand and Yaglomﬁv. however, with replace-
ment of the erroneous measure-theoretical determination
of ¢ (¢) by the sequential one. Let us mention finally
that a similar procedure can be applied to $,(0) defined
in the analogy with (3c). Such a method could be promising,
if only independence on a chosen Riemannian approximation
to the action has been established. A certain progress in
this direction was achieved by Cameron’3/,

On the limiting prescriptions: Proposition 1 illustrates
the dominating role of the uniform approximation. As to
the  P-approximation, we have not found it used in the
literature, however, it represents one of the natural
choices. Let us remind in this connection the 1to’s
definition’®4/ of the F-integral, where the limit is taken
along the directed set of all trace-class covariance ope-
rators. Let us further stress out that there is no direct
correspondence between the P-.and Cp-approximations,
because in general convergence of a net, the index set of
which is not fully ordered, does not 1mp1y convergence of
its subnets (in partiéular, subsequences) and vice versa.
In the same sense one cannot assert that the Itd’s defi-
nition yields a sequential approximation (cf. P.6, sec.2
in ref.”20/) without an extra proof.

On Theorem 3: a somewhat stronger assertion can be formula-
ted, namely instead of bounded functions in part (b) one
can assume those with limited order of growth. For this
purpose one has to know the distribution of ||y||, w.r.t.

w: if d=1 then the deduction of Cameron’2/ can be adapted
(see below), the general case will be discussed elsewhere.
However, as presently states, the assumptions of the part
(b) cover most of the physically interesting functions
(cf. the rhs of the Feynman-Kac formula 780/), Let us
further notice that the function F can be discontinuous
(on a w-zero set), but only outside P[Jt:R9] ,The analo-
gous assumption is not stated explicitly in the mentioned
paper of Cameron, however, it is clear from the proof.
Finally the relation (6) was first obtained (for d=1, and
in a_slightly weaker form) by Truman/10/,

On_the Cameron’s sequential Wiener integral: it is defi-

ned (for d=1) by the uniform polygonal-path limit of

¢_;(0) analogous to (3b). Cameron 2/ deduced sufficient.
cond1t10ns under which it can be identified with the usual
W1ener 1ntegra1, they are a11ke our Theorem 1(b),

however, the modulus |F(y)| is allowed to grow w.r.t. [|y|l.

polynomially or even exponentially (cf. Theorem 1 of the men-

tioned paper). Proof of this assertion depends essentially on
the distribution v of ||y||., w.r.t. the Wiener measure w; bor-

rowed from ErdSs and Kac/31/,The Cameron’s argument is wrong at
this place: one can check easily that it is not Theorem I,but

Theorem II of Erdds and Kac which gives w .Consequently, only

a much weaker assertion can be proved (and, of course, the

assumptions of Theorems 2,3 and 5 of ref.”?/ must be corres-

pondingly strengthened):

Proposition 2: Let d=1 and F be the same as in Theorem 1(b)
with exception of the boundedness condition
which is replaced by the following one: there
exists a measurable non-decreasing ¢:R +R, such
that |F()| < ¢ (llyll,) for ally e P[I*;R ]and

P d(w=¢(wu~3 belongs to L(ug,~) for some
ug>0.Then the’ sequential W-integral of F
(which is equal to I” (f p H),if the latter
exists) -exists and equals to. the W- 1ntegra1
of F (the rhs of (5) with d=1,w=wy.

The core of the proof is to justify use of the domlnated con—

vergence theorem for

FP*
Cnf[f (P~ (@)y)dw, (»). _

The 1nequa11ty (7) together with the assumed monotony of ¢

imply |F(P®(@)y)|<¢ (ly]l. ) for all yE-CO[Jt;R]SO one has

to check that the integral '

I= 5t ¢(Hyll o) AW, () ,
Co
is f1n1te. The image-measure theorem gives I—f ¢ (Ww(u) du and

the mentioned Theorem IT of Erdos and Kac asserts partlcularly
that

lim W, ly :ly(kth)| £ a., k= 0,1,...,h—1‘}= f w (Wdu =

n-oo 0
45 —-—-—l--exp( @Cm+l) 7 t/8a2)
[ m_o 2m+

Now one has to sum the last series and to take its derivative
w.r. t. a in order to obtain

w(u)—-—:nt[u ch(n® t/80u° )]

It holds 0<w(u)<l—ntu for u>0 and the rhs of this inequali-

ty gives the asymptotlcs of w for large u; thus using the
assumptlons about ¢ we obtain f1na11y

1< f ¢>(u)w(u)du+-§-ntf & (Wu~ du<oo.
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