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I. INTRODUCTION 

Functional integration often emplo ys methods in which the 
patl1 space under consid eration is replaced by the subset of 
polygonal paths. In thi s way, e.g ., the Wiener integral of 
suf f iciently smooth function(al)s can be evaluated / l, 21 . 
However, while in the mentioned case the polygonal-path 
approximations repres ent a useful calcula tion Lechni que ,they 
are of conceptual importance for the Feynman integral because 
of absence of its sufficiently genera l and widely accepted 
definition. 

The pol ygonal paths were connected c lo sely with the very 
beginning of the concept of F-integral 13·41. Later they have 
appeared in various attempts to develop a rigorous F -integral 
theory, to say nothing of numerous non-rigorous calculations. 
We have listed some of these attempts in the in troduction of 
our previous paper 151: among them Nelson's variant of Feynman's 
heuristic definition 16·71 and its generalization 18 1 as well 
as t he method of Truman 12·9 •101 are based on variously modi­
fied polygonal-pa th approximation . Let us remind some other 
treatments in which this idea played a central role: the men­
tioned paper of Cameron1t/ and those of Gel'fand and Yag­
lom1111, Babbitt 1 121 (for a more complete bibliography till the 
middle of sevent ies we refer to1131, and further to1101 and other 
papers contained in1141,or recently the treatment of F -integ­
rals on Riemannian manifolds 1151and the general cylindrical 
approximation1161 with a particular choice of the path space 
and the reference family. 

The present paper and its sequel 1171 are devoted to study 
of polygonal-path approximations on the Hilbert space of paths 
which refers to a quantum-mechanical system with d degrees 
of freedom. In the following section we examine in detail pro­
perties of time-interval partitions and of the corresponding 
polyy.onal paths. Results of this treatment will serve in 
ref. 171 for discussion of different types of polygonal-path 
approximations, in particular those used by the above-named 
authors. Further we shall apply there the "strongest" one of 
them, the uniform polygonal-path approximation, to extend do­
main of the F -maps introduced in15/ and to prove consistency 
of this extension. Among these maps the F_i -map is particular-



ly interesting: we shall give some sufficient conditions under 
which it can be identified with the Wiener integral. For d=l 
the F_i-rnap is closely related to the sequential Wiener in­
tegral of Cameron111

• We shall show that the basic theorem 
concerning the latter must be improved: strenghthened condi­
tions on the order of growth under which the assertion holds 
are given in the conclusion of ref/ 171.Applications of the 
polygonally extended F-integrals to solving SchrHdinger-type 
equatfons will be discussed elsewhere 1 181 • 

2. PARTITIONS AND POLYGONAL PATHS 

We shall consider a d -dimensional quantum-mechanical 
system referring to the configuration space Rd the elements 
of which will be abbreviated as x=(x1 , ••. , x d). Let us introduce 
first some notation: 

Jt = [ 0, t ], t > 0 , 

y: Jt ➔ Rd is a Rd-valued function, y(r)=(y
1
(r), ... ,ya<r)), conven­

d 
tionally y(r)-y(r)=.l y. (r)y.(r), further y2 (r) =y(r)-y(r) 

J = 1 J J 
and ly(r)J =Jy2 (r ), 

C 0 [Jt;Rd]=ly:Jt ➔ Rd:y continuous in Jt, y(t) .,,ol, 
y is said to be absolutely continuous in Jt iff yi, j""l, ... ,d, 

are absolutely continuous in J t , · 
AC 0 [Jt ;Rd]=lyE c0 [Jt;R'1]:yabsolutely continuous in J1,yi;;;L2 (Jt;R'1)J, 

clearly y<e-L2(Jt;Rd)iff yj'=L 2 (Jt;Rd), j=l, ... ,d, 
• d • 

(y,y)=J y(r)-y(r)dr= l Jy_(r)y_(r)dr. 
Jt j=lJt J J 

We shall addopt in the following AC
0
LJ\Rd]as 'the path space; 

for the sake of simplicity we shall denote it often as H.The, 
following assertion is valid 1 191 : 

Proposition I: (a) ACiJt;Rd] equipped with the inner pro-
duct (.,.) is the real separable Hilbert space. 
(b) The elements of AC0 [Jt;Rd] can be expressed 
by means of trigonometric series: if y is an 
arbitrary element of AC 0 [Jt;Rd], then there 
exist a 0 i;;;Rd, lanl~=l , !,Bnl;,1 cRd which obey 

oo oo d 

l (a! + /37i ) = I _I (a;J. + /3 ;J.) < oo (I) 
n= 1 n= 1 J=1 
and such that 

00 ant 2irnr · 00 /3nt · ·(2rrnr ).) y(r)=a (r-t)+ l--sin(--)+l --(1-cos --
0 n=1 2rrn t n=l 21Tll t (2) 

2 

for all; i;;; Jt. Conversely, any sequence .of Rd­
valued coefficients which fulfils (I) deter­
mines through (2) some element of AC 

0
[ J t ; Rd]. 

Finally, if a 0 ,lapl,l~nlrefer to y.;:;AC lJt;Rd], 
the inner product is given by 

(y ~},) = ta . a + !. I (a • ~ + /1 · p ) . 
' 0 O 2 n= 1 n n n n 

(3) 

As mentioned above we shall deal with polygonal approxima­
tions to the elements of]. To this purpose we introduce first 
some more notions. Partition of Jt is a set a =lri: i=0 ..... nl, 
0=r0< r 1 < .•• <r =t.The family of all these partitions is <le-

a> tn · [ l noted as '.f (J ) , further we introduce i\i = r1 , r i+ 1 and 8 i ~,; i+ 1-r1 • 

A partition a' is said to be refinement of a 1 a')a, if each 
i\ k is contained in some /i.; clearly ) defines a partial or­
dering on P(Jt)without maximal elements. The symbols an a'and 
a ua' mean the partitions obtained by natural ordering of the 
intersection and union of a,a', respectively. A partition 
is said to decompose to subpartitions a<n, ... ,a(r),a=la<1), ... ,a<r)I 
i.f m -! · ·-o 1· l <2> I · · · · I <r)_, · · l a - Ti .I- , ••• , 1 ,o = ri.1=11 , ... ,1 2 ,.,.,a .-<Ti .1 r-t ,·•··, n 
(endpoints of the neighbouring partitions coincide). Let a)a' 

so that rk =r. for each k = 0,1, ... , n ', then the decomposition 
a= f aO) ••••, 

1
t<n')1·, a(k) = lri :i=i _ ,.,.;i kl is said to be gene­

rated by a'. Decompositions ·a = fa CO, ... , a (r) l, a=faO> , ... , u<rTT 
are comparable if ri. =ri . , j = 1, ... , r ; in other words~ if the 
subpartitions of a 1:/nd ;-;l refer to the same subintervals o·f Jt. 
Partitions a, a~ P(J t) are said to be commuting if there exist 
comparable decompositions a=la<O, ... ,a(r) } .. and a=la~oi ... ,a(r)I 

such that a<D ca(j) or am Ja<i> for eachj=1, ... ,r.Clearly, a 
and a' commute if one of them refines the other.Finally, we in­
tro~u~e a'* a =10,tlulrk :[<_1 ,rk+l ]s1'.L\,i=1, .. ,nl.The following 
auxiliary statement holds: 

Proposition 2: Partitions a,a'EP(Jt)commute iff a*a'=a'*a; 
then a* a' = a • * a = a n a'. 

Proof: (a) Let a, a commute so that there exist comparable 
decompositions a =I aO~ ... ,a<r>1, a =la<1), ••• ,a (r) I .Assume an arbitra­
ry j=l, ... ,r.Tl~e e~dpoints ri. =fi. and ri·+ 1=ritj+l of the sub­
partitions a<J), a (J) belong JcleaJrly to la n a and also to a * a 
and a *a since their neighbouring points belong to different 
intervals of the other partition. Let, e.g., a(j) ) a (j) ,then 
the points of a<j), a(j) are contained neither in an a, nor in 
a* a, nor of course in a* a.On the other hand, it can be seen 
easily that the subpartition a<n belongs wholy to the sets 
an a, a* ;; , a* a. Thus these sets coincide with the more rough 

3 



subpartition in every particular interval, and therefore they 
equal each other. 
(bl) Conversely, let a*a'=a'* a. Assume any two neighbouring 
points T. ,r. +l of a.If there is somerk'r;;a',T. <rk'<r. 1 , 

IQ IQ . 10 10+ 
then the following possibilities arise: either ri ~Tk-l < 
<r' <r or T'k .;a'* a and in the same time Tk, 'I,~) a*a',how-

k+1 - io+1 
ever,the latter contradicts to the assumption. As to the for­
mer one: either Tk-l = r 10 and Tk+l = r io+ 1 or at least one of 

them belongs to (Ti , r i +l) and the same argument as above can 
0 0 -

be applied. Since the partition a' is finite we arrive to the 
f?llowing resul;: there exist some k1 ,~2.• ,k1 <k<~ 2 , such that 
1kt =Tio and rk =Ti +l· Analogously, 1.fTk <Ti <rk +l' then 2 0 · 0 0 
there exist i 1<i'< i 2 such that ritr~

0 
and T12 =T;o+l • 

(b2) Assume further the decomposition of a and a'generated 
by ana' which are clearly comparable. Let !1. =[.;

1
17] be an ar­

bitrary subinterval of an a· , c; = Ti O = T k O , then the interior 
of !1. contains points of at most one of the partitions a,a'. 
Suppose that this is not true, then either c;=ri 0 <rko+fri 0+1<11 

or c; =Tk <Ti +i< rk +f11; in both these cases, however, (bl) 
implies e~ist0ence oP (r;;(l 11) which belongs to ana: but accord-
ing to the assumption c;, 77 are neighbouring points of an a: 
Consequently, one of the subpartitions referring to !1. is tri­
vial (consisting of l11 only) and the other is therefore its 
refinement, i.e., a and a' commute. ■ 

Further we introduce for any fixed a.; P(J t)the mapping 
pc (a): Co [ J t ; Rd] ➔ AC O [ J t ; Rd ] by 

(PC(a)y)(d=yi +(yi+1 -yi)a:-1 (T-T. 
I I 

(4) 

for ,.;!1. 1 , i=0,1, ... ,n-1, where yiaesyfr 1 ) • It assigns obviously 
to each continuous p~th y.; c 0[Jt;Rd]the polygonal path going 
through the points y 1, i = 0,1, ... , n. In what follows we shall 
deal mainly with the restrictions 

P(a) = P c (a) t AC 
0

[ J t ; R d] • 

Properties of the operators P(a) can be derived easily by 
means of the reproduction kernel technique. Let us denote 

(5) 

g: J t x J t ➔ Rd : g(T, c;) = t - max(r, c;), (6) 

G: Jt x J t ➔,C(R d): G(r, c;) =g(r,c;) Id, (7) 

,4 

J 

where Id is the.unit operator on Rd. As noticed by Albeverio 
and Hoegh-Krohn /1 31, G (.,.) represents kernel of the operator 

- -2.:-id with boundary conditions ¢(t)=¢
0

(0) = 0. For our pur­
dr2 

pose the following property is important: 

ProE.osition 3: G(.,.) is a reproducing kernel of AC O [J t; Rd] 
in the sense that G(,,.),B.;AC 0[Jt;RdJfor all 
r ~ J t, µ,;;Rd and the relation 

(y, G (r,.) ,B) = {:L y (r) 

holds for each y.; AC 0[J t; Rd J. 

Proof: If f3i;;Rd, then G(r,.),B=,Bg(r,.)belongs obviously to 
AC 

0
[J t; Rd]. Further 

. ' . - Jg(r, c;) t • ( : 
< y , c >. , . > m = s r < ,; > . o --de; = - s r < o . ,B de; = y , > . .a 

Jt Jc; r 
because y(t) =0. 

(8) 

■ 

Theorem 1: (a) P(a) is an orthogonal projection for any at;; P(Jt) 
(b) P(a) commutes with P(a') iff the partitions.a,a' 
commute. 
( c ) P (a) > P (a ' ) i ff a ) a '. 
(d) dim P(a) = dn (a ),especially the d -dimensional 
subspace of linear paths ending in the origin 
responds to the trivial partition a0 = !O, t I. 

Proof: (a) For an arbitrary yr;; J( we have (P (a) y) (r.) = y i 
) 

2 • I 
= y(r i ) so (P(a) =P(a). The relat1.on 

[

-a. 

g(ri+l 'r)-g(ri,r) = r-1\+1 

0 

implies easily the following identity 

T < T. 
- I 

T t;, i\. 
I 

r:::_ri+1 

(P(a)y)(r) = n~:1 (G(r. 
1

, r)- G(r. ,r))o-:-1(yi+l_ yi ). 
i=O 1+ I I 

Thus we can write 

n-1 . 1 . 1 
(y,P(a)y)= k (y, G(r. 

1 
,.)(yl+ -y 1 ))o':" -

i=O 1+ I 

n-1 
_ k (y,G(r_,.)(yi+l_yi))B:-1 

i=O I I 

cor-

(9) 

(IO) 
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and the reproducing kernel property (8) yields 

- n- l - t+1 - i i+ 1 i -(y,P(a)y)= I (y -y ).(y -y )=(P(a)y,y) 
. i=0 

( 11) 

for all y,yE J<, where y k denotes agaih y (r k.). Consequently, the 
operator P(a) is symmetric, idempotent and defined every­
wher_e in J<, i.e., an orthogonal projection. 
(b) The mapping a .. P(a) · is obviously· injective. If a,a' do not 
commute, then a*a',/ a'*u due to Proposition 2, and thementi­
oned injectivity together with the relation RanP(a)P(a')=RanP(a*a') 
show that P(a) , P(a') do not commute too. Conversely, let u,a' 
commute. A simple calculation using relation (10) yields 

(y, P (a ') P (a ) y ) = 
(12) 

n~1 n-1 
= I _I f'ik(y(rk' 1)-y(rk')).(y(r. 1)-y(r. ))o-it (o'k)-1 ' 

k=0 1=0 + 1+ 1 

where 1ik =g(ri+l 'rk+t )-g(ri+l•rk)-g(ri ,rk+1 )+g(ri ,rk ), 
rary y,y E J{ > and analogously 

for arbit-

(y , P (a) P (u ') y) = 

n-1 n ~1 
= I I f'' (y(r )-y(r )).(y(r' )-y(r'))o-1 (o')-1 , 

i = 0 k =0 ki I+ 1 i k + 1 k i k 

(13) 

where r;1 =g(rk+l' r 1+1)-g(r~+l'ri )-g(rk :'1+l_)+g(rk,r1J.The inter~al 
can be decomposed due to the assumption into subintervals t.<J) , 
j = 1, ... , r, such that in each of them the corresponding sub­
partitions fulfil either a (j) ::>(a') (j) or a(j) C (a')(j) .In the 
first case the relation (9) implies 

L\ i C L\ 
1

k 
r = r' ik ki = l: i otherwise 

for each L\~CL\ (j) • Similarly, if a(j) c (a ')(j), we obtain 

o' r -r' - ~ k 
ik - ki - t 0 

L\k C L\i 

otherwise 

( -K ) 

( -K-K ) 

for each L\'ct.(j~In particular, r =1.' =0 if the intervals t. 1 
and L\k arekdisjoint; then (12) uf!y bt1 rewritten as follows 

r 
(y,P(a')P(a)y)= I (y,P(a')P(a)y)j, 

j= 1 

where 

6 

(14) 

J 
1, 

';i 
• I 

/ 

<I 111 

-i I 
·, 

(y, P(a')P(a)y)j = 

I I f'
1
k (y(r' 

1 
)-y(r' )) . (y(r. 

1 
)-y(r .))o-:-1 (ok')-1 

L\'ct.m t:..ct.' k+ k 1+ 1 1 
k 1 k 

in the case thata(j)::i(a')(j).The last relation can be simpli­
fied using (-K) to the form 

(y,P(a')P(a)y) j = 

I . (y(rk+ 1 )-y(rk )) . (y(r k+ 1 )-y(rk ))(o k )-1 
L\ 'ct.<J> 

(15) 

On thek other hand, if a(j) C(a')(j), then (-K-K) yields 

(y, p (a') p (a )y) j = 

I. (y(r. 
1

)-y(r
1

)).(y(r.+ 1 )-y(r 1))8;
1 

(16) 
I 

L\.([\(J) 1+ I 
l 

Further r1k =Iki so (y, P(a) P (a ')y )is expressed again by the for­
mulae (14)-(16). Consequently, (y, P(a')P(a)y) = (y,P(a)P(a')y) 
for all y, yE J<, i.e., the projections commute. 

-(c) If a::>a~ then P(a) and P(a ') commute according to (b). The 
relations (14)-(16) now read 

(y; P (a') P (a) y) = 

= I t (y(r'k+1)-y(r'k )).(y(rk+1 )-y(r' ))(o' )-1 =(y,P(a')y) 
L\'CJ k k 

k 
(cf. (II)) for arbitrary y, yE J{ so that P(a ')P(a)=P(a) P(a ')=P(a '), 
i.e., P(a)?_P(a').Another equivalent formulation of the last 
inequality is RanP(a)::iRanP(a').If a;;1a~ then there exist L\1 0 
·and ri 0 such that r 1u< 'ko<'to+l· Each function from RanP(a) 
is linear in t. 19 ; it is not true for RanP(a') which contains 
paths having a 'corner" at rerk • Thus P(a):i!RanP(a')or equi-
valently P(a) 'f.. P(a') O 

(d) Let le1 I1=t be an orthonormal basis in Rd and a=lr. 1,n EP(J'). 
The functions 1 1

=
0 

' -½ 
y ij : y ij (r) = e /g(r 1 +l, r) - g(r i , r )) o 1 , (17) 

'ia0, ... ,n-1, j=l, ... ,d, are orthonormal and span P(a)J< due to (10) • 

• 
A sequence la ml°;;i=t of partitions is said to be crumbling 

if the lengths of all subintervals t.1 (am) tend to zero with 
ID ➔ oa, i.e., if 

lim B(a ) = 0, 
m 

m➔ oa 

8(am) max o 1 (am). 
0.:Si.:Sn(am) -1 

(18) 
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Such sequences are of central importance for polygonal-path 
approximations because of the following property: 

OO (i) t 
Theorem 2: Let a sequence lam I m=t C ., (J ) be crumbling, then 

s-lirn P(a )=I. Furthermore, the convergence is 
m➔ oo m 

uniform in the set t(Jt) of all crumbling sequences: 
to each y ~ J<, c > 0 there exists o[d>O such that 
IIP(a)y-y\l <c for alla.;:~Jt)with o(a)<o[d, or 
symbolically 

s - lirn P(a) = I. 
o(a) ➔ o 

(19) 

Remark: On the other hand, it is clear that if s-limP(am) exists 
m ➔ oo 

for a non-crumbling lam!;'= 1 , it cannot be equal to the. unit 
operator. Let us take a suitable y.;: J<, say y(r)=(2t-r} 2 -t 2 , 
then 

2 Ti+! 2 
i!P(a)y-yll 2 f !2r-ri -ri+i \ dr 

Ti 
1 ½ for each subintervall\.;:a so that !IP(a)y-yjj_?(3 o(a)) 

Proof of the theorem: We have to show that V=ly.;Ac0 [i ;Rd]: 
lirn jjP(a)y-yl\=01 = AC

0
[Jt; Rd]. We shall prove first that V is 

o(a) ➔lo d b . J{ L . . . . b . 1 d f 1 a c ose su space 1n . 1near1 ty 1s o v1ous, c ose ness o -
lows from the f E - trick: an arbitrary Cauchy sequence 
ty<r) Ir""= 1 CV converges in the norm to some y.; J{, further 

l!P(a)y-y\l:S 211 Y (r) -yll +II P(a)y(r) -y (r) \\. (-K) 

To any t>O there exist r 0 (d and o0 (r,c) such that 

\ly(r) -ylj < ~ E, II P(a)y(r) -y (r) II< i E. (1r-1r-) 

for all r>r
0

(c) anda.;P(Jt)witho(a)<oo(r,c).For an arbitrary 
partitiona with o(a)<o0 (r 0 (c)+1,d, the relations(*),(<!£-K)give 
IIP(a)y-y!J<c so that y belongs to V ,which is therefore closed. 

According to Proposition I the elements of J{ can be ex­
pressed by trigonometric series (2). Let lej 1~=1 be some ortho­
normal basis in Rd.One can check easily that the functions 
ujk:ujk(r)=ejvk(r), j=l, ... ,d,, k=l,2, .. :, where 

v (r)=r-t, v (r)=sin( 2"Nr), v (r)=l-cos(~Nr) 
1 2N t 2N+1 t 

form an orthonormal basis in J{. It is sufficient therefore to 
verify that f3v k (.) is contained in V for all /3(;R d and 
k = 1,2, .... This is trivial for k=l. Assume further k=2N and 
r ;:; fim = [rm r m ] • We have 

i i ' i+ 1 

8 

I 

(P (a )f3v 2N)(r) = t1 sin ( 217N r '.°) + /3 (sin ( 211N r ml 
1 

) - sin( 211N r'.°)}{r-l~(o.~ - 1, 
m t I t + t I II 

where o '.0 ,,,a. (a ), further a simple calculation gives 
I I m 

F (r h - 2- (P (a )/3 V ) (r) + {3v (r) = 
dr m 2N 2N 

rrN ) . rrN m ( m)-1 211Nf3 (211Nr) =-2f3cos(-(2rm+am) sm(-o ) o +--cos -- = 
t ii ti i t t 

=-f3cos(211N,m)sin(2rrN 0m)U,m)-1 + 
t i t i i 

+ 2f3 sin (211N rm) sin 2 (!:Ii. o.il1J(o '.11) -1 + 211Nf3 cos (2rrNr) = 
t I t 1 I t t 

211N/3 , 2rrN 211N m ] 
= ---Hcos(--r} - cos(--r.) + 

t t t I 

211N m . 2 ("N m ) 
sin (-- o 1 ) 2 N sm - o i 

( 211N _m)[ 1 t ] + sin(-"--rm) ---~---I.· +cos--.,. - . 
t I 211N O ~ t I 11N O ~ 

t I t 

The last expression can be estimated by means of the inequa­
lities 

lcosx-cosyl_::: lx-yj, I s1:2x I~ lxl, 
. 1 

11-~1<-x2: 
· X - 6 

we obtain in this way 

IF(r)I< 2rrNl/311~~(,-rm)+.!..(~om)2+ 11No~ I. 
- t t j 6 t j t I 

Further the estimates 
2
;N s7 :S 2rrN , 11: + ~ < 2;N <11N give 

IF(r) I< ( 2rrN )2 1/31 ((r-r '.11) + 11No im) 
t I 

so m 
T i+1 

f IF(r)l2dr<(211N)4/32(.!.+11N+112N2)(om)3 < 
t j I ,m 

i 

< ( 211N )4 f3 2 (11N + 1) ~ (o ~) 3 
t I 

It holds o'.11<o(a )according to <18), thus we finally obtain 
1 - m ,. ) rm 

, n \am i+ 1 

IIP(a )/3v -/3v 11 2 = ~ f \F(r)\
2 

dr < 
m 2N 2N i=O m 

Tl 

< (2rrN) 4 t-3 /3 2 (rrN + 1)2 (B(am )) 2 · 

·9 



Since the sequence lam 1::;= 1 is assumed to be crumbling, we 
obtain lim P(am)flv2N=/1v2N; further the last inequality shows 

m·+()Q 

that this convergence is uniform in -:" (,J t), i.e., /lv ~ V for any 
natural N. A similar argument applies to v

2
N+l'N =

2
N1,2, ... . 111 
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