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Summary 

For the complexification of the Lie algebra of the 

orthogonal group in n-dimensional space it is shown that its 

canonical realization by means of polynomials in N pairs of 

canonical variables does not exist if N ~n-3. As canonical 

realization by means of N~n-2 pairs exist, the problem of mi

nimal canonical realization for 0/'lt-) is, in the general case, 

reduced to two possibilities only. For n < 7 this problem is 

solved completely. It is further shown that, with some excep

tions, the Casimir operators in canonical realization by means 

of n-2 pairs of canonical variables are realized as multiples 

of the identity element and that among them there is only one 

independent. If particularly canonical realization by means of 

n-J pairs exists then the values of all Casimir operators are 

even fixed by n. I. I~!:.!l!:'!E-21!2!! 

In theoretical physics we often meet the Lie algebras rea-

lized through functions of pairs of canonical variables f;, CJ i 

or Bose creation and annihilation operators,respectively. Gene

rally speaking, such a situation arises if we combine the assum

tion that observables are functions of a certain number of cano

nical pairs with the assumption that some of them form 
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Lie algebra. In this way such canonical realizations of algebras 

enter in the groupfueoretioal approach to nonrelativistio quantum 

mechanics based,e.g. ,on the spectrum generating algebras. 

In a wide class of problems the realizations can help in 

their solution or simplification at least. If we have,e.g.,to 

determine matrix elements or eigenvalues of a differential opera

tor, the solution is considerably simplified when this operator 

can be either embedded in realization of some Lie algebra or it is 

one of its Casimir operators [1, 2]. Another field where cano

nical realizations are used is the construction of equations in

variant with respect te a given Lie algebra [J]. 

The canonical realizations of Lie algebras are useful 

also for the theory of representations. If generators of some 

Lie algebra G; are expressed as functions of pairs f'Z 
and cyi then, substituting fi and 'fi by their representation, 

we obtain the representation of G • As we deal with functions 

of partly noncommuting variables we have to make more exact 

the concept of funntion. The first and most simple case is to 

limit ourselves to the algebra of polynomials in considered 

number of canonical pairs. The advantage of this limitation lies 

in the possibility to define the space of these polynomials 

( the so~alled Weyl algebra) purely algebraio&llr and, conse

quently, to formulate algebraically also the problem of realiza-

tiona. 

It is known that the Weyl algebra as well as the enveloping 

algebra of any Lie algebra can be algebraically embedded into 

quotient division ring. It allows one to enlarge the functional 

space and to realize Lie algebras by means of rational functions 

of canonical variables without change of the algebraioal approach. 
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FUrther extension of the functional space requires the 

introduction of topology. 

The study of the most simple case, i.e.,the realizations in 

Weyl algebra. is useful also for .. the better understanding of the 

more complicated situations, In this paper we deal with reali

zations of the oomplexificated Lie algebra of the orthogonal 

group 1n n-dimensional space 01! (?!-) in the Weyl algebra ~N 

(N-number of canonical pair~ We are interested first in the 

minimal number N which is necessary for the existence of 

realization ( i.e. ,isomorphism into ~N} of qJ1t.) 
There is the general result of Simoni and Zaccaria [4] ( see 

also [ 5] ) according to which no semisimple Lie algebra of the 

rank r can be realized in ~N if N < r • We prove that 

any realization of Oc(1t.) does not exist even if N < l?t-.3 

that extends for IlL'> i- the above result. ReaJ.izations of al

gebras 0c(1t.) in ~(1!.-.1) exist ( see,e.g. 1 [6j)and therefore 

the problem of minimal realization ( i.e.,realization in U'2W 

with minimal. N ) reduces to two oases N = 111-:3, m-2. 

For IlL< 1 we can easily decide between these two possibi-

lities. Our explicit construction of the realization of Oc(G) 

in ~.1 has not been, at least to our knowledge, published. in 

the literature. ~e results above named are cont&ined in theorems 

1 and 2 of section J,and section J itself is devoted in essential 

to their proof. 

It was further proTed in [4, 5] that Casimir operators of 

semisimple Lie algebra with rank r are alweys realized in ur2r 
by means of constant multiple of identity element. In section 4 

we extend this result for (i.t"'.) to the realizations in Jtj(..,·J) 

and ~1,._ 2 ) • 
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With some exceptions for the lowest dimensional cases 

(~=4,5,6) we prove moreover that realizations of all the Casimir 

operators in ~2 (~-t) depend on realization of the quadratic 

ones and in W.u?t-J) their values depend on .41. only (theorem J). 

In conclusion we discuss and reformulate the results 

obtained for real forms of Oc(.n-) • We introduce the involution 

on ~N and define the skew-symmetric realization of real Lie 

algebra. As a special result we obtain here the existence of 

skew-symmetric realizations of 00,2.) and 0(3,3) Lie algeb

ras in ~ and ~ respectively. Though the skew-symmetric 

realizations were defined mainly with respect to the representa

tion theory;we do not discuss here these aspects. All 

considerations in this paper are purely algebraical. 

2. Preliminaries --------
A. Let f-lu; denote the (2Nf1)-dimensional Heiseberg 

Lie algebra over field at. complex numbers C, i.e., the Lie 

algebra with generators fi 1 ~i , where 

{fi,71 ]::: ccfi;, [c,f, ]=-{cJji]=-O,ij='d-r·IN. 
Let further e ( H2.N) denote the enveloping algebra of H2,.. (Ct] 

p.l7J) and let fc-11.}cE,(H2,.)be two-sided ideal generated 

by the element c. -JL • The quasienveloping algebra of 112N 

i.e.,factoralgebra 

UiN = E ( H2.N) lr c- 1 I 

th 3 Cji generate Wp.~ 
and fulfill ft 1 Cf• i fz 3f-. 

relations t 

is called Weyl algebra. Equivalence classes 
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[ft I Cfj ] := 1 J:J · 
The consequence of the Poincare-Birkhopf...Wi tt theorem ( L 7-] 

P• 178) is that monomials 

*- i' 1., tt.v e, e.v 
1 't =: j't .. 1# , ft ' . fN 

form the basis of ~N , i.e., that every element 

can be uniquely written in the form 

> c4: e 
w = L- a,~ 1 . f 

~.t 

WE ~N 

( a~e "= a,, ... L,.. t1 ... e.., E: r!' ) • Similarly, as E { H2N) 
is the ring without nonzero dividers of zero ( l 7], P• 186), 

the same is valid for ~N ,i.e., 

W. ~ E W l-1%
1 

· IIY.2 =:: 0 ~ W1 ~ 0 or 1¥2. = 0 
t • 2 J.N 1 

holds. 

B. The canonical realization ~ of the complex ( or 

real) Lie algebra G we shall call on isomorphism mapping of 

~0~~ 

'l:: 4 ~ ~AI 

The canonical realization of G in ~N is minimal iff 

that in W2 (Af- 4} does not exist. 

The realization 

t': G ~ W2N 

induces naturally the homomorphism 

t' 
1 

· C ( br) -+ ~N 

7 
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In accordance with the mentioned Poincare-Birkhopf-Witt theorem 

every element d €C(4') can'be written in the fom 

~ a- £ c 

ff = L- Ct. at,,.(;. 71 'j2· . '' J,., 
a 1 b

1 
•• 

1
c 

C Qctl> .. c £ tC ; j 11 l)z; "· 1 gr/11.- are equivalence classes 

containing generators of q ) • The homomorphism 'L' is then 

defined by relation 

) ~ ct h c 
7: (ff-) =L- cta/J ... c f:r:,). t"(jz.) ... 'LCj,._) 

a 1 b; .. , c 

( In what follows, the homomorphism t'1 will be denoted by 7: ) • 

c. The symbol ~(1t.} ( 1/t. >2) denotes the oomlexifioation of 

the Lie algebra of orthogpnal group in the n-dimensional Euclidean 

space. If Le,=-Lv('- , ~1 1)= 1,2, ••• ndenotes &·iK(«-1) 

elements of basis of C1t ( 1t.) then 

l Le-v / L r: ] = c!;f Le--e - f.r L Y'C + cf;z: Let - c{:t' Lfll (J) 

p,?: ·:.1,2,J ••• , nr.. • Algebra Oc {111) is simple ( except for 

the case ;n.. = 4), its rank is I""' jf} and in the Cartan 

classification 

0 (2-1L+ 4) ~ B/11.. c oc (2~~z-) ~ 1J,_ . 

The number of the genere.ting Casimir operators of OC {'11.} 

equals [ 1} . All these Casimir operators can be chosen 

among Casimir operators 

I - L L 
.2*. - tt.l. (!'j_f.3 L 

(;lA(:'-t I 
~=1,2, ... 

for algebras Oc (2'11.+ 1) and, adding 

I~= &(:',v•fLv._ "t-,.v,. Le,"• L(2Y,_ ". LC",.v.,._ 

also for algebras ~ (21/t.) • (Here c(:', .. >',.,_ is completely 

antisymmetric Levi-Civita tensor in,2n indices and we use the 

summation convetion). 

It is important in our further considerations that there 

exists the following basis of 0£ ('ll-) 

Ly I ~ = L, ... -t- £ (..,_, I Q, = L,.._- iL.,.,_~ I ~= t."L .... , ...... 

i,;; ~ = 1, 2, ... , -n.- 2.. x) in which commutation relations (J) 

have the form: 

{ i.y,Lu ]~ ~~ L;t -~ Lje -rtfieLt., -J:e L,_i, 

{ L~- 1 ~ ] ==' {,· 'fi - c( ~- I { Lj/1 Q, J = {;· Qt - {.. 9;· 

{Lj 1 R]=-0 1 [1?Ji]=P~ 1 ['R,Q,._]=-Q~, 

[pi 1 r; ] = [ Qi 1 Qi ] :: 0 I 

[pt. I Qj] :=- 2 Uy + Jij R.). 

YJ Lattin indices 1till run always from 1 to n-2. 
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Note, that generators ~ I '' · I 7;, -2.. and Q., 1 .. ·1 Q..,_L 

fo:rm the bases of (t>t-2.).-dimensional Abelian subalgebras of Oc (?t.). 

For /It- 2 ~ 3 we define quadratic elements of enveloping 

algebra C [ Oc (?L)] 

il%- . =.!...E. •, . . .z,._~- 2. •t . i.,_s v~ L:; Ji 
which commute with all p. 

l 

[ w . p. ]= 0. ,, ... • .,..;· I t 

(12) 

(lJ) 

These elements transfo:rm under 4 (lt-2) generators L ij 

as totally antisymmetric tensor and the number of its independent 

( 111-2.) . components equals .:3 • Similarly we can define the 

quantity with ~he same properties with the help of generators Q~. 

It is clear that in definition of basis (6) the preference 

of the indices pair ("'--11 ...,) is not essential and that they can be 

substituted by any other pair. 

J. The minimal canonical realization of Oc (.n.). 

--------------------------------------------------
Let us pay attention now to the problem of minimal 

canonical realization of Oc ('It) • First we shall prove two 

.simple lemmas. 

~~!:.Let 

i '!:' be any canonical realization of 0c(1l.) with basis (6), 

11 f E: E. roc (-?I..) ] be an element' which can be written 

in the fo:rm A 

t = fa ( ota ~ ~ fJ.._ ) ~ a. 

CX.a. 1 ,l3a. E C [0c(41.-)] 
1 

[£¥a. 1 L.,£. } = { ~a. 1 L,2 ]== 0 1 
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iii 'L(f') = 0 . 

Then 't (IX"- ) i: ( !3a.- ) = 0 J a ~ 0 1 • 
1 

..f • 

Proof proceeds by contradiction. Let us assume i-iii and the 

existence of integer .4,"' A such that 

'i(.X") == '7:((3A)::: == 'L ( OG4 .- I ) = 'l (_A A ;. 1 ) = 0 
1 ' 

and 

r ( ocA, ) =f=. 0 or r (,A A, ) ::/= 0 
therefore 

A, 

't' (" ) = z_ r f:' (ex, a- ' r: ( P., ) f 1:' (!3a. ) r t' c ;;. ) ~ 
1 a. ::a 

We introduce new "variables" 

X 

y 

f(Ji1i1~) 

±(~-i~J 
~ > 

in which '1:' (J-) has the fo:rm: 

~~ X+-Y 

P. = -i (X- Y) 
1 I 

A, a. 

'T:(f) = [._ {-i'C'(rxa.J{ r(X)- r(O)~- 'L(A._J}-L (':;) nx/:\·cy/ 
a=O b-=o 

FUrther we factorize the polynomial 

polynomials 'l ( J'c) 
1 
A,+1 

't: (f ) "" L 'r(fc ) I 
<=-A,-1 

where 

~(j') into the sum of 

'L(fc 1 = L 'L(f~6 ) 't:(.X.)"" .. c(Y/'. 
a,b 

a.-b=c 
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The coefficients r(fa~>) are suitable linear combinations of 

tt'(~) and 'C'((J;,) • We shall write explicitly some of these 

polynomials: 

( . A,.,. 1. 
'L fA1t1) :=.-tr(rxA,)·'t'(X) (11f) 

A ...1-tJ. rr , 

'C ( t A1 ) { 

[-it'(IXA
1
-1) r 't(;1A,)].'L(X/', 

~ (1~) 

r:(AJ , A .. =-'
0 i 

'f (fA, ) 
{ 

{ ir ( tXA,-1) + <r (j3A) ]. r:( V) A11 A1f0 i 

::; (16) 

<r{f3u) 1 .41==0. 

From commutation relations 

[L,:z. I xa]=-t.·axa..) [L~~. ,Ya]=+ia ya.. 

it follows that 

[ 'C' ( L,z}, 't' (fc)] =- -t· C.'( (fc ) • 

By means of multiple oolllli'lutation of 'Lrt') with f: ( L,1 ) we obtain 

the homogeneous system of equations for unknown 'r" (fc) : 

'L(f) = ~ 'L(/'c) = 0 1 

[ 'C(Lfi.) 1 't'(j)] ==-if C 'l:~c)"" 0 I 

------~---

[ 't(L,L), . . / [ T:(L,;.)' 'l:fJ"J] . . J =-i ? c-<1 'f:'rt'c) =&, 

4-ti/muJ - - ---- - -· ~ 

The system has the n6nzero determinant, and therefore 

CC'(f<A+t)= ,,. :=:: "C(I-'-1)=0 
I 4 "1 · 

(17) 

holds. 

Substituting '?: (j 4,T 1
) from eq. (14) and using e~t• (2) we obtain 

'( (etA, ) ~ 0 

because the second possibility, 

A1 t-1 
~(X) ::::::0 5> rc(X)=0 1 

contradicts the isomorphism of '['. 

If A
1 

= 0 eqa. (15) and (17) give further 

what is the contradiction desired • 

If A 1 =/= 0 , then eqs. (15 )-(16), 

[ . 7 ~ 
. - t '<( CXA,-1) f 't'( j3A) J' 'r(X) = 0 I 

[ ]
. A 

t' '( ( IX A, -1 ) -t- 'l.- ( j3 A, ) . '[: ( V) '= 0 

~ply, as above, the equations 

- i '( ( IXA_-1 ) + 'L ( f3A
1 

) = 0 1 

i r (IX,_,) + 'L ( 4A ) = 0 
,.,, 8 1>-J· 1 

'L{j3a} = 0 

from which, immediately, 

~IJ!!!ll!: 2: Let 

Cf:' (j3A
1

) = o. The proof is fini.shed • 

1 q:- be ar.y ca:aon:taal realization of 4 (tll) with basis ( 6). 

ii fEE [/Jif'(n.~7oa an element, which can be written 

in the fo:ro, 

l 12 13 

·---------------



f = L__ ..6'a .. ,,, ..,.,._~ 
a2, .. -,a_,__l. 

a.1 a .... :J. p ... p 
z ..,_._ I 

;1.2• ... a_.._ .. E E [ Oc (/Jl.}} 1 [ f3az'" a,._£ 
1 

L!J } = 01 

iii f: r,;.) "" 0. 

Then 

'i{j3a._ ... ~ .. -:z. )=0 for aU ai/ t':=2.1 3r- ;-"'-2-

~22!~ For p, considered as a polynomial in •variables• ~~~ 

all the assumptions of lemma 1 are fulfilled. As for the 

coefficients ~ A we now have relations 
4tf~~ 

~a= 0 ) .4a~ = L /Ja"- .. a.,._.z. 
a.J .. "--1<-2 

lemma 1 asserts that 

a3 ct"~-:L 
~ -..P. 
~ /If-~ I 

'L (f3a) = 0 for all a2.. • 

Considering ;Ja,._ as a polynomial in "variables• 

we oan again apply lemma 1, etc. 
pf I ~ 

The following lemma J is the important assertion proved 

in [5]; it is fol'lllulated in the form suitable for our further 

use. 

Lemma J: Let 

i 

ii 

iii 

~ 1 •.• 1 PN_, 1 be the basis of the complex (Nt-1)-dimen

sional Abelian Lie Algebra G, 

'l" be a canonical realization G in ~tv' 

<c('ljt)=l= ~:11, ~Ert I .,t=1,2.1"•; Nr-1. 
Then there exists an element t 

14 

~ :::;:- a, a-w, 1 ) o," = £__ cxa.,. a.,,,·~ .. r;,., € CtG I a: .. ,. a.,.,/'- c 
1- c::a.1· • 4 N+t 

such that 'l:CJ')""O. 
Now we are in a position to prove the first our assertion 

concerning the canonical realizations of Ocr~). 

~!W:!!!!..ll If N< 111-.3 then any canonical realization of 

~N does not exist. 4('11-) in 

ZI!!.Il~!. Assume, on the contrary, that q: is some canonical 

realization Oc(lfl-} <iz u;_N N < At -.3 and consider 

the commutative subalgebra of 
A) 

0,. (-?t.) with basis ~ 1 , .. , '!-,2. 

The canonical realization of none of these generators can be 

multiple of identity: if, say, -c (~ ) = o<.-1 

readily leads to ~(1'i)= O. 

, then eq. (8) 

According to lemma J there exists an element f ~ 

~ -y- <t,a <t.v,.z. c [ ] 
0--,-11--=£__CX 0 a ·'i ... ~2.. EC... Oc("'t) 

,- aJ.;• a..N.,.L £ •• N;..z. -1 

CX a. , . a ~ t! such that 
,. Jl+% 

't"fJ')=O. Lemma 2, however, 

asserts that then 

£' r;a .... U..v~~ ) ;:: ~ ( <Xa1 ,. a.N,L' 1.)- <X a_. 

what further impliBs that all 

this contradicts f 1= 0. 

--------

O::.a "" 0 ~" aN•2. 

x) Bote that index 

C { 1'1 1 ' " I ~-L } 

N+ 2 < AZ-1. , i.e., the set 

alwqs. 
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It is known ( see,e.g. ,[6]) that canonical realization of 

Ol.(n) in Ill; l>t _ 2 ) exists. The ref ore the consequence of theorem 

is that for minimal canonical realization of li- (n) in Uf;N 
only two possibilities remain open either N= 111.-3 or IV= /Jt-2. • 

For .m. < 7 we are able to decide even between these two 

possibilities and solve the problem of minimal canonical 

realization therefore completely. 

~22r~~ The miniaal canonical realization of 

i 0 a; (J) is in Wz.l 
ii 0 rL (4) is in ~I 
iii 0 q; ( 5) is in a;;, 
iv 0 I[ (6) is in t~. 

Proof: i. As the possibility N = m-3 arises for oil:(,.,~.-) 

only with /J1. > 3 the assertion is right. 

ii. The consequence of the results contained in [4] 
(see also [ 5 ]) is the nonexistence of canonical realization of 

any semisimple Lie algebra with rank r in Wz(r .• 
1
J • 

As rank of Ot(4) is 2, it cannot be realized in ~. 

iii. By the direct verification one can show that the 

following expressions form the canonical realization of O, (5) 

in ~ : 

i: ( L 12 ) = f ( 'ft f 1 - % ft. ) 1 r ( L 13 ) = ± ( r; .. f 1 T CJ.-1 h ) 1 

1: ( L23) =- ± ( tz ft - 'f, h) I 

'L(~)=-f(Cf:+c;~) 1 r(J;_)'='-±('f~-cJ';_); 'L(T;)=-ic;,tj2/ 

r(Qt) = 1 (f~ r f~) I 'C(Q2)= t (f~ -r:.)/ r(QJ)== zjf~~l 
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r( R) = f ( c;, fo1 + Cf 2 ffl + 1 ) · 

We see that all generators are realized through quadratic 

elements of ~ • It is generally proved [8] that a.ll quadratic 

elements of ~N form the Lie suba.lgebra isomorphic to rc{2N). 

Our realization is the simple consequence of the isomorphism 

Oc (5) ~ c2. ( ~ -v-c (If)). 
iv. Again by direct verification: 

'i( Ltz) = i ( Q- <f3f 3-JJ, 'i( L~:; }-:: i ( CJ'tQ + f1 -r ct:,f2 + lf:z.fJ 1 

'i(L 23 ):: f(-CftQ+}t-'fJ/2. +-tj;.fJt r:(LJII)= i (q-1ifL-J.,), 

'L ( Lflt) ==- f ( 't1Q-f1- 1'4'·2 +rzfJ, r( L21f )== -1(CJ-1Q+f1-95tz -'l~f.;)t 

c ( P, ) == 'ftCf; + 1'2. ; r ( 1i ) =: i ( 11 Cf3 - Cf:z. ) 1 

'L ( p3) =- i ( Cf'1lf;_ + 'J3) I 'L (P,) = 'ft1z - 'f_3 I 

'r(Q1) = f•fJ + ( 1fQJjvz I f:(Q:J.) =- i [ f•f3- ( 1 +Q )f:~. Ji 
-r;{QJ) = i {f<fJ. + (1+Q)f3] I 'C(Q¥}-= ftf2.- (1+Q)f3 I 

'l: ('R) = 7'zf.t. t- c!Jf!J r- .f 1- c{ 

where 

Q =--'J'-tft -r "f~/2. + '!JfJ +.2(){. I 

As Oc (6) ~ A3 ( ~ Jl{ (It)) and the rank of 

(){.(c. 

Oc (£} 

equals n:-3 = .3 , we prove at the same time the existence 

of realizatiea of the algebra A .3 b;r means of three pairs of 
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canonical variables. In [4 -J the existence of realization of the 

Lie algebra A,.,. in quotient division ring in /?'!.. canonical 

pairs is proved. As ~ is properly embedded in its 

quotient division ring the stronger result for Aa was obtained 

here. 

!t~~:hr....211.~~ 

For the proof of the main result of this section we need two 

lemmas. The first of them is the slight generalization of lemma 2. 

~emm!_i: Let 

i 't be any canonical realization of 0c(11..} with basis 

(6), 

ii 

iii 

0 f= f E C { Oc (-?/..) ] be an element, which can be 

written in the form 

f = L /3a, -a,..:z. 
a1 ""~-.2. 

p_ a, 

' 

!3a., .. a,._~ t C { Oc (-?t)] 

'iCf'J = 0. 

-p « H·L 

M-Z 
/ 

{ ~ L - ]= 0 f./a.,-- a_.,._
2 1 fj / 

1'hen there exists 0 =/= t' t C [ Oc (1!.)] of the form 

t' = ;; f3a ( p: + ... ~ T:.~:z. ) ; 

where coefficients ;3"' belong to linear envelope of the set 

of the coefficients /3af .. 
'{'(/) == 0. 

, so that 
Gt.IJl-.2. 

II 

J 
l 

~ 

' 

!~l First we write the given polynomial 

form: 
f in the following 

L_ ( ) .lb, ":z. 
== -r"3 -P ?. p. f Ab,a~ ""'-_, . .._ I :l~,•fa:z. --a .... :z. f 1 2. 1>1 a~ .. a.,_-" 

a_.,. . .z.. 

~-.l 

Denoting .. 2. 2. 

f>f f- p2 t- ' • ' + ;;,._ L - ?2. we can proceed as follows: 

~ , b 
.fz, - / ( A )if :z. .2. 2 ) l a~ a.,..z 1 - k-- F.zb a .• q -r /.3_ ~ L 7'- (?, + · tP _ ) t;_ . . 'P = 

btaz··a4f-.L 1 
2 -"1-2. .2b1rta.z, .. a~-:1. /1t z -1r·L 

') (A ) ( b ) _ 6,-c1( 4 ,_ )'" a._ 
= L__ 1"'2b1 a2 ·-~_, _ _,_ + ;82h,•fa_._ -a,._

2
·;; f, c: (P'} - ~ -;- .. ,..~.2 -~ · 

b1 a, .. ~ .. -£ 1 

we see that it is possible to write p in the form 

1,. = L {{"a. a -f' J J; ){P"')"'.' p""'-. / - 0 1 4-2 a1 . aM-2. 2. 
a1 .~ ct...,._L 

p""!-:Z. 
A-Z 

p""H·2. 
,. .. 

where coefficients ~- and J.. are linear combina-

tiona (even with integer constants) of the coefficients j3 "· . 
As f f 0 , at least one of polynomials 

L tJa,a
2 

.. a,._-'- (P:z.}a'l ~ J;;,a
2

• a.,__.t. (P:z.)a' 
a1 0' ~ 

is nonzero. Because -pz. commutes with all L,y we can apply 

lemma 2 asserting that the realization of all these polynomials 

is zero and proof is completed. 

The following lemma gives two sufficient conditions for 

mutual dependence of the Casimir operators of Oc(?t) algebra 

in the realization ~ • We use the following notation: 

Xt('v ~Jr == X(' ... Yfc- -r X,_,f ~r- -r Xf!' Y~r-
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Lemma 5: Let 't" 

A. If 

be a canonical realization of Oa: (11-) 1 11!. ~ .3 

'i { Lc(v LfJt' ] = r { ~t LvfJ ) 

then 

~d 

r ( Ik ) 
1 

k. :., 3 1 is a polyrumial function of 7: ( I 2 ) 

I( ( r;.) = 0 for even /1l = .,?,.z.) independent of 'L. 

B. If 

'L ( L(f Lf., + LJ.If Lf("- )=: 0 I ('- f J.) 

then 'L( I.t )
1 

£ ~ 31 and z-( r:.._ f ( for even 11t ""2""-) 

are polynomial functions of 'L( !
2

) im ependent of 'l. 

c. If eqs. (18) and (19) hold then, moreover, 

r(~)=- m(a;,-trJJ_. 

!~- A. Let us introduce the abbreviation T ri.J 
t" 

-k ~ 0 I 

r (1.-) { 

t" = 

J( 
Ltv ~ ~ 1 1 

L<:t· Lt:'c"" ... L('•-,"' ' ·*::;. 2 • 

The trace T r*-1 
~c 

coincides with the Casimir operator 

and we define 

I = T I<>)= /IL 
a c( 

'') L I~ = ~( = (C = 0. 

Further, for .-.f ~ .J , we can write 

("-Jj 

IJ. = L(" L.,f Lfr T( 
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I~ 

(18) 

(19) 

and, using commutation relations (J), 

I L L ·- a.;; I 
1- = "'f f" Lf-r: /'(':' +- ("'-·2} ,,_,. 

Now we shall use for r (I* ) relation (18) and relations 

(J) again, through which we obtain: 

't (I~)=- r( Ik) -t .2 (?r.-1)r(!~_ 1 ) + [r(I2 )- 2(n-2} }r:ri~.2 )- <(z.2.) r(I~_3 ). 

So we come to recurrent relation 

r: (I,.): ( m-1) r (I,._, j t- { f -r (I.:)- m.,.. 2} r-( I~-.1. ) - z r U
2

) r: (I""-' ) 

from which first assertion of part A easily follows. 

The proof of the second one ( r( r;._) = 0 for Oc (2m)) 

is almost trivial; it is sufficient to substitute from (18) 

into definition of 1: (I:.._ ) ( e7 ( 5)). 

B. Using commutation relations (J) and abbreviation 

we oan rewrite eq. (19) in the form: 

( T '
21

) = !Jt-2. r (L ) 
'L ~v 2 ~Y / (:-fv. 

From commutation relations of r ( ~" ) with r ( T ~;} ) 

~(T 01 ).- 1:( T''1)- (Tr.z;) 
G 1f - 2Z - • '' = Z: tn,- I 
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T r .. ; 
,.u.v 

(20) 

we obtain: 



which implies 

;; T (I
2 

) := /;_ 'L( T ;t ) ~ 'L ( T
1
:;.') ~ ,. = r ( T,., ~J) . 

(21) 

Relations (20) and (21) can be written commonly 

r:(T~z:) = ~ r'( I2 } d(v -t ¥ r: (L(<v) • 

As I 
(~J (f,-2) (2) .. = T = T T we come to the recurrent 

"' G't (:'-f f/'"' 
relation 

'l:(IA<)-== ~ r(I2-)r(Ii-£)+ ¥ t:(I~,_,). 

The polynomial dependence of r: ( Il ) on t: ( I
2 

) is now the 

evident consequence. 

For the proof of dependence of r: ( r;._ )2 
on 1: (It. ) 

in the case of Oc (2«) algebra, we need some information 

concerning the centre Zc E[0c(2.'11f-)] .( see,e.g.,l9l p.565). 

It is known that If! I ~: 1,2, .. . , .~- 1. and r:..... are the 

generating elements for Z • It especially means tl:JLt I2.~ 
is a polynomial of these generators of z • As Iu. I r:... 

and for thei~ highest 
are polynomials 1n •variables" Le' 
degrees the relations 

~ l:u..= 2~ ~I:.._=~ 

are valid, then 

12_ == a. I:: +- r;:. j3 ( 12 I' .. , I2 (•<H) ) .f r ( I2. I"., Il(••--•J ) ' 

where 

7 J r r2., ... , ru ...... , )£/11f.., ~ r r I~, .. , r.Z.(,.,_,, J~ £,.,_. 
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(22) 

The polynomial ~ equals zero. This follows from the following 

considerations. The mapping 

defined by the relations 
f : Oc (Zm..} ·-? Oc (2?Jr.) 

f ( L(: ) = - L('<- • f ( LCIJ)= L("v ' (u,v F f._ 

is the automorphism of ol' (2!11!.) ( and induces naturally the 

automorphism of C [ Oc ( tmz.J] denoted by the same 

symbol f ) • We see tba. t 

f ( I.z~ ) = r.z~ and f ) (I')~- I' ,..,. ....._ 

Applying jP to equation (22) we obtain 

,:L I ) ( ) ~""- = a:: I""-- I,..,.:/3(~, ... , Ifl.(?'L-~) ·+-J 1 .l2, ... ,.I2( ... ·f) 

from which and eq. (22) the desired result immediately follows. 

As I 2 .,.,_ does not depend on the 1
21 

... 
1 

1.2(,-.tJ 
only1 the com tant ex j: 0. 

The dependence of r: (I:., ) z. on 't' ( I
2 

) is obtained 

immediately combining eq. (22) with the preceding result. 

c. If eqs. (18) and (19) hold together, we are able to calculate 

value of 't(I
2
). These equations, imply 

'C' ( L,__ 1...,_ ) t' ( Lij) -r t' ( L41 i) r ( L41 _1/) -t r ( L i ,_, )r(L"Y )= t; r-(t.,.,, )
1 

(tfV 

't(Lfl} r(y-..__,) = r(L.,_,.,_)r{Lt<..)r ·n;_lf'l:(Lt'"-<). (N') 

1: ( Lfj) (" { Lj ... ) .::: - 1: (L,._,..._) 1: (L, n-•) + ~ ¥1: ( L,,., ) ' (19") 

1: ( L,.._,i) 1: (L • .._) = - r: CL,u) 1: ( Lt ~-') = 4!.;_2. 1: ( L..,.,., ) . 
( 19") 
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Multiplying the second and the third equation by T ( L _,_,, ) 

( from the left) substituting Z: ( Lm-tn) r: ( Li)) 

equation and using eqs. (19"') and (J), we obtain: 

from the first 

?:;L J[-r, )~~~-) -(rz. ) l 1'1. L \ L . .,·;j / ' ( I..,J"-' - (. ~m-1"< I-

T ( L ,,.,)/ T( Lay) r ( !4"') - r ( L!" .. ,.,.) + 
v v 

/]!.:..'!.. 1l z . I --.. / -- 01 

m -1.1 11._ -; = 0 -z-- _ _.' . 
As T ( L1n) j' 0 and f: ( L ln-t _) T (.) , these equations 

give (see implication (2) ): 

·r( L-n·;; L
1

.,.
7 

+ Ly L; ..... ):::. .2r(L~., ... )- (.rn-'t)1. 

It is the part of invaria...'lt Z:(I2 ). The other part we obtain 

from eq. (18 1)by its left multiplication by 

using eqs. (191)- (19 11 ) and (J) 

r ( L?) 

. ( J{,..-f ·· ·)· ~(L L· L L ) em.-2 )(1t-'1) l_ r L .... ,... L \ Lu L?, f L <11·1[ 1-7!-1 + "'' <:11. + -------11.1-0 
..._ 0 f/ . -- 2... _j I 

from which 

·r( L'!LJ·) ~ -r:(L,.,. Lt,., + L 11 , Lt: .... ) _ (m-2:'!'_-lt) 11. 
Substituting it into the fonnula 

rc c· r ) = .. 1 { L z. ) 2 ~ ( L · L L L · ) lL · L .. ' Lz ""-- '( -_.,.,, -t L "'' ,_.,., + "t.-1i <n-1 f 1: • Y J') 

the desired result is obtained. 

Note: We show that eq. (18) is implied for /Jt ~5 by relation 

is implied by ·r ( L
11
J ~)) ==- 0 , zf:";f 1/z and eq. (19) 

relation T ( 'P;..) := r ( ~2- -r + J}.,.~z. ) = 0. 
(2.) 

By means of introduced tensor TC""' the equation 

{;(P~)"'O can be rewritten in the from ( see eq. (6) ) : 
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( T C.2) T .. (J.) 
't' ."1-l'lt. f ... .,. .. , )= . ( . ut) (:l.J ) 

1 L T, ... - T.,..1 ... -f • 

Introducing the new tensor 

Jf..,r, r = L 't"' L f n 

the second relation, 1:' ( L rfj ~) ) = 0
1 

looks as follows: 

r (. T. .. ~ .,.. i T.~ ) = /; -if Jf ll i. 
fltc.'"" :f" ,..,-1 v I (I 

Commuting now the first equation with 1:' { L/"'-1) and the result 

with 1:' ( LJE,.,) 
1 
lfj 1 

we obtain: 

and the second one with 

. ( r (2} T. {2)) _ /) r -~c· r ·~ - (.,. 1 
;t rl 

r ( T ) ·= 0 _i-l-k.. ,., .. d£/ ·"'- I (J f 

Z"( Lt"11.-t) 

With respect to tensor character of 

T .,_ ( commuting with suitable ->t-v .. , nt. 

T (2.) - (.1.) 

' ~/ f ~K:.. and 

L ('"' '.A ) we finally 

obtain: 

( . (z) a) ) ( . ) o· 
1: r(:P r T 7 = r Lta-Lcrv T Lva-LO'jt- = I 

where 

[1,2, 

-r( ~~~r,r:-)-:= -r( LctvL1 ,r )= 0, 

(!-•l)lf/'t" are mutually different indices from the set 

n} • The latter relation can be further written in 

the fonn 

7: ( L C( v L f J'l' ) = ~ lf 1: ( L "'f J) 

validing already for all <!:< , "', f , 1:'" - f, 2, .. ·, --'!.. 

Now we can formulate the main theorem of this section. 
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Th~ll@.2• Let 'L denote either canonical realization of 

Oc(n} in ~("<-2) when /?!. f=G or canonical realization of 

l{fli/in tt:;, • 
Then 

i realization of all the Casimir operators equals 

constant multiple of identity, 

1i for .111- ~ 6 realizations 1: ( I,t) 
1 

K.. == 3, It-,·· 

and 

on 

also '[' ( r.:,. )'\ for /}/_ -~ 2mt-) polynomially depends 

r ( I 2 ) in one from two possible ways. 
x) 

qrlll) in U::r,HJ c ~(1t·2J If, especially, r: is realization of 

and m ..p 6 , then 

iii ,,... (I l = - m. (az~j_ 1 
L. 2.' 2. ·"'-• 

and 'Z'{I._) are independent of 'C • 

f~: For ~ = J,4 the assertion i is a part of general 

result proved in ~ 4] ( see also [ 5]), because in these cases the 

rank of qJn) equals to n-2. 

So we shall assume m ~ 5. 

i. The proof consists of two parts. The case 

and will be proved together with iii. 

a) Consider any ~ from the center ~ of 

and (m-1)-diinensional Abelian suba.J,.gebra of 

~= 6 is excluded 

c[oq; (n}] 
C [ 0€ (n)] 

with basis ~, P, 1 , • , 7?,_2. • If we allow on the contrary 

to the assumption i 1:(t)4= ~ 1 then, according to lemma J, 

there exists a complex nonzero polynomial t = 

= f (z 1 P~ 1 •·• 1 P~-2.) E C [ 0~('1!.}] realized as 't"CfJ"' o. 
From the lemma 4 further, the existence on nonzero polynomial 

x) 
This possibility arises for n ?::-5 only (see Theorem 2). 
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t'= .z; '"(t)(1'2)a.E C[Oc(/11.)) 

with 'l: (f') = 0 follows, where /a.(:;, J 

in variable ~ • Using commutation relations 

are polynomials 

{ 7<
1 

(P 2 )a-] = ta (P 2)a-

by multiple commutation of r(R) with 't'fJ-') we come, 

similarly as in the proof of lemma 1, to the homogeneous system 

of equations for "unknown" 'l: /;~(~){P 2)a] solved by 

r-[(a(.~){P 2)a.]= 0
1 

a=d1 1,. 

It imilies further either 

'l:[Ja.Od] = 0
1 

a= 1,1,2, .. 

or 

'l: (p2.) == 0 

( and rc'[ (o 0!) J = 0 • As f '=t 0 ' at if ~-(~) =I= 0) 

least one polynomial fa ( ~) = J ( ~ ) -=f=: 0 · Therefore 

either fOe) = /o .. f 
1 

Of= /a~ C and we obtain contradiction 

due to 1:[/(;()]=fo-'<(1)=0 or deg/(~) ;~ 1 , 
i.e., J'(r) can be factorized into the product 

·11· 
!Oc) = ;3 v ( ~ -0:6 1. ) 1 _/3, (l't. <; ([ • 

Then, however, 'L r roo I= o implies -r:(:z.} = cx t 
tion (2) ) which contradicts our assumption. So, the 

possibility 'l:'(P 2)-= 0 remains only. 

( see implioa-

second 

However, 'l:(P") =: 0 implies eq. (19) so that the assumption 

'C(JE) =/= od.. implies eq. (19). 
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b) In further investigations we have to distinguish between 

two cases: /I'L -=- S and //'!. :> 6. 

Abelian subalgebra ~a~e -~ _Oq:. ~~ : Let us take four-dimensional 

of C [ Oc(!iJ} with basis .<!, ~~ P., , Pz where W=-i:E/)4-Lf/~ 
'C'( :;!) f o_ L ( see eq. ~) ) and assume together with 

also 't:( 1.1/) 1 ;3 J. • Then from lemmas J and l the existence of 

nonzero complex polynomial f 
1 

0-/= f = / ( ~. w) = J;; fa (2) tJ7 "'~ C [ Otr(sJ] 

with zero realization follows, because [ ~-, Ly ]= 0. 

As in the preceeding case, by multiple commutation of ~~) 

with r ( R) we derive the equation 

'l: {fcJz) Wa ]= 0 

from which ( as by our assumption 'C'(W} f=.O) 

'L ! fa r ~) J = o. 
As we saw, this possibility leads to contradiction with the 

starting assumption 'f:(JI!) =I= o<: 1. and therefore assumption 

'L( W ).fjJ.l has to be changed ,i.e., f:'( IV')= ,13- 1L • Commuting :It 

with 'l: (R.) we obta.in 'l:'(W) = 0 even and we can conclude that 

assumption 'l:'(?:)/0(.1 implies eq. (18). As also eq. (19) 

is fulfilled then according to lemma 5 C we have contradiction 

with 'C(t.) =f::: o<:L. 

~.§.!!_Oc(?l}-'~ ~ 7-_. Let us introduce the following three 

elements from { { 0£" (1t) ] ; 

1-t/,. = ( P, z i P., ) I)V 
1
- ( 1':

3 
..,. i P )( wr -:;:. i w.r ) 

- ~ 'f 23'<) 1Jf-) I 

J..l/' I ,::: J.'V(.?2/>) - t u-r!!J) I 
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where 

w, ~.t) = L,!J P.; = L!J 1],_ + ~~ 1} r Lh. ~-

It is clear that elements Wf(j'L) differ from W:·, .. <"n-.r 

( see eq. (12) ) at most in sign and therefore they commute 

with Pi ( eq. (lJ) ) • Mutual commutation relation between 1-Vt: 

and w' looks as follows: 

[ W:t 1 W'] ==: + (Jj ..j ~ ) W!_ • 

Let us consider now the ( 11-1)-dimensional Abelian subalgebras 

with bases ~, ~V:t 1 ?:; 1 ... 1 ~-3 and assume 'L( wt: ) =1= !3:t 11.. 
Again there exists a polynomial ~1 

o =1= f = t rxl J.tr.r I r; I .. , ~-3 J==L;fJ~~Pr, ···J?...-3J~Q.Ecff{r1tl] 

with 'C'{f) =- 0 • As the commutation relations of W J and of 
<t. the powers ~ have simple fo:ma 

{ W:!: "; W '} === :;:-a ( 1] r i?,. ) at a. 

we can commute lf:"{jr-) with f: ( W') and we obtain again homo

geneous s7stem with nonzero determinant for •unknown• 

't[(a.(:>t1 P.,/'-·)?n_,)~<t.). Beoause we assume r:(Wr.}-foO cZHd. J-4=0 

at least one coefficient /a. ( 9! 1 1'f) ... 1 ~ _ 
3 

) is nonzero and 

l;' [ f)q_ (~11:, I. I r:,_3)] :_ l;'! ~/Jab. b (2:)1/'~ .. P·h_·ll-J:J= 0 . 
/)' b, •• b-1<-3 .... "1.-3 ,1l-J 

Using now tho le.m11~ 2 wo come to the conclusion that re&lizatien 

of all ooefficieL~a /3,.,&
1 

•.. 6 /11._
3 

equals zero. We saw in part 

a) that it leads to oontradiotion with the starting assumption 

t"(:l!) -f=- a fl. &nd therefore 'r"(~) I: « 1.. implies r( ~) i4l... 
we imlllediatol7 obtain ;.9~ =0 B7 OOIIIIIUting with f:(t?) 
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and from the equation 

1 r J 2 7 ( ~ + U-::) = 't'jJ;( ~m;- itll(,n)-(J3+i~)W(~j~) ==0 

by further commutation with ·t' (L IJ) we have: 

'L ( ·--;: t/:/(12¥) +- 0 V/(123) ) = 0 

As we assume m ~ 7 we can repeat eur consideration w1 th 

other choice of indices then 1,2,J,4,e.g.,l,2,4,5 and 1,2,J,5 

and we obtain also 

'L ( ~ Wit2¥) i '? 
r ( ~ ~v( tHJ + 73 

N(f£!i)) = 0 I 

WunJ) = 0 

from wh1<h ,e.g., 'L ( .VC 1231 ) = 0 . Due to the tensor 

character of Wry:l) we have 

<L( vVi!/lJ)-= 1:( Ltf/~J)= 0 

for all if /f f f i what implies eq. (18). We 

proved that assumption <:(9!) =/=- o<:-1. implies together 

with eq. (19) also eq. (18), which by lemma 5C, contradicts 

one another. 
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ii) In this case consider the commutative ( .n -1 )-

-dimensional subalgebras with bases W"!: 1 ~ 1 .•. 1 ?...-L • 

Using lemma J al1d commutation with~( '¥1') as in the preceeding 

case, we come to the nonzero polynomial f = f (1',, ... 1 1;,_") 

with zero realization '[" r;) = o. 
From the part a) of above proof it follows 

cr: ( ?2.) = 0. 

Therefore either both 

valid o!r 'l( P") == 0 ' 
'l:( w:tr=O,i.e.,eq. (18) is 

i.e.,eq. (19) holds. Assertion ii 

now follows from lemma 5A,B. 

iii) In realization of Ot(n} in w.z (1!-3) 

(including the oase 111. = 6) we take ( 111-2)- dimen-

sional Abelian subalgebra with basis P, 1 • • • 1 ~-.2. • 
Applying lemma J and the part a) of the proof of i we have 

r: ( p .2.) = 0 . From lemma 5B the assertion 11 for ~ { 6) 

especially follows. 

For /1tf G we can continue and take the other sub-

algebrawithbasis w,~,P2.. if .-?!. ::.5 and IV:! 1 ~ 1 •. 1 ~-J 

if 11t) '1-. According to the second part of proof of assertion 

i we conclude: 

t ( aj fj£J ) = 0 . 
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and lemma 5 C can be applied. 

It remains only to prove i for Oc (6) • The Abelian sub

algebra in this case has the basis ..<: 1 P,, ~ 
1 
~ , J! E :Z 

and assumption 'L(:<!.)cf=cx1. leads, using lemmas J and 2, to the 

existence of nonzero polynomial ~(.~) with zeronees realiza

tion. It, however, contradicts "t'(:<.) t ex 1. 

The proof of theorem is completed. 

~~cl~s..l:~!i.!! 

Up to this time we have dealt with realizations of 

complex Lie algebra 0~(~) • As we are usually interested 

rather in the real Lie algebras it would be useful to apply 

our results to them. Due to close connection between complex 

Lie algebra G and its real farms the one-to-one correspondence 

among realizations of G and realization of any real form of G 

arises. If Go is any real form of G having basis x1 I ... , X"" 

and ~ is a oanonical realization of 40 then the complex 

lir.ear envelope of the elements rc·(X,)
1 

•.• 
1 
r(X .... ) 

is realization 'Lcz: of G. On the contrary, if any '<cr is given, 

we choose in G basis .X, 1 ••• , X.,. in which structure constants 

coincide with the structure constants of G
0 

and real linear 

combinations of '<c ( X1 ), •••• r( (,f.,._) define realization of 

Go • This consideration shows that all the assertions of 

theorems 1-J remain valid in the case of all real forms of 

oa: (1!-) • 
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As we mentioned in the introduction, the use of realizations 

in the representation theory of Lie algebras consists in simple 

substitution of abstract elements fti and Cjli by some 

representation of them,e.g.,by usUal Schrodinger representation. 

In the case of real Lie algebras we are usually interested in 

special realizations which leads, in the above way,to the 

skew-symmetric representations. To distinguish between suCh 

realizations, we have to enrich our Weyl algebra W,uv by 

involution. We define inductively antilinear mapping 't' 

of ~N onto itself by relations: 

( t ( ).,. ( ).,. -r ·r _ .d 
J'-i) =- J't' 1 Cj-i :: 'fi 1 w, 1-1:2 = ~ W, i W,l~ E W.zN • 

Now we can speak, about skew-symmetric elements of Ui.v ( W':l'=-w) 

which are, after substitution of f-i and Cfi by their 

Schrodinger representatives, represented by skew-symmetric opera

tors. The realization of real Lie algebra ~ through of 

skew-symmetric elements of WzN only will be called by skew

-symmetric realization of G • Now it is clear that if Go 

is some real form of G and 'Lee is a realization of 4 

then oo rresponding realization 1::' of Go need not be skew-

-symmetric. Therefore the minimal skew-symmetric realization 

of given real form of Ocf~) needs exist neither in ~r~-JJ 

nor even in w.z (ft-2.) and different real forms of ol' ( !JL) 

can have minimal skew-symmetric realizations in different ~N 1 #;. M-3. 

It can be proved that for or~J ( i.e.,for compact real form 

of Oc (n.)) the skew-symmetrioity of realization contradicts to 

33 



"constant realization" of the Casimir operators ( [5]th.4.4 ). 

Together with theorem 2 it gives for n~J, n -1 6 the first 

possibility- for the min:i.mal skew-sy-mmetric realization of 0('11.} 

is in ~1.,_ 1) x) and for 0(6) in ~ • In the same time the 

skew-symmetric realization of noncompact forms 0(11-"'<lmt), tl<~WL< ~~ 

exist in ~ (n.-2.) [ 6] • 

For ~ ~ 5,6 we can derive further skew-symmetric realiza-

tiona of some noncompact form of olt ("'.) by means of theorem 2 

even in ~ or ~ respectively. In the mentioned theorem the 

realization of 01( (S} is such that generators i Lf£. I n,:J I L2.3 I 

i ~, 7?, 
1 
tj 

1 
i Q11 Q

2 1 Q3 and R. are realized by skew-symmetric 

elements of Wlf • As by commutation of any pair of them we 

obtain their real linear combination ( see eqs. (7) - (11) ) 

ten generators i L I£. 1 • • • . , 1 R from the basis of some real 

form of 0c(.5) which is realized skew-symmetrically. It 

is not difficult to prove that this real form is just 0{3,2..) •. 

Similarly- we prove that the realization iv contained in 

theorem 2 is the skew-symmetric realization of O(J,J ) 

if 1?e 01. = 0. 

All realizations considered until now were either "Ain1mal 

or the •nearest• to minimal ones. In accordance with theorem 2 

· this faot has two following consequences. Without exeptional 

oases the first consequence is the realization of Casimir 

operators by multiple of identity and the second one is their 

dependence on one of them only. ( We could call realizations 

with the first property as the Schur realizations and the second 

property as the degeneration of realization). It is natural 

~Ji~Si;;:S,..etric realisation of O(n,l) in w2(n-l) exists, 
the •subrealization• of O(n)c O(n,l) in w2(n-l) is a aini
aal one. 
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to expect that enlarging the number N in W2 , new realizations 

could appear which are not Schur realizations and which are less 

degenerated. The question here arises whether there exist 

Schur realizations of Ot(~) in which degeneration is partly- or 

fully removed,i.e" where a number Qf the independent Casimir 

operators is greater than one or even equals to [ I ] . 
The authors hope to give a positive answer in a subsequent paper. 
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ons of our lemmas can be useful in the solution of the problem 

of the minimal canonical realization for oc (41.-) if 17!. ~ 7. 
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faBRI!"'8K M., 3KCHep n. E2 - 8089 

Q MI!HIIM8RbHbiX K8HOHII"18CKI!X peani!38UIISIX anre6pbl n11 0 ( n) c 

LlnS! KOMllR8KCllqlliK8Ullll anre6pbl n11 OpTOrOH8RbHOH rpynnbl B n-pa3-

M8pHOM npocTpaHCTBe EBKRI!Aa noKaSaHo, "'TO He cymecTByeT KaHOHI!"18CKOil 

peani!SaUIIII c noMombiO N nap K8HOHII"18CKI!X nepeMeHHhiX, ecn11 N < n -3. 
DoKaSaHO Aanee, qTO c HeKOTOpbiMI! I!CKRIO"'8HI!SIMII onepaTOpbi Kasi!MIIpa 

B K8HOHII"18CKOH peani!38UI!ll C n- 2 napaMI! K8HOHI!"18CKIIX nepeMeHHblX SIBRSI

IOTCSI KpaTHb!MI! eAIIHIIU8 II 38BIICSIT TOnbKO OT KB8Ap8Tli"'HOrO onepaTopa 

Kasi!MHpa. EcnH, B qacTHOCTH, KaHOHH"18CKI!e peani!38Ullll c n-3 na-

paMII cymeCTBY!OT, TO 3H8"18HIISI BC8X onepaTOpOB Ka311MI!pa 38BIICSIT TOnbKO 

OT n 

flpenpHHT 06beAHHeHHOrO HHCTHTyTa ~Aep~X HCC~eAOB8HHA. 
,lzy6Ha, 1974 
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