ОБЪЕАИНЕННЫЙ ИНСТИТУТ
 ЯAEPHЫX
 ИССАЕАОВАНИЙ

АУБHA
$\mathrm{H}-40$
E2 - 8089

$$
9 / 411-54
$$

M.Havlíček, P.Exner

ON THE MINIMAL
CANONICAL REALIZATIONS
OF THE LIE ALGEBRA $O_{c}{ }^{(n)}$

1974
ЛАБОРАТОРИЯ TEOPETVYECHOŬ

E2 - 8089

M.Havlíček, P.Exner*

ON THE MINIMAL
CANONICAL REALIZATIONS
OF THE LIE ALGEBRA $\boldsymbol{o}_{\mathrm{c}}$ (n)

Submitted to Ann. de l'Inst. H.Poincare (A)

[^0]


```
GHE THOTEKA
```


Summary

For the complexification of the Lie algebra of the orthogonal group in n-dimensional space it is shown that its canonical realization by means of polynomials in N pairs of canonical variables does not exist if $N<n-3$. As canonical realization by means of $N=n-2$ pairs exist, the problem of minimal canonical realization for $O_{C}(n)$ is, in the general case, reduced to two possibilities only. For $n<7$ this problem is solved completely. It is further shown that, with some exceptions, the Casimir operators in canonical realization by means of $n-2$ pairs of canonical variables are realized as multiples of the identity element and that among them there is only one independent. If partioularly canonical realization by means of n-3 pairs exists then the values of all Casimir operators are even fixed by n.

I. Introduotion

In theoretical physics we often meet the Lie algebras realized through funotions of pairs of canonical variables p_{i}, q_{i} or Bose creation and annihilation operators,respectively. Generally speaking, such a situation arises if we combine the assumtion that observables are functions of a certain number of canonioal pairs with the assumption that some of them form

Iie algebra. In this way such canonical realizations of algebras enter in the group theoretioal approaoh to nonrelativistio quantum mechanios based,e.g., on the spectrum generating algebras.

In a wide class of problems the realizations oen help in their solution or simplification at least. If we have,e.g., to determine matrix elements or eigenvalues of a differential operator, the solution is considerably simplified when this operator can be either embedded in realization of some Lie algebra or it is one of its Casimir operators [1, 2]. Another field where canonical realizations are used is the oonstruction of equations invariant with respect te a given Lie algebra [3].

The canonical realizations of Lie algebras are useful also for the theory of representations. If generators of some Liealgebra G are expressed as functions of pairs μ_{i} and q_{i} then, substituting q_{i} and q_{i} by their representation, we obtain the representation of G. As we deal with functions of partly noncommuting variables we have to make more exact the concept of fination. The first and most simple case is to limit ourselves to the algebra of polynomials in oonsidered number of canonical pairs. The advantage of this limitation lies in the possibility to define the space of these polynomial s (the so-called Weyl algebra) purely algebraloilly and, consequently, to formulate algebraically also the problem of realizations.

It is known that the Weyl algebra as well as the enveloping algebra of any Lie algebra can be algebraically embedded into quotient division ring. It allows one to enlarge the functional space and to realize lie algebras by means of rational functions of canonical varlables without change of the algebraioal approach.

Further extension of the functional space requires the introduction of topology.

The study of the most simple case, $1 . \mathrm{e} .$, the realizations in Weyl algebra, is useful also for. the better understanding of the more oomplicated situations. In this paper we deal with realizations of the complexificated Ife algebra of the orthogonal group in n-dimensional space $O_{\mathbb{C}}(n)$ in the Weyl algebra $W_{2 N}$ (N-number of canonical pairs) We are interested first in the minimal number N which is necessary for the existence of realization (1.e.,isomorphism into $W_{2 N}$) of $O_{C}(n)$. There is the general result of Simont and Zaccaria [4] (see also [5]) aocording to which no semisimple Ile algebra of the rank r can be realized in $X_{2 N}$ if $N<r$. We prove that any realization of $O_{C}(n)$ does not exist even if $N<n-3$ that extends for $x>7$ the above result. Realizations of alm gebras $O_{c}(x)$ in $W_{2(n-1)}$ exist (soe, e.g., $[6]$ and therefore the problem of minimal realization (1.0., realization in $W_{2 N}$ with minimal N) reduces to two oases $N=m-3, m-2$. For $\mu<7$ we can easily decide between these two possibilities. Our explioit construction of the realization of $O_{\mathbb{C}}(6)$ in $W_{2.3}$ has not been, at least to our knowledge, published in the literature. The results above named are contained in theorems 1 and 2 of section 3 , and seotion 3 itself is devoted in essential to their proof.

It was further proved in $[4,5]$ that Casimir operators of semisimple Lie algebra with rank r are always realized in $W_{2 r}$ by means of constant multiple of identity element. In section 4 we extend this result for $O_{C}(x)$ to the realizations in $\mathbb{W}_{2(x, 3)}$ and $W_{2(n-2)}$.

With some exceptions for the lowest dimensional cases ($n=4,5,6$) we prove moreover that realizations of all the Casimir operators in $W_{2(n-2)}$ depend on realization of the quadratic ones and in $W_{2(n-3)}$ their values depend on n only (theorem 3).

In conclusion we discuss and reformulate the results obtained for real forms of $O_{C}(n)$. We introduce the involution on $W_{2 N}$ and define the skew-symmetric realization of real Lie algebra. As a speoial result we obtain here the existence of skew-symmetrio realizations of $O(3,2)$ and $O(3,3)$ Ife algebras in W_{4} and W_{6} respectively. Though the skew-symmetric realizations were defined mainly with respect to the representation theory; we do not discuss here these aspeots. All considerations in this paper are purely algebraical.

2. Prellminaries

A. Let $H_{2 N}$ denote the (2N+1)-dimensional Heiseberg Ife algebra over field of oomplex numbers \mathbb{C}, 1.e., the Lie algebra with generators $\quad \bar{\mu}_{i}, \bar{q}_{i}$, where

$$
\left[\bar{f}_{i}, \bar{q}_{j}\right]=c \delta_{i j},\left[c, \bar{q}_{i}\right]=\left[c, \bar{q}_{i}\right]=0, i, j=1,2, \ldots, N_{0}
$$ Let further $\mathcal{E}\left(H_{2 N}\right)$ denote the enveloping algebra of $H_{2 N}([7]$ p. 173) and let $\{c-\mathbb{1}\} \subset \mathcal{C}\left(H_{2 N}\right)$ be two-sided 1deal generated by the element $C-\mathbb{1}$. The quasienveloping algebra of $H_{2 N}$, 1.e., faotordgebra

$$
W_{2 N}=\varepsilon\left(H_{2 N}\right) /\{c-1\}
$$

1s oalled Weyl algebra. Equivalence classes $p_{i}, q_{i} ; \mu_{i} \exists \bar{\mu}_{i}$ $q_{i} \ni \bar{q}_{i}$ generate $W_{2 N}$ and fulfill relations

$$
\left[q_{i}, q_{j}\right]=1 \cdot \delta_{i j}
$$

The consequence of the Poincare-B1rkhopf-Witt theorem ($[7]$ p. 178) is that monomials

$$
q^{k} \cdot p^{e} \equiv q_{1}^{k} \cdot q_{N}^{t_{N}} \cdot p_{1}^{e_{1}} \cdot p_{N}^{e_{N}}
$$

form the basis of $W_{2 N}$, 1.e., that every element $W \in W_{2 N}$ oan be uniquely written in the form

$$
W=\sum_{k, l} a_{k e} q^{k} \cdot p^{e}
$$

($a_{k l} \equiv a_{k_{1} \ldots e_{k} e_{1} \ldots e_{N} \in \mathbb{C} \quad \text {). Similarly, as } E\left(H_{2 N}\right), ~(1)}$
is the ring without nonzero dividers of zero ([7] p. 186), the same is valid for $W_{2 N}, 1 . e .$,

$$
\begin{equation*}
W_{1}, W_{2} \in W_{2 N}, W_{1} \cdot W_{2}=0 \Rightarrow W_{1}=0 \quad \text { or } \quad W_{2}=0 \tag{2}
\end{equation*}
$$

holds.
B. The canonical realization τ of the complex (or real) Lie algebra G we shall call on 1somorphism mapping of into $W_{2 N}:$:

$$
\tau: G \rightarrow W_{2 N}
$$

The oanonical realization of G in $W_{2 N}$ is minimal iff that in $W_{2(N-1)}$ does not exist.
The realization

$$
\tau: G \rightarrow W_{2 N}
$$

1nduces naturally the homomorph1sm

$$
\tau^{\prime}: \mathcal{E}(G) \rightarrow W_{2 N}
$$

for algebras $O_{c}(2 n+1)$ and, adding
In accordance with the mentioned Poinoare-Birkhopf-Witt theorem every element $g \in \mathcal{(} G)$ can' be written in the form

$$
g=\sum_{a, b, \cdots, c} \alpha_{a b . . c} g_{1}^{a} \cdot g_{2}^{2} \cdots g_{n}^{c}
$$

$\left(\alpha_{a b \ldots c} \in \mathbb{C} ; g_{1}, g_{2}, \ldots, g_{n}\right.$ are equivalence classes containing generators of G). The homomorphism q^{\prime} is then defined by relation

$$
\tau^{\prime}(g) \equiv \sum_{a, b, \ldots c} \alpha_{a b \ldots c} \tau\left(g_{1}\right)^{a} \tau\left(g_{2}\right)^{b} \ldots \tau\left(g_{n}\right)^{c}
$$

(In what follows, the homomorphism τ^{\prime} will be denoted by τ). C. The symbol $O_{c}(n)(n>2)$ denotes the comlexification of the Lie algebra of orthogonal group in the n-dimensional Euclidean space. If $L_{\mu_{\nu}}=-L_{\nu \mu}, \quad \mu, \nu=1,2, \ldots n$ denotes $\mu_{1} \cdot n(n-1)$ elements of basis of $O_{\mathbb{C}}(n)$ then

$$
\begin{equation*}
\left[L_{\mu \nu}, L_{\rho \tau}\right]=\delta_{\nu \rho} L_{\mu \tau}-\delta_{\mu \rho} L_{\nu \tau}+\delta_{\nu \tau} L_{\rho \mu}-\delta_{\mu \tau} L_{\rho \nu} \tag{3}
\end{equation*}
$$

$\rho, \tau=1,2,3 \ldots, n$. Algebra $O_{C}(x)$ is simple (except for the case $n=4$), its rank is $r=\left[\frac{n}{2}\right]$ and in the Carton classification

$$
O_{c}(2 n+1) \simeq B_{n}, \quad O_{c}(2 n) \simeq D_{n}
$$

The number of the generating Casimir operators of $O_{C}(x)$ equals $\left[\frac{\pi}{2}\right]$. All these Casimir operators can be ohosen among Casimir operators

$$
I_{2 k}=L_{\mu_{1} \mu_{2}} L_{\mu_{2} \mu_{3}} \ldots L_{\mu_{2 k} \mu_{1}} \quad, \quad k=1,2, \ldots
$$

$$
I_{n}^{\prime}=\varepsilon_{\mu_{1} \nu_{1} \mu_{2} \nu_{2}} \cdots \mu_{n} \nu_{n} L_{\mu_{1} \nu_{1}} L_{\mu_{2} \nu_{2}} \cdots L_{\mu_{n} \nu_{n}}
$$

also for algebras $O_{c}(2 n)$. (Here $\varepsilon_{\mu}, \ldots \nu_{m} \quad$ is completely antisymmetric Levi-Civita tensor in. $2 n$ indices and we use the summation oonvetion).

It is important in our further considerations that there exists the following basis of $O_{C}(n)$

$$
\begin{equation*}
L_{i j}, P_{k}=L_{k n}+i L_{k n-1}, Q_{k}=L_{k n}-i L_{k n-1}, R=i L_{n-1 n} \tag{6}
\end{equation*}
$$

i,jik $=1,2, \ldots, n-2 \quad x$) in which commutation relations (3) have the form:

$$
\begin{gather*}
{\left[L_{i j}, L_{k e}\right]=\delta_{j k} L_{i e}-\delta_{i k} L_{j e}+\delta_{j k} L_{k i}-\delta_{i c} L_{k j},} \tag{7}\\
{\left[L_{i j}, P_{k}\right]=\delta_{k j} P_{i}-\delta_{k i} P_{j},\left[L_{i j}, Q_{k}\right]=\delta_{k j} Q_{i}-\delta_{k i} Q_{j},} \tag{8}\\
{\left[L_{i j}, R\right]=0,\left[R_{i} P_{k}\right]=P_{k},\left[R, Q_{k}\right]=-Q_{k},} \tag{9}\\
{\left[P_{i}, P_{j}\right]=\left[Q_{i}, Q_{j}\right]=0,} \tag{10}\\
{\left[P_{i}, Q_{j}\right]=-2\left(L_{i j}+\delta_{i j} R\right)} \tag{11}
\end{gather*}
$$

X) Satin indices will run always from 1 to no.

Note, that generators $P_{1}, \ldots, \mathcal{P}_{n-2}$ and Q_{1}, \ldots, Q_{n-2}
form the bases of ($n-2$)-dimensional Abelian subalgebras of $O_{c}(n)$.
For $m-2 \geqslant 3$ we define quadratic elements of enveloping algebra $\mathcal{E}\left[O_{c}(n)\right]$

$$
\begin{equation*}
W_{i_{1}} . i_{i-5} \equiv \frac{1}{2} \varepsilon_{i_{1}} \ldots i_{i-5} i_{j} L_{i j} P_{k} \tag{12}
\end{equation*}
$$

which commute with all P_{i}

$$
\begin{equation*}
\left[W_{i}, \ldots i_{m-5}, P_{i}\right]=0 \tag{13}
\end{equation*}
$$

These elements transform under $O_{c}(n-2)$ generators $L_{i j}$
as totally antisymmetric tensor and the number of its independent components equals $\binom{n-2}{3}$. Similarly we can define the quantity with the same properties with the help of generators Q_{i}.

It is clear that in definition of basis (6) the preference of the indices pair ($n-1, n$) is not essential and that they can be substituted by any other pair.
3. The minimal canonical realization of $O_{c}(n)$.

Let us pay attention now to the problem of minimal canonical realization of $O_{c}(n)$. First we shall prove two stmple lemmas.

Lemma_ Let
i τ be any canonical realization of $O_{c}(n)$ with basis (6), $11 \mu \in \mathcal{E}\left[O_{C}(n)\right]$ be an element, which can be written
in the form

$$
p=\sum_{a=0}^{A}\left(\alpha_{a} P_{1}+\beta_{a}\right) p_{2}^{a}
$$

$\alpha_{a}, \beta_{a} \in \mathcal{E}\left[O_{c}(x)\right],\left[\alpha_{a}, L_{12}\right]=\left[\beta_{a}, L_{12}\right]=0$,
$111 \quad q(\mu)=0$.

$$
\text { Then } \quad \tau\left(\alpha_{a}\right)=\tau\left(\beta_{a}\right)=0, \Omega=0, \ldots, 1
$$

Proof proceeds by contradiction. Let us assume i-iii and the existence of integer $A_{1} \leqslant A$ such that

$$
\tau\left(\alpha_{A}\right)=\tau\left(\beta_{A}\right)=\ldots=\tau\left(\alpha_{A_{1}+1}\right)=\tau\left(\beta_{A_{1}+1}\right)=0
$$

and

$$
\tau\left(\alpha_{A_{1}}\right) \neq 0 \quad \text { or } \quad \tau\left(\beta_{A_{1}}\right) \neq 0
$$

therefore

$$
\tau(p)=\sum_{a=0}^{A_{1}}\left[\tau\left(\alpha_{a}\right) \cdot \tau\left(p_{1}\right)+\tau\left(\beta_{a}\right)\right] \cdot \tau\left(p_{2}\right)^{a}
$$

We introduce new "variables"

$$
\begin{aligned}
& X=\frac{1}{2}\left(P_{2}+i P_{1}\right), \Leftrightarrow \\
& Y=\frac{1}{2}\left(P_{2}-i P_{1}\right), \Leftrightarrow P_{2}=X+Y \\
& P_{1}=-i(X-Y)
\end{aligned}
$$

In which $\tau(\mu)$ has the form:

$$
\tau(\eta)=\sum_{a=0}^{A_{1}}\left\{-i \tau\left(\alpha_{a}\right)[\tau(x)-\tau(y)]+\tau\left(\beta_{a}\right)\right\} \cdot \sum_{b=0}^{a}\binom{a}{b} \tau(x)^{a-b} \tau(y)^{b}
$$

Further we factorize the polynomial $\tau(\mu)$ into the sum of polynomials $\tau\left(p_{c}\right)_{A_{1}+1}$

$$
\tau(\mu)=\sum_{c=-A_{c}-1}^{A_{1}+1} \tau\left(\mu_{c}\right)
$$

where

$$
\tau\left(\mu_{c}\right)=\sum_{\substack{a, b \\ a-b=c}} \tau\left(\gamma_{a b}\right) \tau(x)^{a} \tau(Y)^{b}
$$

The system has the nonzero determinant, and therefore

$$
\begin{equation*}
\tau\left(\not \alpha_{A_{1}+1}\right)=\ldots=\tau\left(\alpha_{-A_{1}-1}\right)=0 \tag{17}
\end{equation*}
$$

holds.
Substituting $q\left(\alpha_{A_{1}+1}\right)$ from eq. (.24) and using eq. (2) we obtain

$$
q\left(\alpha_{A_{1}}\right)=0
$$

because the second possibility,

$$
\tau(x)^{A_{1}+1}=0 \Rightarrow \tau(x)=0,
$$

contradiots the isomorphism of τ.

$$
\text { If } A_{1}=O \text { eqs. (15) and (17) give further } \tau\left(\beta_{0}\right)=0
$$

what is the contradiction desired.

$$
\begin{aligned}
& \text { If } A_{1} \neq 0, \text { then eqs. (15)-(16), } \\
& {\left[-i \tau\left(\alpha_{A_{1}-1}\right)+q\left(\beta_{A_{1}}\right)\right] \cdot \tau(X)^{A_{1}}=0,} \\
& {\left[i q\left(\alpha_{A_{1}-1}\right)+q\left(\beta_{A_{1}}\right)\right] \cdot \tau(y)^{A_{1}}=0}
\end{aligned}
$$

friply, as above, the equations

$$
\begin{gathered}
-i \tau\left(\alpha_{A_{1}-1}\right)+\tau\left(\beta_{A_{1}}\right)=0 \\
i \tau\left(\alpha_{A_{1}-1}\right)+\tau\left(\beta_{A_{1}}\right)=0
\end{gathered}
$$

from which, immediately, $\quad q\left(\beta_{A_{1}}\right)=0$. The proof is finished. Lemma 2: Let
$1 \quad q$ be ang canoniogl realization of $O_{C}(n)$ with basis (6).
ii $p \in \mathcal{E}\left[O_{\mathbb{C}}(\%)\right]$ an element, which can be written in the forti

$$
\begin{aligned}
& \mu=\sum_{a_{2}, \ldots, a_{n-2}} \beta_{a_{2}, \ldots a_{n-2}} \cdot P_{2}^{a_{2}} \ldots p_{n-2}^{a_{n-1}}, \\
& \beta_{a_{2} \ldots a_{n-2}} \in \mathcal{E}\left[O_{c}(n)\right],\left[\beta_{a_{2}, \ldots a_{n-1}}, L_{i j}\right]=0, \\
& \text { i11 } \quad \tau(\eta)=0 . \\
& \text { Then } \\
& \quad \tau\left(\beta_{a_{2}} \ldots a_{n-2}\right)=0 \text { for all } a_{i}, i=2,3, \ldots, n-2 .
\end{aligned}
$$

Proof.: For p, considered as a polynomial in "variables" P_{1}, P_{2} all the assumpticns of lemma 1 are fulfilled. As for the coefficients α_{a}, β_{a} we now have relations

$$
\alpha_{a}=0, \beta_{a_{2}}=\sum_{a_{3} \cdot a_{n-2}} \beta_{a_{1} . . a_{n-2}} P_{3}^{a_{3}} \ldots P_{m-2}^{a_{n-2}},
$$

lemma 1 asserts that

$$
\tau\left(\beta_{a_{2}}\right)=0 \text { for all } a_{2}
$$

Considering $\beta_{a_{2}}$ as a polynomial in "variables" P_{1}, P_{3} we can again apply lemma 1 , etc.

The following lemma 3 is the important assertion proved in [5]; it is formulated in the form suitable for our further use.
Lemane 3: Let
$1 \quad P_{1}, \ldots, P_{N+1}$ be the basis of the complex ($N+1$)-dimensional Abelian Lie Algebra G,
i1 τ be a cancnical realization G in $W_{2 N}^{\prime}$
$111 \quad \tau\left(\mathcal{P}_{\mu}\right) \neq \alpha_{\mu} \mathbb{1}, \alpha_{\mu} \in \mathbb{C}, k=1,2, \ldots, N+1$. Then there exists an element μ :

$$
0 \neq \mu=\sum_{a_{1} \ldots a_{N+1}} \alpha_{a_{1}, a_{N+1}} \cdot \mathcal{P}_{1}^{a_{1}} \ldots \mathcal{P}_{N+1}^{a_{N+1}} \in \mathcal{E}(G), \alpha_{a_{r}, a_{N+1} \in C}
$$

such that $\tau(\mu)=0$.
Now we are in a position to prove the first our assertion oonoerning the canonioal realizations of $O_{C}(n)$.
Theorem_1: If $N<m-3$ then any oanonical realization of $O_{C}(x)$ in $W_{2 N}$ does not exist.
Proof: Lasume, on the contrary, that τ is some canonical realization $O_{c}(n)$ in $W_{2 N}, N<m-3$ and consider the comatative subaigebra of $O_{C}(x)$ with basis $P_{2}, \ldots, P_{N+2}{ }^{\lambda}$. The oanonical realization of none of these generators can be multiple of identity: if, sey, $\tau\left(\mathcal{P}_{2}\right)=\alpha \cdot 1$, then eq. (8) readily leads to $\tau\left(P_{i}\right)=0$.

Aocording to lemma 3 there exists an element μ :

$$
\begin{aligned}
& 0 \neq \mu=\sum_{a_{2} . . a_{N+2}} \alpha_{a_{2} . . a_{N+2}} \cdot P_{2}^{a_{2}} \ldots P_{N+2}^{a_{N+2}} \in \mathcal{E}\left[O_{Q}(n)\right] \\
& \alpha_{a_{2} . . a_{N+2}} \in \mathbb{C} \quad \text { suoh that } \quad \tau(\eta)=0 . \text { Lemma 2, however, }
\end{aligned}
$$

asserts that then

$$
\tau\left(\beta_{a_{2} . . a_{N+2}}\right) \equiv \tau\left(\alpha_{a_{1} \ldots a_{N+2}} \cdot 1\right)-\alpha_{a_{2} . . a_{N+2}} \tau(1)=0
$$

What further implies that all $a_{a_{2}, a_{N+2}}=0$ and this contradiots $\quad \mu \neq 0$.
x) Hote that index $N+2<m-1$, i.e., the set $\left\{P_{2}, \ldots, P_{N+2}\right\} \subset$ $C\left\{P_{1}, \ldots, P_{m-2}\right\}$. always.

It is known (see, e.g. [6]) that canonical realization of $O_{C}(n)$ in $W_{2(n-2)}$ exists. Therefore the consequence of theorem is that for minimal canonical realization of $O_{C}(n)$ in $W_{2 N}$ only two possibilities remain open either $N=n-3$ or $N=n-2$.

For $n<7$ we are able to decide even between these two possibilities and solve the problem of minimal canonical realization therefore oompletely.
Theorem 2: The minimal canonical realization of

i	$0_{\mathbb{C}}(3)$	is in	W_{2},
ii	$0_{\mathbb{C}}(4)$	is in	W_{4},
iii	$0_{\mathbb{C}}(5)$	is in	W_{4},
iv	$0_{\mathbb{C}}(6)$	is in	W_{6}.

Proof: 1. As the possibility $N=n-3$ arises for $O_{\mathbb{C}}(n)$ only with $m>3$ the assertion is right.

1i. The consequence of the results contained in [4] (see also [5]) is the nonexistence of canonical realization of any semisimple Lie algebra with rank r in $\mathbb{W}_{2(r-1)}$
As rank of $O_{C}(4)$ is 2 , it cannot be realized in W_{2}.
iii. By the direot verification one can show that the following expressions form the canonioal realization of $O_{c}(5)$ in W_{4} :

$$
\begin{gathered}
\tau\left(L_{12}\right)=\frac{i}{2}\left(q_{1} p_{1}-q_{2} p_{2}\right), \tau\left(L_{13}\right)=\frac{i}{2}\left(q_{2} q_{1}+q_{1} p_{2}\right), \\
\tau\left(L_{23}\right)=-\frac{1}{2}\left(q_{2} \mu_{1}-q_{1} \mu_{2}\right), \\
\tau\left(P_{1}\right)=\frac{1}{2}\left(q_{1}^{2}+q_{2}^{2}\right), \tau\left(p_{2}\right)=-\frac{i}{2}\left(q_{1}^{2}-q_{2}^{2}\right), \tau\left(p_{3}\right)=-i q_{1} q_{2}, \\
\left.\tau\left(Q_{1}\right)=\frac{1}{2}\left(\eta_{1}^{2}+\mu_{2}^{2}\right), \tau\left(Q_{2}\right)=\frac{i}{2}\left(p_{1}^{2}-\mu_{2}^{2}\right), \tau\left(Q_{3}\right)=i \mu_{1} p_{2}\right)
\end{gathered}
$$

$$
\tau(R)=\frac{1}{2}\left(q_{1} q_{1}+q_{2} q_{2}+1\right)
$$

We see that all generators are realized through quadratic elements of W_{4}. It is generally proved [B] that all quadratic elements of $W_{2 N}$ form the Lie subalgebre isomorphio to Sfcc $(2 N)$. Our realization is the simple consequence of the isomorphism $O_{C}(5) \simeq C_{2}\left(\simeq S \mu_{C}(4)\right)$.
iv. Again by direot verification:

$$
\begin{aligned}
& q\left(L_{12}\right)=i\left(Q-q_{3} q_{3}-\alpha\right)_{1} \tau\left(L_{13}\right)=\frac{i}{2}\left(q_{1} Q+q_{1}+q_{3} p_{2}+q_{2} q_{3}\right), \\
& q\left(L_{23}\right)=\frac{1}{2}\left(-q_{1} Q+q_{1}-q_{3} \mu_{2}+q_{2} \mu_{3}\right)_{1} \tau\left(L_{34}\right)=i\left(Q-q_{2} \mu_{2}-\alpha\right)_{1} \\
& q\left(L_{14}\right)=-\frac{1}{2}\left(q_{1} Q-\mu_{1}-q_{3} \mu_{2}+q_{2} \mu_{3}\right), q\left(L_{24}\right)=-\frac{i}{2}\left(q_{1} Q+q_{1}-q_{3} \mu_{2}-q_{2} \mu_{3}\right)_{1} \\
& \tau\left(p_{1}\right)=q_{1} q_{3}+q_{2} \quad, \quad \tau\left(p_{2}\right)=i\left(q_{1} q_{3}-q_{2}\right), \\
& q\left(p_{3}\right)=-i\left(q_{1} q_{2}+q_{3}\right), \tau\left(p_{4}\right)=q_{1} q_{2}-q_{3}, \\
& \tau\left(Q_{1}\right)=\mu_{1} \mu_{3}+(1+Q) \mu_{2}, \tau\left(Q_{2}\right)=-i\left[\mu_{1} \mu_{3}-(1+Q) \mu_{2}\right]_{i} \\
& \tau\left(Q_{3}\right)=i\left[\mu_{1} \mu_{2}+(1+Q) \mu_{3}\right], \tau\left(Q_{4}\right)=\mu_{1} \mu_{2}-(1+Q) \mu_{3} / \\
& \tau(R)=q_{2} \mu_{2}+q_{3} \eta_{3}+1+\alpha
\end{aligned}
$$

where

$$
Q=-q_{1} z_{1}+q_{2} q_{2}+q_{3} \mu_{3}+2 \alpha, \alpha \in \mathbb{C}
$$

As $O_{C}(6) \simeq A_{3}\left(\simeq S U_{C}(4)\right)$ and the rank of $O_{c}(6)$ equals $n-3=3$, we prove at the same time the existence of raalization of the algebra A_{3} by means of three pairs of
canonical variables. In [4] the existence of realization of the Lie algebra A_{n} in quotient division ring in n canonical pairs is proved. $A_{S} W_{G}$ is properly embedded in its quotient division ring the stronger result for A_{3} was obtained here.

4. Casimir operators

For the proof of the main result of this section we need two lemmas. The first of them is the slight generalization of lemma 2 . Iemma_4: Let
$1 \quad q$ be any canonical realization of $O_{C}(n)$ with basis (6),
$11 \quad 0 \neq \mu \in \mathcal{E}\left[O_{\mathbb{C}}(n)\right]$ be an element, which can be written in the form

$$
\begin{aligned}
& \eta=\sum_{a, a_{n-2}} \beta_{a, \ldots a_{n-2}} \cdot P_{1}^{a_{1}} \cdots P_{m-2}^{a_{n-2}}, \\
& \beta_{a_{1}, . . a_{n-2}} \in \mathcal{E}\left[O_{C}(n)\right],\left[\beta_{a_{1}, . a_{n-2}}, L_{i j}\right]=C
\end{aligned}
$$

$$
111 \quad \tau(\eta)=0
$$

Then there exists $O \neq \mu^{\prime} \in E\left[O_{C}(x)\right]$ of the form

$$
\chi^{\prime}=\sum_{a} \beta_{a}\left(p_{1}^{2}+\cdots+p_{n-2}^{2}\right)^{a}
$$

where coefficients β_{a} belong to linear envelope of the set of the coefficients $\beta_{a_{1} . a_{m-2}}$, so that

$$
\tau\left(q^{\prime}\right)=0 .
$$

Proof: First we write the given polynomial p in the following form:
$\mu=\sum_{a_{1} a_{2} \cdot a_{n-2}}\left(\beta_{2 b, a_{2} \cdot \cdot a_{n-2}}+\beta_{2 b_{1}+1 a_{2} \cdot a_{n-2}} \cdot P_{1}\right) \mathcal{P}_{1}^{2 a_{1}} \mathcal{P}_{2}^{a_{2}} \cdot \mathcal{P}_{2-2}^{a_{n-2}}$.
Denoting $P_{1}^{2}+P_{2}^{2}+\cdots+P_{n-2}^{2} \equiv P^{2}$ we can proceed as follows:
$\mu=\sum_{t_{1} a_{2} \cdot a_{n-2}}\left(\beta_{2 b_{1} a_{2} \cdot \cdot a_{n-2}}+\beta_{2 b_{1}+1 a_{2} . . a_{n-2}} P_{1}\right)\left[P_{-}^{2}\left(P_{2}^{2}+\cdots+P_{n-2}^{2}\right)\right]^{b_{1}} P_{2}^{a_{2}} P_{n-2}^{a_{n-2}}=$
$=\sum_{b_{1} a_{1} \cdot a_{n-1}}\left(\beta_{2 b, a_{2} \cdot a_{n-2}}+\beta_{2 b_{1}+1 a_{2} \cdot a_{n-2}} \cdot P_{1}\right) \sum_{c_{1}}\binom{b_{j}}{c_{1}}\left(P^{2}\right)^{b_{1}+c_{1}} \cdot\left(P_{2}^{2}+\cdots+P_{m-2}^{2}\right)_{1}^{c_{1}} P_{2}^{a_{2}} \cdots P_{A-2}^{a_{n-2}}$

We see that it is possible to write p in the form

$$
\eta=\sum_{a_{1} \cdot \cdot a_{m-2}}\left(f_{a_{1} \cdot a_{m-2}}+\delta_{a_{1} \cdot \cdot a_{m-2}} \cdot P_{1}\right)\left(\mathcal{P}^{2}\right)^{a_{1}} \cdot P_{2}^{a_{2}} \cdot P_{m-2}^{a_{n-2}}
$$

where ooefficients γ^{β}.. and $\delta \ldots$ are linear combinations (even with integer constants) of the coefficients $\beta \ldots$. As $\not \approx \neq O$, at least one of polynomials

$$
\sum_{a_{1}} \gamma_{a, a_{2} \cdot a_{n-2}}^{1}\left(\mathcal{P}^{2}\right)^{a_{1}}, \sum_{a_{1}} \delta_{a_{1} a_{2} \cdot a_{n-2}}\left(\mathcal{P}^{2}\right)^{a}
$$

1s nonzero. Because P^{2} oommutes with all L_{y} we can apply lemma 2 asserting that the realization of all these polynomials is zero and proof is completed.

The following lemma gives two suffioient conditions for mutual dependenoe of the casimir operators of $O_{C}(\pi)$ algebra in the realization τ. We use the following notation:

$$
X_{(\mu \nu} Y_{\rho) \tau} \equiv X_{\mu \nu} Y_{\rho \tau}+X_{\nu \rho} Y_{\mu \tau}+X_{\rho \mu} Y_{\nu \tau}
$$

Lemma 5: Let τ be a canonical realization of $O_{\mathbb{C}}(n), n \geqslant 3$
A. If

$$
\begin{equation*}
\varepsilon\left[L_{(\mu \nu} L_{\rho) \tau}\right]=\tau\left(\delta_{\tau(\mu} L_{\nu \rho)}\right) \tag{18}
\end{equation*}
$$

then $\tau\left(I_{k}\right), k \geqslant 3$, is a polynbmial function of $\tau\left(I_{2}\right)$
(and $\tau\left(I_{m}^{\prime}\right)=0$ for even $n=2 m$) independent of τ.
B. If

$$
\begin{equation*}
\tau\left(L_{\mu \rho} L_{\rho \nu}+L_{\nu \rho} L_{\rho \mu}\right)=0, \mu \neq \nu \tag{19}
\end{equation*}
$$

then $\tau\left(I_{k}\right), k \geqslant 3$, and $\tau\left(I_{m}^{\prime}\right)^{2}$ (for even $m=2 m$) are polynomial functions of $\tau\left(I_{2}\right)$ independent of τ. C. If eqs. (18) and (19) hold then,moreover,

$$
\tau\left(I_{2}\right)=-\frac{m(m-4)}{2} \mathbb{1} .
$$

Proof:_

The trace $T_{\mu(}^{(k)}$ coinoides with the Casimir operator I_{k} and we define

$$
I_{0}=T_{c_{c}^{\mu}}^{(0)}=n, \quad I_{1}=T_{c_{\mu}}^{(\prime \prime)}=L_{\mu \mu}=0 .
$$

Further, for $k \geqslant 3$, we can write

$$
I_{k}=L_{\varepsilon \nu} L_{\nu \rho} L_{\rho \tau} T_{\tau \mu}^{(k-3)}
$$

and, using commutation relations (3),

$$
I_{k}=L_{\nu \rho} L_{\mu \nu} L_{\rho \tau} T_{\tau \mu}^{(k-3)}+(n-2) I_{k-1}
$$

Now we shall use for $\tau\left(I_{k}\right) \quad$ relation (18) and relations (3) again, through whioh we obtain:

$$
\tau\left(I_{k}\right)=-\tau\left(I_{k}\right)+2(n-1) \tau\left(I_{k-1}\right)+\left[\tau\left(I_{2}\right)-2(n-2)\right] \tau\left(I_{k-2}\right)-\tau\left(I_{2}\right) \tau\left(I_{k-3}\right) .
$$

So we come to recurrent relation

$$
\tau\left(I_{k}\right)=(n-1) \tau\left(I_{k-1}\right)+\left[\frac{1}{2} \tau\left(I_{2}\right)-n+2\right] \tau\left(I_{k-1}\right)-\frac{1}{2} \tau\left(I_{2}\right) \cdot \tau\left(I_{k-3}\right)
$$

from which first assertion of part A easily follows.
The proof of the second one $\left(\tau\left(I_{m}^{\prime}\right)=0\right.$ for $\left.O_{c}(2 m)\right)$ is almost trivial; it is sufficient to substitute from (18) into definition of $\tau\left(I_{m}^{\prime}\right)($ eq. (5)).
B. Using commutation relations (3) and abbreviation $T_{\mu \nu}^{(2)}$
we oan rewrite eq. (19) in the form:

$$
\begin{equation*}
\tau\left(T_{\mu \nu}^{(2)}\right)=\frac{x-2}{2} \tau\left(L_{\mu \nu}\right), \quad \mu \neq \nu \tag{20}
\end{equation*}
$$

From commutation relations of $\tau\left(L_{\mu \nu}\right)$ with $\tau\left(\tau_{\mu \nu}^{(2)}\right)$ we obtain:

$$
\tau\left(T_{11}^{(2)}\right)=\tau\left(T_{z 2}^{(2)}\right)=\cdots=\tau\left(T_{m \mu}^{(2)}\right)
$$

which implies

$$
\begin{equation*}
\frac{1}{n} \tau\left(I_{2}\right) \equiv \frac{1}{n} \tau\left(T_{\mu \mu}^{(2)}\right)=\tau\left(T_{11}^{(2)}\right)=\cdots=\tau\left(T_{n \pi}^{(2)}\right) \tag{21}
\end{equation*}
$$

Relations (20) and (21) can be written commonly

$$
\tau\left(T_{L^{\nu}}^{(2)}\right)=\frac{1}{n} \tau\left(I_{2}\right) \delta_{C \nu}+\frac{n-2}{2} \tau\left(L_{C \nu}\right)
$$

As $\quad I_{k} \equiv \mathcal{T}_{\alpha^{\mu}}^{(k)}=T_{\mu \rho}^{(k-2)} T_{\rho \mu}^{(z)} \quad$ we oome to the recurrent relation

$$
\tau\left(I_{k}\right)=\frac{1}{n} \tau\left(I_{2}\right) \tau\left(I_{k-2}\right)+\frac{n-2}{2} \tau\left(I_{k-1}\right)
$$

The polynomial dependence of $\tau\left(I_{k}\right)$ on $\tau\left(I_{2}\right)$ is now the evident consequence.

For the proof of dependence of $\tau\left(I_{m}^{\prime}\right)^{2}$ on $\tau\left(I_{L}\right)$ in the case of $O_{\mathbb{C}}(2 \mathrm{~m})$ algebra, we need some information concerning the centre $\mathcal{Z} \subset \mathcal{E}\left[O_{C}(2 m)\right]$.(see, e.g., [9b p.565). It is known that $I_{2 k}, k=1,2, \ldots, m-1$ and I_{m}^{\prime} are the generating elements for \mathcal{Z}. It especially means thet $I_{2 m}$ is a polynomial of these generators of \mathcal{Z}. As $I_{2 k}, I_{m}^{\prime}$ are polynomials in "variables" $L_{\mu \nu}$ and for their highest degrees the relations

$$
\operatorname{deg} I_{2 k}=2 k, \quad \operatorname{deg} I_{m}^{\prime}=m
$$

are valid, then

$$
\begin{equation*}
I_{2 m}=\alpha \cdot I_{m}^{\prime 2}+I_{m}^{\prime} \beta\left(I_{2}, \ldots, I_{2(m-1)}\right)+\gamma\left(I_{2}, \ldots, I_{2(m-4)}\right) \tag{22}
\end{equation*}
$$

where

$$
\operatorname{deg} \beta\left(I_{2}, \ldots, I_{2(m-1)}\right) \leq m, \operatorname{deg} \gamma^{1}\left(I_{2}, \ldots, I_{2(m-1)}\right) \leq 2 m
$$

The polynomial β equals zero. This follows from the following considerations. The mapping $\quad \rho: O_{C}(2 m) \rightarrow O_{C}(2 m)$ defined by the relations

$$
\rho\left(L_{\mu}\right)=-L_{\nu \mu}, \rho\left(L_{c_{\nu}}\right)=L_{\mu \nu}, c^{\mu, \nu \neq 1}
$$

is the automorphism of $O_{c}(2 m)$ (and induces naturally the automorphism of $\mathcal{E}\left[O_{C}(2 m)\right]$ denoted by the same symbol ρ). We see that

$$
\rho\left(I_{2 k}\right)=I_{2 k} \quad \text { and } \quad \rho\left(I_{m}^{\prime}\right)=I_{m}^{\prime}
$$

Applying ρ to equation (22) we obtain

$$
I_{2 m}=\alpha I_{m}^{\prime 2}-I_{m}^{\prime} \cdot \beta\left(I_{2}, \ldots, I_{2(m-1)}\right)+\gamma^{\prime}\left(I_{2}, \ldots, I_{2(m-1)}\right)
$$

from which and eq. (22) the desired result immediately follows.
As $I_{2 m}$ does not depend on the $I_{2}, \ldots, I_{2(m-1)}$ only, the cons tant $\alpha \neq 0$.

The dependence of $\tau\left(I_{m}^{\prime}\right)^{2}$ on $\tau\left(I_{2}\right)$ is obtained immediately combining eq. (22) with the preoeding result.
C. If eqs. (18) and (19) hold together, we are able to calculate value of $\tau\left(I_{2}\right)$. These equations, imply

$$
\begin{align*}
& \tau\left(L_{n-1 n}\right) \tau\left(L_{i j}\right)+\tau\left(L_{n i}\right) \tau\left(L_{n-1 j}\right)+\tau\left(L_{i n-1}\right) \tau\left(L_{n j}\right)=\delta_{i j} \tau\left(L_{n-1}\right),(18) \\
& \tau\left(L_{i j}\right) \tau\left(L_{j n-1}\right)=\tau\left(L_{n-1}\right) \tau\left(L_{i n}\right)+\frac{n-4}{2} \tau\left(L_{i n-1}\right), \tag{19}\\
& \tau\left(L_{i j}\right) \tau\left(L_{j n}\right)=-\tau\left(L_{n-1 k}\right) \tau\left(L_{i n-1}\right)+\frac{n-4}{2} \tau\left(L_{i n}\right), \\
& \tau\left(L_{m-i}\right) \tau\left(L_{i n}\right)=-\tau\left(L_{n i}\right) \tau\left(L_{i n-1}\right)=\frac{n-2}{2} \tau\left(L_{n-1 n}\right) .
\end{align*}
$$

Multiplying the second and the third equation by $\tau\left(L_{n-1 n}\right)$ (from the left) substituting $\tau\left(L_{m-1 n}\right) \tau\left(L_{i j}\right)$ from the first equation and using eqs. (19") and (3), we obtain:

$$
\begin{aligned}
& \tau\left(L_{i n}\right)\left[\tau\left(L_{n-1 j}\right) \tau\left(L_{j n-1}\right)-\tau\left(L_{n-1 n}^{2}\right)+\frac{n-4}{2} \mathbb{1}\right]=0 \\
& \tau\left(L_{i n-1}\right)\left[\tau\left(L_{n j}\right) \tau\left(L_{j n}\right)-\tau\left(L_{n-1 n}^{2}\right)+\frac{n-4}{2} \mathbb{1}\right]=0
\end{aligned}
$$

As $\tau\left(L_{i n}\right) \neq 0$ and $\tau\left(L_{\text {in- }}\right) \neq 0$, these equations give (see implication (2)):

$$
\tau\left(L_{n-1} L_{j n-1}+L_{g} L_{j n}\right)=2 \tau\left(L_{n-1 n}^{2}\right)-(n-4) 1 .
$$

It is the part of invariant $\tau\left(I_{2}\right)$. The other part we obtain from eq. (28^{\prime}) by its left multiplication by $\tau\left(L_{i g}\right)$ using eqs. (19') $-\left(19^{\prime \prime}\right)$ and (3)

$$
\tau\left(L_{n-1 n}\right)\left[\tau\left(L_{i j} L_{j i}\right)+\tau\left(L_{n-1 i} L_{i n-1}+L_{n i} L_{i n}\right)+\frac{(n-2)(n-4)}{2} n\right]=0
$$

from which

$$
\tau\left(L_{i j} L_{j i}\right)=-\tau\left(L_{n-i i} L_{i n-1}+L_{n i} L_{i n}\right)-\frac{(m-2)(n-4)}{2} \mathbb{1}
$$

Substituting it into the formula

$$
\tau\left(I_{2}\right)=-2 \tau\left(L_{m-1 n}^{2}\right)+2 \tau\left(L_{n i} L_{i n}+L_{n-1 i} L_{i n-1}\right)+\tau\left(L_{i j} L_{j i}\right)
$$

the desired result is obtained.
Note: We show that eq. (18) is implied for $n \geqslant 5$ by relation $\tau\left(L_{(2,} P_{k}\right)=0, \quad i \neq j \neq k \neq i$ and eq. (19) is implied by relation $\tau\left(P^{2}\right) \equiv \tau\left(P_{1}^{2}+\cdots+P_{m-2}^{2}\right)=0$.

By means of introduced tensor $T_{\mu \nu}^{(2)}$ the equation $\mathcal{q}\left(p^{2}\right)=0$ can be rewritten in the from (see eq. (6)):

$$
\tau\left(T_{m+n}^{(2)}+T_{n-1}^{(2)}\right)=i \tau\left(T_{n n}^{(2)}-T_{n-1 n-1}^{(2)}\right)
$$

Introducing the new tensor

$$
T_{\mu \nu \rho, \tau}=L_{(\mu \nu} L_{\rho) \tau}
$$

the seoond relation, $\tau\left(L_{(i j} P_{k}\right)=\mathbb{C}, \quad$ looks as follows:

$$
\tau\left(T_{i j k, n}+i T_{i j k, m-1}\right)=0, \quad i \neq j \neq k \neq i
$$

Commuting now the first equation with $\tau\left(L_{j n-1}\right)$ and the result with $\tau\left(L_{k n}\right), k \neq j$, and the second one with $\tau\left(L_{i n-1}\right)$ we obtain:

$$
\begin{aligned}
& \tau\left(T_{k j}^{(2)}+T_{j k}^{(2)}\right)=0, \\
& \tau\left(T_{n-1 j \ell, n}\right)=0, j \neq k
\end{aligned}
$$

With respect to tensor charaoter of $T_{k j}^{(2)}+T_{j k}^{(2)}$ and $T_{n-1 j k, n}$ (commuting with suitable $L_{\mu \nu}{ }^{\prime} S$) we finally obtain:

$$
\begin{gathered}
\tau\left(T_{\mu \nu}^{(2)}+T_{\nu \mu}^{(2)}\right)=\tau\left(L_{\mu \sigma L_{\sigma \nu}}+L_{\nu \sigma} L_{\sigma \mu}\right)=0 \\
\tau\left(T_{\mu \nu \rho, \tau}\right)=\tau\left(L_{(\mu \nu} L_{\rho) \tau}\right)=0
\end{gathered}
$$

where $c^{\mu, \nu, \rho, \tau \quad \text { are mutually different indices from the set }}$ $\{1,2, \ldots n\}$. The latter relation oan be further written in the form

$$
\tau\left(L_{(\mu \nu} L_{\rho) \tau}\right)=\delta_{\tau(\mu} \tau\left(L_{\mu \rho)}\right)
$$

validing already for all $\mu, v, \rho, \tau=1,2, \ldots, n$,
Now we can formulate the main theorem of this section.

Theorem 3. Let τ denote either canonical realization of $O_{c}(n)$ in $W_{2(x-2)}$ when $n \neq 6$ or canonical realization of $O_{6}\left(6 i_{\mathrm{in}} \quad W_{6}\right.$.
Then
1 realization of all the Castmir operators equals constant multiple of identity,

11 for $n \geqslant 6$ realizations $\tau\left(I_{k}\right), k=3,4, \ldots$ and also $\tau\left(I_{m}^{\prime}\right)^{2}$ (for $n=2 m$) polynomially depends on $\tau\left(I_{2}\right)$ in one from two possible ways.
If, especialiy, τ is realization of $O_{e^{(n)}}$ in $W_{\hat{2}(\pi-3)}<W_{2(n-2)}$ and $x \neq 6$, then
$111 \quad \tau\left(I_{2}\right)=-\frac{m(n-4)}{2} 1$.
and $\tau\left(I_{k}\right)$ are independent of $\tau 2$
Proof: For $m=3,4$ the assertion 1 is a part of general result proved in 4] (see also [5]), becouse in these cases the rank of $O_{\mathbb{C}}(n)$ equals to $n-2$.
So we shall asswae $m \geqslant 5$.

1. The proof consists of two parts. The case $n=6$ is excluded and will be proved together with 111.
a) Consider any x from the center \mathcal{Z} of $E\left[O_{\llbracket}(n)\right]$ and $(n-1)$-dimensional Abelian subalgebra of $E\left[O_{c}(n)\right]$ with basis $z, P_{1}, \ldots, P_{m-2}$. If we allow on the contrary to the assumption $1 \tau(z) \neq \alpha \cdot \mathbb{1}$ then, according to lemma 3 , there exists a complex noneero polynomial $\mu \equiv$ $\equiv f\left(z, P_{1}, \ldots, \mathcal{P}_{m-2}\right) \in \mathcal{C}\left[O_{C}(x)\right] \quad$ realized as $\tau(z)=0$.
From the lemma 4 further, the existence on nonzero polynomial

[^1]$$
p^{\prime} \equiv \sum_{a} f_{a}(z)\left(P^{2}\right)^{a} \in \mathcal{E}\left[O_{e}(x)\right]
$$
with $\tau\left(x^{\prime}\right)=0 \quad$ follows, where $\gamma_{a}^{\prime}(x)$ are polynomials in variable \neq. Jsing comutation relations
$$
\left[R,\left(P^{2}\right)^{a}\right]=2 a\left(P^{2}\right)^{a}
$$
by multiple commutation of $\tau(R)$ with $\tau\left(\chi^{\prime}\right)$ we oome, similarly as in the proof of lemma 1 , to the homogeneous system of equations for "unknown" $\tau\left[\gamma_{a}^{\prime}(z)\left(\mathcal{P}^{2}\right)^{a}\right]$ solved by
$$
\tau\left[\gamma_{a}(x)\left(\mathcal{P}^{2}\right)^{a}\right]=0, \quad a=0,1
$$

It implies further either

$$
\tau\left[f_{a}(x)\right]=0, \quad a=1,12, \ldots
$$

or

$$
\tau\left(\mathcal{P}^{2}\right)=0
$$

(and $\tau\left[\gamma_{0}(x)\right]=0$ if $\left.\gamma_{0}^{\prime}(x) \neq 0\right)$. As $\chi^{\prime} \neq 0$, at
least one polynomial $\gamma_{a}(z) \equiv \gamma(z) \neq 0$. Therefore
either $f^{\prime}(x) \equiv \gamma_{0}^{\prime}, O \neq \gamma_{0} \in \mathbb{C}$ and we obtain contradiction
due to $\tau[\gamma(z)]=f_{0} \cdot \tau(1)=0$ or deg $f^{\prime}(x) \geqslant 1$,
1.e., $\gamma^{\prime}(z)$ can be factorized into the product

$$
y^{\prime}(x)=\beta \prod_{b}\left(z-\alpha_{b} 1\right)^{n_{b}}, \beta, \alpha_{b} \in \mathbb{C}
$$

Then, however, $\tau[\gamma(x)]=0$ implies $\tau(z)=\alpha 1$ (see implication (2)) which oontradiots our assumption. So, the second possibility $q\left(P^{2}\right)=0 \quad$ remains only.

However, $\tau\left(\mathcal{P}^{2}\right)=O$ implies eq. (19) so that the assumption $\tau(x) \neq \alpha 1$ implies eq. (19).
b) In further investigations we have to distinguish between two cases: $n=5$ and $n>6$.
Case $O_{\mathbb{C}}(5):$ Let us take four-dimensional Abelian subalgebra of $\mathcal{E}\left[O_{C}(5)\right]$ with basis $x, w_{1} P_{1}, P_{2} \quad$ where $w=\frac{1}{2} \varepsilon_{i j a} L_{i j} P_{k}$ (see eq. (2)) and assume together with $\tau(z) \neq a \mathbb{1}$ also $\tau(u) \neq \beta 1$. Then from lemmas 3 and 1 the existence of nonzero complex polynomial μ,

$$
O \neq \mu \equiv f(x, w) \equiv \sum_{a} \gamma_{a}(z) w^{a} \in \mathcal{E}\left[O_{a}(5)\right]
$$

with zero realization follows, because $\left[w, L_{i j}\right]=0$.
As in the preceeding case, by multiple commutation of $\varepsilon(\mu)$ with $\tau(R)$ we derive the equation

$$
\tau\left[f_{a}(x) w^{a}\right]=0
$$

from which (as by our assumption $\tau(w) \neq 0$)

$$
\tau\left[\gamma_{a}^{\prime}(z)\right]=0 .
$$

As we saw, this possibility leads to oontradiction with the starting assumption $q(z) \neq \alpha 1$ and therefore assumption $\tau(W) \neq \beta 1$ has to be changed,i,e., $\tau(W)=\beta \cdot \mathbb{i}$. Commuting it with $\tau(R)$ we obtain $q(W)=O$ even and we can conclude that assumption $\quad \tau(z) \neq \alpha \mathbb{1}$ implies eq. (18). As also oq. (19) is fulfilled then according to lemma 5 C we have contradiction with $\quad \tau(z) \neq \alpha \mathbb{1}$.
Case_O $U_{C}(x), n \geqslant 7$. Let us int roduce the following three elenents from $\mathcal{E}\left[O_{C}(n)\right]:$

$$
\begin{aligned}
& W_{ \pm}=\left(P_{1} \pm i P_{2}\right) W^{\prime}-\left(P_{3}+i P_{4}\right)\left(W_{(234)} \mp i W_{(134)}\right) \\
& W^{\prime}=W_{(124)}-i W_{(123)}
\end{aligned}
$$

where

$$
\left.w_{(i j k)} \equiv L_{(i j} P_{k}\right) \equiv L_{i j} P_{k}+L_{j k} P_{i}+L_{k i} P_{d}
$$

It is clear that elements $W_{(i j k)}$ differ from $W_{i, \ldots}, \ldots, i_{m}$
(see eq. (12)) at most in sign and therefore they commute with P_{i} (eq. (13)). Mutual commutation relation between $w_{ \pm}$ and W^{\prime} looks as follows:

$$
\left[W_{ \pm}, W^{\prime}\right]=\mp\left(\mathcal{P}_{3}+i P_{4}\right) W_{ \pm}
$$

Let us consider now the $(n-1)$-dimensional Abelian subalgebras with bases $¥, W_{ \pm}, P_{1}, \ldots, P_{m-3}$ and assume $\quad \varepsilon\left(W_{ \pm}\right) \neq \beta_{ \pm} \mathbb{H}$. Again there exists a polynomial \nsim,

$$
0 \neq \mu \equiv \mu\left(z, w_{ \pm}, P_{1}, . ., P_{n-3}\right) \equiv \sum_{a} \gamma_{a}\left(z, P_{1}, \ldots, P_{n-3} w_{ \pm}^{a} \in \varepsilon\left[O_{c}(n)\right]\right.
$$

with $\tau(\mu)=O$. As the commutation relations of W^{\prime} and of the powers W_{f}^{a} have simple form

$$
\left[W_{ \pm}^{a}, W^{\prime}\right]=\mp a\left(P_{3}+i P_{4}\right) W_{ \pm}^{a}
$$

we can commute $\tau(\not \subset)$ with $\tau\left(W^{\prime}\right)$ and we obtain again homogeneous system with nonzero determinant for "unknown" $\tau\left[\mathcal{S}_{a}^{a}\left(z, P_{1}, \ldots, P_{n-3}\right) W_{ \pm}^{a}\right]$. Beoaluse we assume $\tau\left(W_{ \pm}\right) \neq 0$ and $\neq \neq 0$ at least one ooeffioient $f_{a}\left(z, P_{1}, \ldots, \mathcal{P}_{x-3}\right)$ is nongere and $\tau\left[\gamma_{a}\left(z, P_{1}, \ldots, P_{n-3}\right)\right] \equiv \tau\left[\sum_{b_{1}, b_{n-3}} \beta_{a b_{1} \ldots b_{n-3}}(z) \cdot P_{1}^{b_{1}} \cdots P_{n-3}^{b_{n-3}}\right]=0$.
Using now the leama 2 we oome to the conalusion that realization of all ooofficienis $\beta_{a b_{1} \ldots b_{m-3}}$ equals zero. We sam in part
a) that it leads to oontradiotion with the starting assumption $\tau(x) \neq \alpha \mathbb{1} \quad$ and therefore $\tau(z) \neq \alpha \mathbb{1} \quad$ implies $\tau\left(w_{ \pm}\right)=\beta_{x} \mathbb{1}$.
Hy oomuting with $q(R)$ we immediately obtain $\beta_{ \pm}=0$
and from the equation

$$
\frac{1}{2} \tau\left(w_{+}+W_{-}\right)=\tau\left[P_{1}\left(W_{(124)}-i w_{(123)}\right)-\left(\mathcal{P}_{3}+i P_{4}\right) w_{(234)}\right]=0
$$

by further commutation with $\tau\left(L_{/ g}\right)$ we have:

$$
\tau\left(\mathcal{P}_{4} W_{(124)}+\mathcal{P}_{3} W_{(123)}\right)=0
$$

As we assume $n \geqslant 7$ we can repeat our consideration with other ohoice of indioes then $1,2,3,4$, e.g., $1,2,4,5$ and $1,2,3,5$ and we obtain also

$$
\begin{aligned}
& \tau\left(P_{4} W_{(124)}+P_{5} W_{(125)}\right)=0 \\
& \tau\left(P_{5} W_{(125)}^{\prime}+P_{3} W_{(123)}\right)=0
\end{aligned}
$$

from which, e.g., $\quad \tau\left(W_{(123)}\right)=0$. Due to the tensor oharacter of $W_{(i j k)}$ we hove

$$
\tau\left(W_{(i j k)}\right) \equiv \tau\left(L_{(i j} P_{k}\right)=0
$$

for all $i \neq j \neq k \neq i \quad$ what implies eq. (18). We proved that assumption $\tau(\underline{y}) \neq \alpha \cdot \mathbb{1}$ 1mplies together with eq. (19) also eq. (18), which by lemma 5c, oontradiots one another.
11) In this case consider the commutative ($n-1$). -dimensional subalgebras with bases $W_{ \pm}, P_{1}, \ldots, P_{m-2}$. Using lemma 3 and commutation with $\mathcal{L}\left(W^{\prime}\right)$ as in the preceeding case, we come to the nonzero polynomial $\mu \equiv \neq\left(P_{1}, \ldots, P_{n-2}\right)$ With zero realization $\tau(\mu)=0$.
From the part a) of above proof it follows

$$
q\left(\mathcal{P}^{2}\right)=0
$$

Therefore either both $\tau\left(W_{ \pm}\right)=0$, i.e., eq. (18) is valld of $\tau\left(\mathcal{P}^{2}\right)=0$, i.e., eq. (19) holds. Assertion 11 now follows from lemma 5A, B.
111) In realization of $O_{\mathbb{C}}(n)$ in $W_{2(n-3)}$ (inoluding the case $n=6$) we take $(n-2)$-dimensional Abelian subalgebra with basis P_{1}, \ldots, P_{m-2}. Applying lemma 3 and the part a) of the proof of 1 we have
$q\left(P^{2}\right)=O$. From lemma 5B the assertion 11 for $O_{C}(6)$ espeoially follows.

For $m \neq 6$ we can continue and take the other subalgebra with basis $W_{1} P_{1}, P_{2}$ if $n=5$ and $W_{x}, P_{1}, \ldots, P_{n-3}$ if $n>7$. According to the second part of proof of assertion 1 we conolude:

$$
\tau\left(w_{(i j k)}\right)=0
$$

and lemma 5 C can be applied.
It remains only to prove 1 for $O_{c}(6)$. The Abelian subalgebra in this case has the basis $\mathcal{Z}, \mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{3}, \mathcal{Z} \in \mathcal{Z}$ and assumption $\tau(x) \neq \alpha 1$ leads, using lemmas 3 and 2 , to the existence of nonzero polynomial $f^{\prime}(x)$ with zeroness realization. It, however, contradicts $\tau(X) \neq \alpha \mathbb{1}$ 。
The proof of theorem is completed.

5. Concluding remarks

Up to this time we have dealt with realizations of complex Lie algebra $O_{C}(n)$. As we are usually interested rather in the real Lle algebras it would be useful to apply our results to them. Due to close connection between complex Lie algebra G and its real forms the one-to-one correspondence among realizations of G and realization of any real form of G arises. If G_{0} is any real form of G having basis X_{1}, \ldots, X_{n} and τ is a canonical realization of G_{0} then the complex line ar envelope of the elements $\tau\left(x_{1}\right), \ldots, \tau\left(x_{n}\right)$
is realization $\tau_{\mathbb{C}}$ of G. On the contrary, if any $\tau_{\mathbb{C}}$ is given, we choose in G basis X_{1}, \ldots, X_{n} in which structure constants coincide with the structure oonstants of G_{0} and real Inear combinations of $\tau_{c}\left(x_{1}\right), \ldots, \tau_{\ell}\left(x_{n}\right)$ define realization of G_{0}. This consideration shows that all the assertions of theorems 1-3 remain valid in the case of all real forms of $O_{\mathbb{C}}(\pi)$.

As we mentioned in the introduotion, the use of realizations in the representation theory of Lie algebras consists in simple substitution of abstract elements μ_{i} and q_{i} by some representation of them, e.g., by usual Schrödinger representation. In the oase of real Lie algebras we are usually interested in special realizations which leads, in the above way, to the skew-symmetrio representations. To distinguish between such realizations, we have to enrioh our Weyl algebra $W_{2 N}$ by involution. We define inductively antilinear mapping " t " of $W_{2 N}$ onto itself by relations:

$$
\left(p_{i}\right)^{+}=-\mu_{i} ;\left(q_{i}\right)^{+}=q_{i},\left(w_{1} w_{2}\right)^{+}=w_{2}^{+} w_{1}^{+} ; w_{1} w_{2} \in W_{2 N}
$$

Now we can speak, about skew-symmetric elements of $W_{2 N}\left(w^{+}=-w\right)$ which are, after substitution of \hbar_{i} and q_{i} by their Schrödinger representatives, represented by skew-symmetrio operators. The realization of real Lie algebra G through of skew-symmetric elements of $W_{2 N}$ only will be called by skew--symmetrio realization of G. Now it is olear that if G_{0} is some real form of G and $\tau_{\mathbb{C}}$ is a realization of G then ∞ rresponding realization τ of G_{0} need not be skew--symmetric. Therefore the minimal skew-symmetric realization of given real form of $O_{\mathbb{C}}(n)$ needs exist neither in $W_{2(n-3)}$ nor even in $W_{2(n-2)}$ and different real forms of $O_{C}(n)$ can have minimal skew-symmetric realizations in different $W_{2 N}, N \geqslant m-3$. It can be proved that for $O(n)$ (i.e.,for compact real form of $O_{C}(n)$) the skew-symmetrioity of realization oontradicts to
"constant realization" of the Casimir operators ([5]th.4.4). Together with theorem 2 it gives for $n \geqslant 3, n \neq 6$ the first possibility for the mintmal skewnsymetric realization of $O(n)$ is in $W_{2(n-1)} x$ and for $O(6)$ in W_{g}. In the same time the skew-symmetric realization of noncompaot forms $O(n-m, m), 0<m<n$, exist in $W_{2(n-2)}[6]$.

For $n=5,6$ we oan derive further skew-symmetrio realizations of some noncompact form of $O_{a}(n)$ by means of theorem 2 even in W_{4} or W_{6} respeotively. In the mentioned theorem the realization of $O_{\mathbb{C}}(5)$ is suoh that generators $i L_{12}, i L_{13}, L_{23}$, $i P_{1}, P_{2}, P_{3}, i Q_{1}, Q_{2}, Q_{3}$ and R are realized by skew-symmetric elements of W_{4}. As by oommutation of any pair of them we obtain their real linear oombination (see eqs. (7) - (11)) ten generators $i L_{12}, \ldots, \ldots R$ from the basis of some real form of $O_{C}(5)$ which is realized skew-symmetrically. It is not difficult to prove that this real form is just $O(3,2)$.

Similarly we prove that the realization iv contained in theorem 2 is the skew-symmetrio realization of $O(3,3)$ if $\operatorname{Re} \alpha=0$.

All realizations oonsidered until now were either "minimal or the "nearest" to minimal ones. In acoordanoe with theorem 2 this faot has two following consequenoes. Without exeptional oases the first oonsequence is the realization of Casimir operators by multiple of identity and the second one is their dependence on one of them only. (We could oall realizations with the first property as the Sohur realizations and the seoond property as the degeneration of realization). It is natural x) $4 s$ the skem-symetric realization of $0(n, 1)$ in $W_{2(n-1)}$ exists, the "subrealisation" of $O(n) \subset O(n, 1)$ in $W_{2(n-1)}$ is a minimal one.
to expect that enlarging the number N in $W_{2 N}$ new realizations could appear which are not Schur realizations and which are less degenerated. The question here arises whether there exist Schur realizations of $O_{\mathbb{C}}(\pi)$ in which degeneration is partly or fully removed,i.en where a number of the independent Casimir operators is greater than one or even equals to $\left[\frac{n}{2}\right]$. The authors hope to give a positive answer in a subsequent paper.

Acknowledgements:

One of the authors (M.H.) is indebted to prof. A. Whlmann for a critical reading of the manuscript and to dr.A.M.Perelomov for valuable discussions.

Note: When the work was finished the authors met a paper of A.Joseph, Comm.math. Phys. 36, 325 (1974) with some overlap of results (e.g., theorems 1 and 2 are oontained in lemmas 3.1 and 3.2 and, on the other side, our theorem 3 generalizes, as to realization in Weyl algebra, part (5) of theorem 5.1) which were however obtained by a different methods. The assertions of our lemmas can be useful in the solution of the problem of the minimal canonical realization for $O_{C}(x)$ if $n \geqslant 7$.

Referenoes:

[1.] Doebner, H.D.; Pirring, B.: Speotrum-generating algebras and

 oanonical realizations. Preprint IC/72/77.[2.] Miller, W., Jre, On Lie algebras and some speoial funotions of mathematioal physics. MS Mem. No.50, Providenoe 1964.
[3.] Palev, T.D., Huovo Cim., 62, 585 (1969).
[4.] Simoni, A., Zacoaria, F., Huovo Cime, 59, A, 280 (1969).
[5.] Joseph, A., J.Math. Phys., 13, 351 (1972).
[6.] R1chard, J.I., Ann.Inst. H. Poinoare, 8, Sec. A. No. 3, 301, 1968.
[7.] Jaoobson, H.: Lie algebras, Mir, Moskva, 1964 (in Russian).
[8.] Doebner; İ. $亡 .$, Palev, T.D. : On realizations of Lie algebras In faotor spaces. Preprint IC/71/104.
[\sim]Zhelobenko, D.L.:Kompaktnyje gruppy Ii 1 ich predstavientja, Nauka, Moskra, 1970.

Reoeived by Publishing Department on July 11, 1974.

Гавличек М., Экснер П.

E2 - 8089
О минимальных канонических реализациях алгебры Ли $\mathrm{O}_{\mathrm{c}}(\mathrm{n})$
Для комплексификации алгебры Ли ортогональной группы в п-размерном пространстве Евклида показано, что не существует канонической ревлизации с помощью N пар канонических переменных, если $N<n-3$.

Показано далее, что с некоторыми исключениями операторы Казимира в канонической реализации с n-2 парами канонических переменных являются кратными единице и зависят топько от квадратичного оператора Казимира. Если, в частности, канонические реализации с пй пия рами существуют, то значения всех операторов Казимира зависят топьк от n.

Препринт Объединенного института ядерных исследований.
Дубна, 1974

Havlíček M., Exner P.
E2 - 8089

On the Minimal Canonical Realizations
of the Lie Algebra $O_{c}(n)$
See the Summary on the reverse side of the title-page.

Preprint. Joint Institute for Nuclear Research. Dubna, 1974

[^0]: * Department of Theoretical Nuclear Physics, Faculty of Mathematics and Physics, Charles University, Prague.

[^1]: x) This possibility arises for $n \geqslant 5$ only (see Theorem 2).

