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1. Igtroduction

This paper represents another example of the use of chiral
type quantum theory for describing the low—energy scattering of
elementary particles. The results on such an approach of previ-
ous papers devoted to description of the low-energy % % scatter-
ing and calculation of the plon form factor are in a good
agreement with the exlisting experimental data 1-4 .

Before to proceed to the subject of this paper we would
remind the maln advantages of the chiral type quantum theory
as compared to the conventional approack of field theory of
strong interactions. The first and major advantage of the chiral
theory 1s due to fulfilling of the low—energy theorems and
correct description of the scattering amplitude behaviour in the

low—energy 1limit. The next rather important feature of this

'theory consists in that both the pion-pion interactions and

the pion-nucleon interactions are expressed throuszh one and the
same pion decay constant JF;— = 92 MeV. This latter feature
appears to be very useful in constructing perturbation theory

as it makes 1t easy to select the total set of diagrams contai-
ning both the pign vertices and the pion-nucleon ones to a given
order of perturbation expansion in {0? « The third impor-
tant feature of the chiral theory is that in describing the
low—energy processes in this theory there arises a speoific ener-
gy scale equal to & & Az ~ 1.2 GeV. It 1s Just the scale
which allows one to construct the perturbation theory even when

strong interactions are involved. It 1s only necessary that
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caergles under cuzsilornticn are essentially lower than the above

indicated limit. For the ¥ %  scattering this scale has first

been discovered by Brown and-Geble > and also by Lehmann 1 .
5 will be seen from this paper, in the process J/{’-+ 28

the same energy scale acaln arises * Finally, the last advanta—~

ge o7 the chiral theory consists in that for the casc of presence

of ultraviolet divergences which cannot be removed by standard

nethods ol the renormalizable field theory the nonpolynomial

form of Lagranglian admits of the use of the superpropagator

method to regularize diagrams of such a type. We met similar

phenomena in describing the % % scattering and calculating

the pion form factor. The process J/// - G , We are here

dealing with, is of interest also because of that for its

description 1t turns out to be sufficlent to employ the conven-

tional methods of the renormalizable fleld theory when calculating

the second-order perturbation expansion connected with the one—

~loop approximation.

In the next section we shall write chiral-type quantum
Lagranglan in the Gursey exponential parametrization. The mass
term will be taken also 1n a form suggested by Gursey. An
interactlion with the electromagnetic field 1s introduced 1n the

standard gauge-invariant way. Ag the superpropagator methods

XNote that all calculations have been performed up to now in
the two first orders in the constant é?&? « The sesand-order
contribution was throughout considerably smaller than the first—

order one at low energies 14 .

will not be used here, we shall consider only the lowest orders of
the total chiral Lagrangian. )

At the end of the section we present the general form of
the ‘)/}/—79"%7 scattering amplitude in the two first orders of
perturbation theory.

In the third section a contributlion 1s found to the
scattering amplitude from the diagrams with the pion loops. It ‘
proves to be finite and is an elementary function of ,9':{/5'/&)f

In the fourth section a contribution from the pion-nucleon
interactions 1s calculated. Here only the terms proportional to
the photon momenta squared are kept as other terms are small
( of the type of {”@@;ajzﬂ
to note that at threshold energles the contribution to theinraﬁ";'

’ 72 = 1,2,3 ). It 1s intecresting
amplitude from the pilon loops is nearly the same as that from
the nucleon loops. For the Jﬂfﬂvgfﬁaamplitude the contribution
from the nucleon loops appears to be zero whereas that from the
pion loops 1s two times larger than for the process J/[’ﬂ'Wdﬁ',
In the last éectionsvthe hyperon contribution and the pilon

polarizability are calculated afd the obtalned results are

discussed.

i y % ude
2, Igteraction Lagrangian and the jﬁ¢/—'% amplit

A chirai - type Lagranglan taken 1in the Gursey exponential

x
parameterization 7 has the form

e et e i S e ot

X a11 the notations used hereafter follow the monograph

8
by N.Bogolubov and D.Shirkov ~.
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where 9// is a nucleon field of mass ™M y 99 is a pion
field of mass /77 , /;; = 92 MeV. The interaction with

electromagnetic field /?;w is introduced in the usual gauge—

invariant way

Y Dt/ 7 e, 55y, (2)

g 7 /‘ ~
(}”V/ 2 ’*c’/@’vc}wﬂ;ﬂf

where Jr,qéa is the antisymmetric tensor, ¢ 45 the proton

charge,

Since we shall not use the superpropagator methods for
calculating the Jﬁf/-’27§' amplitude in the one-loop approxima-—
tion, 1t suffices to know only the lowest orders of perturba—~
tion expansion of the chiral Lagrangian in order to prform the
required calculations.

Note should be made that in the perturbation expansion
order of interest for us — ‘Qfﬁ%;z the only term of Lagrangian

(1), dependent on the choice of a form of the chiral Lagrangian

1s the mass term ¥ ,

XA discussion of possible arbitrariness in a choice of the
mass term of lagrangian (1) can be found in Appendix I.

Tn deriving the lowest orders from Lagrangian (1) one
should remember that the low~ener gy theorems require a definite
rerormalization of the plon-nucleon vertices. This problem is

1bye ( see also 9 ).

discussed in more detail in papers by Lehmann
We write here all the lowest orders of chiral Lagrangian (1), which
are of further need for our calculations, taking account of

renormalization of the plon-nucleon vertices

Loy = -(H) G 7)) - P o

3’—
- S, eE AR ﬂf AT (3b)
Ly = €huilts - 575 ) » §HL )
Ly = e Hn Ty BB 3

() M Ly s
05; %— 4//1 7z 0({:99/ 77 vy (3a)

where 33¢ = 1,25 15 the renormalization constant.
Now let us proceed to constructing the Jy/—riﬁ—
amplitude o This amplitude drawn in Fig.l is defined as follows

L

FIRIT RS Uo7 = G6 T So (e st vante),

(4)

v _ ZCY/4kbzf/a ‘73“75) é;/mé;y
% 4 / jg/z ¢ / 710 7;"/6’:“ /92_—7" 5

!

. ¢
where 71' 72 are the photon momenta fﬂz s f‘z -
photon polarizations, /O /7 - the pion momonta, asb -~ their iso-
t0pid indices., The amplitude ng7 breaks into two independent



/A AN
Fig.Z

r,i(;zr ri__}f q,x % o3 x In
/

k+q, ( dk-9, \ Keg, K92 Key, k-9
( ;’.’ b} :l(-l.) ‘,,/ \\ za-) hzo ,’ ‘\lil.) l'/ Li7 AT RN x-
a (%) . (l-) Py a P‘ (x*) P, 8 Pg(;.)

Fig.J FL9.4

X~ K7 —

a *
1 c d
FLgG
IS f:
'-
/, S‘r
z* £ P =
* * b
=\ - rfe e Fe
.0 ’,' \\ z- .’ \ - , ’z (%]
(%) Ly X\ AN Y ™w - AN\ ST
a ™ ® gm0 ow) Nk e odomy Mgt &
c d e Y, (xo)

Fi g8

gauge-invariant parts-( see e.g. 1o

)} « Leaving aside the general
form of this covariant amplitude we only write down that form

which 1s obtained in the two first orders of perturbation theory
(e*, gz/,fﬁf )
/,v'— — § v 7/’ ) o _j‘! o A
T2 = 26X (G S g™ O - BB g 00T
(s)
%G(g//%%) f_ﬁ//t{/f # 432‘;_;470?{//;/"/7171'f}vﬂ:/yﬁ/g//f//ﬂ').

. "‘Z
Here ‘7}/_ (4% F5) © is the inverse square of that energy scale
which was said adbout in the Introduction, three first terms in
a R S (T)

braces are the Born terms ( see Fig.2), ﬁ /7'17/‘,) is the
pion loop contribution ( Fig.)), /5//1// is the nucleon-loop

N . /
contribution (Fig.4). Only the constant terms are kept in /:,"M)

because other terms are small in the region under consideration

. ,
( of the type a//‘%) or ¢ /%’/—g—z) ). Moreover, in (5

v
there are omitted the terms proportional to 71/' and 7;

as (7! &) = /77 £) = O .+ The equalities 71‘: z//:‘ =0,
/of.- I’:/ﬂz are taken into account here, as well. Bearing in mind
all the aforesaid we obtain for ﬁ/z}/%f%’) and /g//V/

the following expressions

#), s, 2t em ], ot 7475
/”W/%ﬂ')‘ﬁ'j’;,ﬂ% (r;/d?‘?i{%'/)/ fj;

M) o 22
Vi = 55 TLoH

Now we will demonstrate in what manner these quantities are

(8)

(N

calculated.



3. The pion-loop contribution ('?z//;_z).
,

The contribution to the amplitude 7;;; from the
plon-loop diagrams drawn in Fig.3 1s calculated as follows.

The quadratie ultraviolet divergences entering into the

integrals can be eliminated by transfering derivatives of the
integrands to the exponents dependent on external momenta. The
"contracted" diagrams arising in this procedure, of the type

drawn in Fig.5 can be ruled out of the consideration as these can
give only the constant contributions to the amplitude and

the latter ones are required to be zero due to gauge invariance ¥,
Finally it turns out that the remaining in the integrands
logarithmic divergences cancel if the contributions from two-vertex
and three-vertex dlagrams are oalcixlated together,

Let us now demonstrate the way of this procedure. We begin
with considering the two-vertex pion diagram. Using interaction
Lagrangian (3a) and (3b) for the matrix element corresponding
to di%ra.m (32) one can get the following expression

_ et (Ex &) {/7 IV
ﬂj T (2%)¢2 %%‘ﬂ'/gzof;z/ﬁ/jt/xze 1T PP, (8)

4/ 0o+ $ma’%, 4)*260170)”9’/44’ x)- /2,,”2@4,)]7.

Note that considering the infinite set of such loops in all
the perturbation expansion orders of (1//;_) with the use of
the superpropagator method also results in zero contribution
from these dlagrams 11 o

Here A /,YI —,’\’z) is the propagator of a free scalar

field of mass 77 . Index (2) of the derivative means that 1t

opei‘ates on ,YZ « Transfering then the derivatives onto
g'/'///"z*ﬂz))"z and omitting the terms having the cr— function
5/4')5(1-,9) in the integrand ( "contracted"® diag?a.nfs) we obtaiﬁnr

_ o %
- __ " - '
A, =-iker sy i V=57 e e 2]

In a simllar way one can find for the three—vertex diagran
( Fig.3b) the expression

- M (10)
=y & ply pI Z 2 dw xk
=-¢ < w — 570 | = _ _ —
/qz 52 CF [%%’ 3 J//ﬂz REL R (ko)L EJ[110% -fa-7) it ] .

It is easy to see that only the logarithmic divergences remain

in integrals (9) and (10). Now we combine both the integrals and

e
consider the integral ﬂﬂ/‘, )/71 7z)
11

() % [f,, wf‘ /
/qﬂu/%zf) /mz_ﬂ,*%)z,{][ﬂz_ﬁ%)_(g ? m=-x?- .

It appears that this integral does not contaln the lopartihmic

divergences either. To be convinced of this, let us calculate )
()
3 = = . st that part of where
/?/-w in the case g, =g, =0 It 1s jus at p lqw
the logerithmic divergences can be expected to appear. It is

of the form

(2 o] . . z o2
At T [t st-f1)-gfffdtdiieft foxa>
Eqe (12) 1s hold, 1f we go to 1imit /=g at the end of the

our oaloulaticns, Note, that ﬂng’ /a) 18 required to Dde
v
gero due to gauge imvariance also.



The integral (11) is exactly calculated by a method given

2 12
( see Appendix in ). As a result we have

.l» {/
YL LLLLL// /; . ] }
Do (728 7192 9192 ’ ré%'?yék {)

77 MY
Thus the contribution to the amplitude / 775)

loops drawn in Filg.3 may be thought to be completely calculated.

from the plon

Up to now we have consldered the process of photon
annihilation with productlon of charged plons. The contributilon
from pion loops to the amplitude for the neutral-plon production
will be two times larger than for charged plons and of the sanme
signe Writing the obtained result for the amplitude in a
form similar to (5) we arrive at formula (6) for the function
ye fﬁ)/%%)‘.

e would like to note here one important property of the obtal-
ned function. With increaging ener gy ,57=,?9§§Q from zero to the
threshold of two-pion productlon thils functlon rapidly varies and
even changes 1ts silgn. At q&é};:a 1t equals to )
(14)

ye 7 p) = -

At the threshold value of argument §Q gi :}Z/ﬁ’z it increa-

3053 nine times in magnitude and changes 1ts silgn:
Z
(7 _E2rZ ~ 15
Bemt) = 5[ F-1]= 1

With this we complete the discusslon of the plon-loop contribution

and proceed to consildering the nucleon diagrams.

12
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4, The nucleon-loop _contribution ('5/672)

Pl

The dominant contribution to the JQf/-,W“UF_amplitude
comes from the three~vertex dlagram with the nucleon loop drawn
(z

in Fig.4a. Using the Lagrangians 959//4 and f;ﬁ 5‘/) ( see
eqs. (3c) and (3d) ) we obtain for the corresponding matrix ele-

ment the expression
. 4 M) g /74) (16)
=il 8?) 83" (AL - Lt ’

All the integrals in (16) again converge anmd the whole expression
AL

(16) has the gauge-invariant form. Indeed, v /397;) 1s

the same function as we have found for two-—plon loops (formula

(11) ) with the only difference that the nucleon masses /“

enter here instead of the plon masses /77 « The function

/7/74) corresponds to the triangle loop with scalar partilcles

of mass M

an

/47(9V¢/A1§”) :)//Y ki

W [MA 2 [ 1 (e g% i M e gy ik
Since the higher—order terms of expansion of these functions
in powérs of /71 ;) have the form of (7171/M2 ) n

we may take with good accuracy only the first terms of such

an expanslon. Then we get

, o ()
B = jgﬁfezdvzﬁ,f‘//yﬁ%% - 7).



Consider next the four-—vertex diagram drawn in Fig.4b. Unlike
the previous diagram, in this case we meet the logarithmic
divergences 1in the corresponding integrals and the finite part
of the matrix element has no longer the gauge-~invariant form.
To obtain the finilte gauge-invariant result the diagram (4b)
mﬁét be considered together with the whole set of diagrams
shown 1in Fig.6.

Without detailing the calculations, we give here the
matrix elements corresponding to every of these diagrams allow-
ing for all possible transpositlons of the extermal lines.

The matrix elements corresponding to the diagrams drawn in Figs.
4b, 6a, 6b, 6c and 6d are denoted by letters C,D,F,G and H.

Then we get
‘ , v 2 19)
C=4g ey 85 1a" puse - 70t 2 pip g - S

2 I
here =i % Z/ 2
wher Ftrm 1) = ¢ w27, (1K %- ce-p)Ris]
(20)

D=-tgieytd g7 (mi=-Iimm),
(21)
Fogon = Egieiy o (p P+ i)

Collecting together all the matrix elements corresponding
to the considered dlagrams with nucleon loops and representing
them in a form similar to formulae (4) and (5) the value given
by (7) is found for the quantity /B //VJ.

Consider now the photon annihilation with production of the

two neutral pions. In this case the diagrams similar to those

14
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drawn in Fig.4 are present but with % ° external lines instead
of %7 and % = ones. Their contributions to the matrix
elements coincide with those found for the charged pions.
However, the diagrams shown in Fig.6 are replaced only by one
four—vertex diagram drawn in Fig.7. Its corresponding matrix

element I is

v ; v A VoM Y £22)
e L Y R T e X L)

As a result, the contribution to the /d/-’%"’f)\a amplitude
from two four-vertex diagrams with nucleon loops turns out to
cancel completely with the contribution to this amplitude from the
three—vertex diagram 4a. In this way we are convinced of that
the diagrams with nucleon loops do not affect the amplitude

rodd 2z
of the process /d/ <> %°%° in the ?//;rz order.,

-

5. Ihe consideration of baryons and kaons

Until now we have considered only nucleon loops when
calculating the quantity /gﬁ”q An interaction with other
baryons may be analyzed in a similar manner. However, as will be
shown below, taking account of interaction with other terms
of the baryon octet 1little affects the quantity. /B (V) .

The corresponding diagrams are shown in Fig.8. llote
that the number of the four-—vertex diagrams is twice as many as
those of the three-vertex ones due to participation of /A partic-

le in the first diagrams., The contributions from these diagrams



will be calculated in a way similar to that described in our:
3b
previous paper ~ .
The new Y"strong" vertices are connected with the SN vertex

through the relations ( see 3b,13,14 ):

"—z ‘ :—_——I/ ! = ._1. ‘ =
| Errel=%2  1%pl=55 & ezl 52 Fm =& - (D
Now it 1s easy to see that taking account of the contributions

of gll the terms of the baryon octet reduces to multiplying cf
Jg/”yby the followlng quantity

AR ) Bl e e

As a result, /363) becomes

3 (25)
B8~

For the Y} = % % °the interaction with the whole baryon
octet 1s as nonessentlal as that with nucleons only. The plon-—
kaon interactlon can be neglected because allowing for this
interaction results in a small correction of the type 0(??5&)1)
to the plon-loop contribution 4/3“7)/79?9).

6. Discussion of the results

At the present time an extensive literature exlsts which is
devoted to various approaches of the theoreticsl description of
the process Jﬂf/~v97ﬁ7 ( see e.g. 15-17 ). Leaving aslde many
aspects of this process described in detail 1in review articles
15-16 , we now consider briefly the pion polarizability following
from the formulae we have already obtained.

The plon polarizability °4T 1s defined as the coefficient
of effective interaction of a plon with an external electromagne-

tic field 15-16 .

n

: X /-2 z)
Viat Sw(£-H7). (26)
It is - interesting to note that it follows from the structure
of formula (5) for the amplitude of 55‘-‘ﬁ€7 that - the

electric and magnetic pion polarizabilities are equal to each

other in magnitude and are opposite in sign ( see Appendi: IT3.
The coefficient o/h- 1s expressed via the quantities d/

and jB entering into amplitude (5) in the following way 15,

"



e =i lgal =y L5 0) 4 57) =0 16 3. (@D
gt T % 71777 o lf S
e

Lo G fig)] = AP SOV = =08 ()

2
£ Z x)
where o = F/;W-=‘/?37 .
Yow we compare our results with the values for the plon

15

polarizability obtained by Terent'ev with the use of current

algebra and PCAC conditions:
(29)

lys ZQLE Yy, oy = O

For the charged plon both of the results differ little
especially 1f one neglects the hyperon influence which 1s not

taken into account in 15 « For the neutral pions we have obtailned

essentially different result xx);.

x) T0 make thelaramefer J/ dimenslonless 1t is natural to use
the pion mass squared in the energy range under consideration.
Then it  1s found that /ﬂif’:zc{ with the very good accuracy. The
quantity ﬂziy is Just that small parameter which we always ob—
taln in the two first orders of pertrubation exnansion ( see also
ref. > ).

xx)Almost the same value for o(&;z has been found in the
18
quark models for quarks of charge 1/3 as well (see ref. ).

It is interesting to investigate the influence of the pion-
loop contributions on the threshold behaviour of the functions

W@VS&Z?”' In processing experimental data one should

bear in mind that the function /3/79/?9?2) varies rapidly in
the threshold energy reglon so that at 7??9 = Zm* the magni—
tudes of 9(,1(%5??) and 0(9_J /7;?9) become equal to each
other and exceed more than twice the magnitude of W<g¢ (o)

o(é__f (2722) = 0,36 3 X il2m?) = 0,36 Ypa C30)

As to the total oross sections of the process Jy/-» WE,
we notlce only that the cross section for fyﬂ+9'ﬁ_little changes
as compared with that calculated in 15 , for the process j?‘+9ﬁf'
the cross section differs from zero though Dbeing considerably
smaller than that for VAR AS ( 1n 5 the value: Cj,qu—,;ao
has been found).

A more detailed consideration of the behaviour of the
qunoﬁjt amplitude in energy reglons of physical interest
will be dealt with in subsequent papers of the authors.

In conclusion the authors express thelr deep gratitude to
D.I.Blokhintsev for hls interest in work and this to V.lM.Budnev,
S.B.Gerasimov, D.V.Shirkov and V.V.Serebryakov for fruitful

discussions,



The % % interaction Lagrangian in the order 1;7%;

in an arbitrary parametrization has the form

Lpy == (25) G - em G,

where C}, 123 ’ (;/ = ‘ég respectively for the Gursey and
Welnberp parametrizations. The change (Z - 61V little affects
the Tinal results. We have preferred here the Gursey parametriza—
tion asthls one 1s connected naturally with the geometry of
curved isospace of Goldstone fields ( the choice'of plon coordina-—
tes alonp geodesics). There also exists a parametrization —
indevendent definition of the mass term of chiral Lagrangian
based on the use of the linear realization of chiral symmetry 19,
The obtained within thils approach coefficient C in (A.1.1)
coincides with (?“,_

Note also that independently of the group considerations
there exist the physical arguments in favour of bounds
on possible values of the constant (.

Assuming that the % %  scattering phases independent of
the pion mass at energles ~ 7% ’[g:‘ [jujdo not alter their
signs up to the threshold energy values ( the smoothness hypothe-
s1s), we get the following constraints on the scattering lengths:

a

[\

V4 const (3-5c¢)=zo0,

-4

L
(cong?. = ggf;ﬁ)

a,- = —cerdl 20 €0 [ cons? >0)

This results in the possible values for the constant

O=( =7

Finally, we write down the amplitude (5) for an arbitrary

constant .

A

Y
=ze%d, o, LRl
Tid =2 g -5 gl g 57/0

e TR Y L //f ”)I e /3”’/7 7))
3 1/7‘

102, S g L2C = T Tm] g
5o e f 17" UT 5 [Z,_/ﬂ/mzjﬁ 19:92) .

APPENDIX IT

MY o<
The amplitude /”, in the order ¢ /4;2 contalns only

one gauge-invariant combination

M= A = /jﬂ‘/{% 71 ) (A.IT.1)

This results in that the defined in this order electric and

magnetic pion polarizabllities are the same in magnitude and

opposite in sign.

2



Indeed, if the amplitude can be written in the fomm

M= a0 (58) + 805 5), (A.11.2)

’ -
where ¢, - the photon energy , & =10, § ]

- > g T4 tit will
@ﬂ@ﬂ:_@@) fg/ =[§.X%‘], then the quantity &
determine the electric pion polarizability, the quantity 5 -

the magnetic one 16 .

Now let us reduce both ( A.IT.1) and (A.II.2) to one and
the same form and express 4 and é’ through C . Formula

(A.II.1) can easily be written as follows

M =C{~w (1 00eBNEE0) - (57057 F
On the other hand, using the well-known relation
[ard Il &A7:0= (487, %) (7,5 13.5),
formula (A.II.2) can be written as

M= (a 44?62095%}“%‘°5’/5;é;) - 51/2;5%)/2zf;a)'

Comparing (A.II.3) and (A.II.4), we get

(A.T1.3)

(A.11.4 )
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