


1. INTRODUCTION

Functional integration often employs methods in which the
path space under consideration is replaced by the subset of
polygonal paths. In this way, e.g., the Wiener integral of
sufficiently smooth function(al)s can be evaluated -2/,
However, while in the mentioned case the polygonal-path
approximations represent a useful calculation technique,they
are of conceptual importance for the Feynman integral because
of absence of its sufficiently general and widely accepted
definition.

The polygonal paths were counected closely with the very
beginning of the concept of F-integral /347 Later they have
appeared in various attempts to develop a rigorous F -integral
theory, to say nothing of numerous non-rigorous calculations.
We have listed some of these attempts in the introduction of
our previous paper’5’ among them Nelson’s variant of Feynman’s
heuristic definition’®7" and its generallzatlon/g/ as well
as the method of Truman’2%19" are based on variously modi-~
fied polygonal-path approximation. Let us remind some other
treatments in which this idea played a central role: the men-
tioned paper of Cameron’!’ and those of Gel’fand and Yag-
lom’11/, Babbitt 712/ (for a more complete bibliography till the
middle of seventies we refer to’!3/, and further to’1% and other
papers contained in’144or recently the treatment of F-integ-
rals on Riemannian manifolds’!®/and the general cylindrical
approximation’1®/ with a particular choice of the path space
and the reference family.

The present paper and its seque are devoted to study
of polygonal-path approximations on the Hilbert space of paths
which refers to a quantum-mechanical system with d degrees
of freedom. In the following section we examine in detail pro-
perties of time-interval partitions and of the corresponding
polxgonal paths., Results of this treatment will serve in
ref.”1?” for discussion of different types of polygonal-path
approximations, in particular those used by the above-named
authors. Further we shall apply there the '"strongest' one of
them, the uniform polygonal-path approximation, to extend do-
main of the F-maps introduced in/5/ and to prove consistency
of this extension. Among these maps the F_, ~map is particular-
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ly interesting: we shall give some sufficient conditions under
which it can be identified with the Wiener integral. For d=1
the F_; -map is closely related to the sequential Wiener in-
tegral of Cameron’!/. We shall show that the basic theorem
c?ncerning the latter must be improved: strenghthened condi-
tions on the order of growth under which the assertion holds
are given in the conclusion of ref. 1%, Applications of the
polygclnally extended F -integrals to solving Schrédinger—type
equations will be discussed elsewhere /187,

2. PARTITIONS AND POLYGONAL PATHS

We shall consider a d~dimensional quantum-mechanical
system referring to the configuration space RY the elements
oi..’ which will be'abbrev1ated as x=(x1,...,xd). Let us introduce
first some notation:

*=lo,tl, t>0,
y: 3t 5RY is a R%-valued function, y(r)=(y1(r),..., y4r), conven-

d
tionally y(r)y(r)=3 i (r)'f/j(r), further y*(r) =y()-y(r)

j=
and ly(r)]=/y2(r),

Colit;RY=ly:J" » R%y continuous in J', y(t) =01,
y 1s said to be absclutely continuous in J! iff yiri=l,...4
are absolutely continuous in J', ‘

AC,[J" ;Rd]’=v{yg CO[J‘;Rd_];yabsolutely continuous in J%,j cL® ;R
clearly yeL2@t;RY)iff ).'j cL®@%RY, j=1,....4,

~ . - d. .. .z
V)= y@) 7 dr= 3 JTy.@)y (Dd.

It ) j::lJt ] ] ) )
We shall addopt in the following ACO[J‘;Rd]as the path space;
for the sake of simplicity we shall denote it often as H. The .

following assertion is valid 719/,

Proposition 1: (a) ACO[J‘:Rd]equipped with the inner pro-

. duct (,.) is the real separable Hilbert space.
(b) The elements of ACO[Jt;Rd] can be expressed
by means of trigonometric series: if y is an
arbitrary element of ACO[Jt;Rd], then there

exist a e R4, ta 3151 » 1812, CR® which obey
5] oa ad '

2 o2y 2 2y < .
nEl (a“+Bn)_n§1 jzl (anj +an) M

and such that

- _ sant o 2rnry -3 Bat o 2mr
y(,)_ao(r t)+n'7—‘21 - sin : )+n§l - (1 -cos( n (;_))

for all: ¢ Jt.Conversely, any sequence of R ‘-
valued coefficients which fulfils (1) deter-
mines through (2) some element of AC _[J';RY.
Finally, if 7207 g&.ﬂ i, *.anrefer to ¥€AC [Jt;Rd]v
the inner product 1s given by

,7) = tay-a, +2£n§l (@ +a_+BB,)- (3)
As mentioned above we shall deal with polygonal approxima-
tions to the elements of H. To this purpose we introduce first
some more notions. Partition of J'! is a set o={r; 1i=0,...,n},
0=1y< r <...<7 =t.The family of all these partitions is de-
noted as F(J'), further we introduce A;=[7;,7;, and & =1, j~7;.
A partitionog’ is said to be refinement of o, 0’Do, if each
A? 1is contained in some A,;clearly > defines a partial or-
dering on ?(J!) without maximal elements. The symbols ¢~ ¢’ and
o uo’ mean the partitions obtained by natural ordering of the
intersection and union of o,¢’ , respectively. A partition
is said to decompose to subpartitions ¢D,...,0()  ¢=lc(D, . ,o(]}

if oMW =fr, (i=0,.0., 111,00 =ir:i=1gsemmd plyeoey aP=lry 1i g e, 0}
(endpoints of the neighbouring partitions coincide). Let oDo”’
so that r} =7, for each k=01,...,n’, -then the decomposition

K ;
o=1{alD ., %(n W, o® =fry ti=iy_q ;1,3 15 said to be gene-

rated by ¢’ Decompositions ‘o ={o(1) ..o O}, #=t5(D, ., 0 | .
are comparable if 7i.=7; ., j=1,..,r . ; in other words, if the

subpartitions of ¢ and 7 refer to the same subintervals of J!.

Partitions o,5 € $(J') are said.to be commuting if there exist
comparable decompositions o={a(1,...,o0 O 1. and 6’;{0”(1),‘.-.,5'(')!
such that o c3® or ¢ W) >5 () for each j=1,..,r.Clearly, ¢
and ¢’ commute if one of them refines the other.Finally, we in-
troduce o’y ¢ ={0,t}udr; 1[r . ) Thep ) €0;,i=1,..nl. The following
auxiliary statement holds:
Proposition 2: Partitions o,0’€¥P () commute iff o040 '=0'x0 ;
then cs0’=0'vx0c=0na’. -

Proof: (a) Let ¢, ¢ commute so that there exist comparable

decompositions o ={oD...,c M}, &=t61,...,& (M} .Assume an arbitra-
ry j=1,...,r.The endpoints rj . =fy. and ry =7k of the sub-
iti M,z W Wiz 4k 5
partitions o\, o belong ‘clearly to ‘¢ Nnoand also toos o
and @ x o since their neighbouring points belong to different
intervals of the other partition. Let, e.g., o) 57 ) then
the points of oW \&W are contained neither in 0Né, nor in
o+ o, nor of course in o+ 0.0n the other hand, it can be seen
easily that the subpartition A% belongs wholy to the sets
0N 6,0 *x 0,0 = 0. Thus these sets coincide with the more rough



subpartltlon in every particular 1nterva1, and therefore they
equal each other. '
(bl) Conversely, let o«0’=0’«x 0. Assume any two neighbouring

. X p p ,
points Tig * Tig+1 of 0.1If there is some T Co’, r10<r <r,0+1,
then the f0110w1ng p0551b111t1es arise: e1ther TinSTk= 1 <

<r! [ <r. or r Go’sx o and in the same time T ¢c)o*o how-
k+1 =i+ 1

ever,the latter contradlcts to the assumption. As to the for-
mer one: either rl’{__1=r10 and r’k+1=ri0Jr1 or at least one of

them belongs to (’io” ¢ and the same argument as above can

ig+
be applied. Since the partition ¢’ is finite we arrive to the
f0110w1ng result: there exist some ky.k ky <k<k, such that

rk1 Tio and ’kz"10+1 Analogously, 1% rk <r <rk o+’ then

. . i s ’
there exist i,<i<i, such that ril—rko and ri2~ k0+1 .

(b2) Assume further the decomposition of o and o’ generated
by 6n o’ which are clearly comparable. Let A =[£,7) be an ar-
bitrary subinterval of o nho’, f_rlo_rko , then the 1nter10r
of A contains p01nts of at most one of the partitions o,0°.
Suppose that this is not true, then ellther f_r10<rk0+1<r10+1<r,

or. { =rp <r; o+ 1< Tho+i< T3 in both these cases, however, (b1)
1mp11es existence oP ¢e(§ ) which belongs to ono’, but accord-
ing to the assumption &9 are neighbouring points of oMo’
Consequently, one of the subpartitions referring to A is tri-
vial (consisting of &1 only) and the other is therefore its
refinement, i.e., 0 and o’ commute. u
Further we 1ntroduce for any fixed o€ P YHthe mapping

P°0):C LI ;R -AC, [T RY] by

‘ (Pc(a)y)(r)=yi +(yiJr1 —yi)S.—l (r-ri) 4)
for rcA;,i=0.1,..,n~1, where y =y(ri ). It assigns obv1ously
to each contlnuous path y< CO[Jt RY)the polygonal path going

through the points y!, i=0,1,...,n. In what follows we shall
deal mainly with the restrictions

Po) =P%(s) }AC L3*;RY. (5)

Properties of the operators P(s) can be derived easily by
means of the reproduction kernel technique. Let us denote

g3t xIt S RY: g &)= tomaxt, &), )
GI xT ALRY: GG, O =g, T, | N

where 14 is the ,unit operator on RY. As noticed by Albeverio
and Hoegh~Krohn/13/,G(.,.) represents kernel of the operator

2

- —Jd—z-ld with boundary conditions ¢(|;)=¢(0)=0., For our pur-
7

pose the following property is important:

Proposition 3: G(.,.) 1is a reproducing kernel of AC, 3% RY]

in the sense that G(r,.)B€AC,[J" Rd.]for all
¢ Jt, pcRdand the relation

(y, G, )B) = B.ylr) | ®

" holds for each ycAC, (JY;RYL

Proof: If BcR d, then G(r,.)B=Bg(s.) belongs obv1ously to

AC [Jt-Rd], Further
B 0 ’
(7, £) . S
)[3)~ fy(-’) [3—£0—--—-é__g de == [y(&).8 & =y().8
T - N
becausey(t) =0, . #
Theorem 1: (a) P(o) is an orthogonal projection for any oe P(J*%)
(b) Plo) commutes with P{s’) iff the partitions.o,0c”’
commute.
() P> Plo’) iff oD0",
(d) dimPl) = dn(o),especially the d—dlmensmnal
subspace of linear paths endlng in the origin cor-
responds. to the trivial partition % =1{0,t}.

Proof (a) For an arbitrary y< H we have (?(o)y)(r Y=yl =
—y(r ) s0°(P(0))*~Plo).The relatlon

~5; : e T ST
g(riH,r)-—g(fi,r‘): T=T .y T €A, 9)
0 N T |
implies easily the following identityv
(P(a)}')(r)=?:2:) (GG, 1) =Gl NBTHy -y (10)

Thus we can write

k n=-1 S L
~ ~ 1 -1 _
(y,P(o)y):izzo &, G(ri+1 , Dt —yl))(?i
"3 e i+1 __iy)5-1
- X (y,(’i(ri ,) (y -y ))3i

i=



and the reproducing kernel property (8) yields
. n-1 . . ) . -
7,P@)y)=2 G s L, o6y, y) a1)
R i= - .

for all y,ycKl, where y¥ denotes again;(rk,). Consequently, the
operator P(¢) is symmetric, idempotent and defined every-
where in K, i.e., an orthogonal projection.

(b) The mapping o»P(s) is obviously injective. If ¢,0’ do not
commute, then ¢ +0”+ ¢’% o due to Proposition 2, and thementi-
oned injectivity together with the relation RanP(o)P(¢ )=RanPloso’)
show that P(s) , P(¢") do not commte too. Conversely, let g,0°
commute. A simple calculation using relation (10) yields

»,P@)Pl)y) =

= 2 2 Ii (y T )“V 7 ))- y(' —y(1 ))3 (8 ) 1) |
k—o i=0 k ( k+1 (k ( i+ 1) 1 i k

where Bk =gt sty ) =Bl ,r V=Bl rpy Yl 1), for arbit-
raryy,ye H » and analogously

7,P)P0y) =
0% o o)y a3

n—~1 n%1 . - .y sve=1 o,y =1

=i=20 k=20 Fki (y(ri+1)—y(ri)).(y(r“1 )—y(rk))Bi (Bk) ,

where I'f =g(r} ., ’i+1)'g("+1’ )-glry :’1+1,)+g('l;”i,)'The interval
can be dkecomposed due to the assumption into subintervals A() |
j=1,....,r, such that in each of them the corresponding sub-
partitions fulfil either o ) 30" @ or 0P c(oc)¥) .In the
first case the relation (9) implies

(0. e A CAY
L =I’ = § i ook (%)
ik ki 0 ... otherwise
for each Al;cA(j) .Similarly, if oW c(e)¥ we obtain
o AL CA, (3%)

8’
. =T’ = t k
k ki 0 . otherwise

for each A]:CA(D. In particular, I, =I}°, =0 if the intervals A;
and A;{ are disjoint; then (12) may be rewritten as follows

r
¥, Ple)Pl)y)= = G,P()Plo)y)

2 . (14)

where

&, P(a’)P(a)y)j =

- -1 -1
_ . . - ). _ Ns~1 (5 .
*A,CzA(j) Ach,Fik Gl )=vE DGl )=y oy )
k : i k - o
in the case that 0>, The last relation can be simpli-
fied using (x) to the form

(}7', P(a')P(a)y) i =

' - s e 11 (15)
= X (i(r;”l)—y(f;()).(y(r;wi)—y(rk))(ﬁk) ,
A'CA(J)
On thek other hand, if o® C(a’)(j),n then (%) yields
@, P@IPlly}y =
o (16)

-~ - -1
=A Ci(j) (7 )=y Nyl )-rb Ne .
i

Further I'y=T¢; so (7, P)P(s’)y)is expressed again by the for-
mulae (14)-(16). Consequently, (7,P(0")Plo)y)= (7, P(@Plc’)y)
for all y,yeHl, i.e., the projections commute. :

“(e¢) If o0D0" then Plo) and P(o") commute according to (b). The
relations (14)-(16) now read :

G:P@)PO)y) =

VG, PE)y)

'=A]:§Jt G )=rey )).(y(rl:+1 ) —y(s k))(Bl; )
(cf. (11)) for arbitraryy,ye H so that P(o’)P(o)=Plo) Plo )=P(o"),
i.e., P(o)>Plo).Another equivalent formulation of the last
inequality is RanP(o)>RanP(e").If 03¢ then there exist Aj,

‘and 7% . such that T10< % o<Tig+1- Each function from RanP(s)

is linear in A1Q3 it is not true for RanP(o”) which contains
paths having a "corner" at r=r; . Thus Plo) 2 RanPloor equi-
valently Plo) 2 P(o”) ° '

(d) Let {ejl‘;=1 be an orthonormal basis in RY and o={r, l;‘_oe?(Jt).
The functions i e

: Y .

Yi ¢ 7y (’)=ej(g(’1+1”)"g(’i"))31 , | 17)

‘i=0,...,n~1 , j=1,...,4d, are orthonormal and span P(@)H due to(10).
| -]

A sequence {oplT=1 of partitions is said to be crumbling
if the lengths of all subintervals A;{o ) tend to zero with
Maeo,i,e., if .

limd(o _)=0, 5@ ) = max 5,( ). (18)
m-» oo m m 0_<_i§n(am)—l 1 m



Such sequences are of central importance for polygonal-path
approximations because of the following property:

Theorem 2: Let a sequence {am}:;lc P@at) be crumbling, then
s~1m P(a )=1. Furthermore, the convergence is

m-» oo
‘uniform in the set €(@') of all crumbllng sequences:
to each y€ H,e>0 there exists 8le]>0 such that -

IP()y-y|l <e for allocfIY)with §()<8lel, or
symbolically
s~ lim P(o) = 1. ' (19)
5(0)—»0
Remark: On the other hand, it is clear that if s-limPlo)exists
m-»oo
for a non-crumbling lo } me=1 "’ it cannot be equal. to the.unit
operator. Let us take "a 'suitable ye H, say y(r)=(2t=r)? —t?,
then .
Ti+1 i 2
[!P((})y—y‘lzz I !2r—r. -Tis | dr

Ty

for each subintervalA;co so that [[Pl)y~yl|> >(——5(a)) %

Proof of the theorem: We. have to show that V= {yGACO[J‘ Rd]
lim HP(a)y -y||=0} =AC [Jt R4]. We shall prove first that V is

a closed subspace 1n}( Linearity is obvious, closedness fol-
lows from the = ¢ — trick: an arbitrary Cauchy sequence
() y= CV converges in the norm to some y€ H, further

VAR POi

1Py =yli<2lly ® -yl +|P@y® ~y ® ||, (%)
To any ¢>0 there exist ryle) and 8,(r,e) such that

Iy ® -yl <1—e, PGy ® —y ® H<.-L€. o (x%)

for all r>ryled and o ¢P(J ) with 8(0)<8 o(r,¢e). For an arbltrary
partitiono O with 5(0) <8y (rg(e)+1,€),  the relatlons(.x) (xx)give
lIP(0)y ~y{|<¢ so that y belongs to V,which is .therefore closed.

According to Proposition 1 the elements of H can be ex-
pressed by trlgonometrlc series (2). Let f{e; }‘}_1 be some ortho-
normal basis in RY.0ne can check easily that the functions
(r)—ejvk(r), j=1,...,4,, k=1,2,..., where

27N~

Ut Wi

vl(r)=r—t, v, (r)—sm( (r)—l—cos('?'"tN'

) Von+1

form an orthonormal ba51s in H. It is sufficient therefore to
verify that Bv, () is contained inV for all BeRY and

k=12,....This 1is trivial for k=1. Assume further k=2N and
r GA';‘ E[r;“,r;“+1 1. We have

g

2T ) (6P 7,

) —sm(

(P(um)ﬂv )= ﬁsm(g7N m)+/3(5m(2”N ;nH

where b‘i =8,(g ), further a simple calculation gives

F(r) = —Ed-r—(P(dm),B V2N)(r) + kazN(r) =

= — 2B cos (- (24 5m) sin (- 5™)(5 ™1 4 2By BTNy _
t i i t i i t t
=—ﬁcos(‘2-n'§r,m) sin(—g-’]—ltl—5',")(3.'")"1 +
t 1 t i i
v2p @R,y sin? @ a6 ™t 4 2N cos T -
t
. 2aN
= 2:Nﬁ l[cos(277N r) - cos(—:——rT)] +
N
sin (2”N BH;) 9N m sin2(-7-7—t—- My ‘
+cos(2nN m)[l-— ¢ ] + sin( ) }.
27N o m t ! aN sm
5" AP,
t 1 t 1

The last expression can be estimated by means of the inequa-
lities :

2 s
|cosx - cosy| < |x-y], ‘sin X | <1, 'll—ﬂlf—{s—t-xg;
we obtain in this way
Py | < ZRIBL 2N (o my LEN myz, Mam
t t
Further the estimates 2”N ==slcaN -"_—:l;-+ ;< 2gN<nN give
IF()] < (?%11)2 18l ((r_ri )+ aNs ™)
S0 m
Ti+t 2 97N
[ IF0%ar <& ") B (1+nN+rr NBHGM? <
rn

i .
< (%’i"—)'*ﬁ%m nZeh?®

It holds 8, <8(o )accordlng to &18), thus we finally obtain

. n(gm) T1+1 2 .
HP(Um)szN_ﬁvaH = i=20 [‘I{ [F()]® dr <

T

<@N)* 73 BN + 1) (Bl NE .



Since the sequence &7ml:=1 is assumed to be crumbling, we
obtain Hn}PQ%QBVZNzﬁVZN; further the last inequality shows

m-» 0o

that this convergence is uniform in catyi.e., ﬁv2N4;V for any

natural N, A similar argument applies to Vons N = 1.2,.... . g
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