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l. Introduction

Dothan, Gell-Mann and Ne!emann 1

introduced the algebra
SL(3,R) as an algebra generating orbital excitations of
hadrons. They found relatlions between oertaln representations
of ASL(3,R) and the Regge sequences K= (0,2,4, ...),

K = (15355, seo ). Later on,Biedenharn et al. 2 tried

to deal analogously with the Regge serles for half-integer
spin., It is stated in 2 that there exist four simple
("primitive®) representations within the framework of a
particular realization of the algebra corresponding to the
four basic Regge sequences: fny=(k=02--), bey=013. ),

{Nkf(%/§y-~-) and {A1I= (3, i)

In fact the [ - sequence does not exist in the discus-
sed realigation, as it can be seen when a more careful analy-
sls 1s oarried out. Therefore 1t is interesting to obtain
a more detailed information about the primitive representa-
tions of ASL(3,R) and to investigate whether they can
reproduce the Regge classification of particles.

The representations of ASL(3,R) have also certain signi-
ficance in oonnection with ref. 3 s where the infinite-dimensi-~
onal algebra of the general covariance group is shown to be a
closure of the finite-dimensional algebras of the conformal
and the affine [GL(4,R)] groups, One can hope to construct
representations of the lnfinite-parameter general covariance
algebra if the representations of the above-mentioned finite-

dimensional algebras ( particularly of ASL(3,R) as a sub-
algebra of GL(4,R)]are known.
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Note that principal series of representations of the
SL(n,R) groups have been already found by Gel*fand and
Graev 4 « However, they use a functional realization of
these representations while in physical applications it is more
convenient to deal with a discrete basis because its elements
may be directly assoclated with the elementary particles.

The group SL{3,R) has eilght parameters. Its maximal
compact subgroup is S0(3), so three of SL(3,R) generators are
the generators of the space rotations J; ( ¢= 1,2,3). The
remaining five generators form a second-rank tensor with
respect to SO(3). In spherical basis they can be written as
Ty (M=-2, ovoy 2) and satisfy the following commuta—

tion relations

[T, T ] =-%J; (1.a)

( the remaining commutators are obtainable from (1.a) ). In
vector basls these generators can be equivalently written

as a symmetric traceless tensor Th (¢4=123):

T: T,1=- 5.
L i ke] L(g,_,(i'tm toug sJ'le + EJ'K Coam + Sﬂ Eiwm )Tm- a.v

Consider an irreducible unitary representation (1.U.R.)
of the algebra SL(3,R) realized in a Hilbert space R. Being
reduced to ASD(3) this I.U.R. decomposes into the infinite
sum of finite-dimensional I.U.R. of ASO(3): R,:Z$3“k mk
where ¥Y\K .

is the 2+ 1 - 3imensional space of I.U.R.

of &50(Y) (& 1s integer or half-integer; it is called "spin"

in what follows), Xy is the multiplicity of the spin K
representation. In general ¥y may be larger than unity. We
shall restrict ourselves to those I.U.R. where every spin enters
at most once, i.e., Ry £ 1 ( following the authors

of ref. 2 , we call them nprimitive"). As usual, a canonical
basis j; ’ v<:—k,-w,k 1s introduoed into the spaces

me .

It is necessary to examine how the generators '7?4
(7%3) act in the Hilbert space R in order to describe
the I.U.R. of ASL(3,R) ). In Section 2 the matrix elements
of the generators are calculated using only the Wigner-Eckart
theorem and eq. (la) without specifying space and operators.
It turns out that there exist two one-parameter sets of
I.U.R. containing integer spins k = 042y ees and
W= 1,3, ees resp. There 1is also one I.U.R. with half integer
spins K= %, 5/2, ... but a sequence starting from 3/2
does not exist. Therefore the primitive I.U.R. cannot comple-
tely reproduce the Regge classification.

In Section 3 a simple reslization of all primitive
representations is glven. The algebra of the Lorentz group
is realized in the same way since all of its representatlons
are primitive. This construction is based on the familiar

creation and destruction operator formalism and 1s useful

due to its compactness and clearness.



II. Matrix elements of the SL(3,R) generators

To evaluate the matrix elements we make use of the fact
that the generators form a tensor and employ the Wigner—

~Eckart theorem > :

7/—” .f: = ‘KWM A fw-M -'KV*M B §V+M ‘K‘:M C"o :YV‘:M

_K::}W B 5""1 J‘<’V+M A“ ::/: ’ (2)
where KL
Kym = C(ZM wvlusi, v+M) 2,...,2

o

are the Clebsch-Gordan coefficients and AK ,B:’ Ce
are arbitrary coefficients ( the reduced matrix elements)
which depend on spin only, Note that by definition A =0
and B =0 12 k< 2and K< 1, respectively. In unitary
representations the generators should satisfy the following
requirements: 7;,," = -1 )M T or in terms of reduced
matrix elements:

A: = A:.z , 8\: = 8:-1; Cno: C:
( the bar denotes complex conjugation).

The quantities A: ’ B: and C: are to be determi-
ned =~ from the commutation relation (l.a). Comsider the aotiom
of both sides of eq. (la) on a vector ff, » taking into
account eq. (2). The comparison of the coefficients of vectors
with equal spins leads to a set of nine finite-difference
equations. We shall write down one of them as an example:
VIak-0BC B, +(2Ke3)B, BY +(2k-3) A, AL - (2kes)Ars A - 26°7]
+v[=(k>3k41)8," B, + (17 3k% 3) By By + (2k3) (k2 3+ )AL AL

- 3
—(k+S)K % Sk+5) Ay, AL+ (2k% 2k-1) C:‘] -V 2

The detailed analysis of these equations gives the
following results:
t
a) If B, =0 then the set is consistent and has the

solution
-2 17 — oL S k2 4)
AV = [1+ rzx-111], k22, O = gy K20,

Y(2-3)(2x41)

where C 1s a real parameter ( ¢ =0 if K= 1/2 is allo-
wed).

Since each representation contains a minimal spin Ko
the matrix element of the tramsition k, — k.- 2 must
vanish, i,e., A;; =0 . However, this is impossible when
A;:O according to (4). So the case o< 2 when /‘h: =0
by definition, remains only. Ipthis case all the terms
containing A; vanish in our set of equations. For instan-

ce, equation (3) for kK = k,< 2 takes the form

~ (264 S) V34 (K4 S K, t5)V] Mk_o*z 1%+ [—2»3f(2k,,l+2kg-7)ujffu’: ~y. (5)

- 2
Inserting expression (4) for | A, ,,\ (Ket222)

and Cki into (5) we arrive at the consistency condition:
V34 (k- 3%+ 1) v =D,

Obviously, it is satisfied for k.= U, %, 7 but it does not

hold for k, - 23'



ks
Thus, in the case BK = ( we see that there are three

kinds of primitive I,U.R.: k=20,2Y%,---, 4
arbitrary, K= %, éﬁ gw ., €= O and k=:Z 35, ..., C
arbitrary.

D) An analysis of the set of equations reveals that if
85 does not vanish for some values of k then it cannot
vanish at all. But in this case the set appears to be
inconsistent. .

It is worthwhile to point out that representations const-
ructed in ref. 2 are limited to the case C =0 . This is due
tc the fact that the most general expressions for the genera-
tors have not been used there.

The authors of ref. 2 have not noticed that a vector with
spin less than two vanishes under the action of the lowering
part of o generator. This becomes essential in the case

Ko = % and it leads to the false conclusion about

existence of the A - seugence in 2 .

11X, Realization of the representations in terms of

creation and destruction operators

Here we give a concrete realization for the representa-
tions discussed in the previous section. Our starting point is
the well known Schwinger construction 6 « Consider two Bose
operators Vo | 4 = 1,2, satisfying the commutation

relations

[\Q,vﬁ]:Ol E\/"V/:) :5‘/5/ V¢\0> = O

( here [0 is the vaouum state). We can easily realize
the algebra ASO(3) in terms of these operators provided the
generators are taken to be
1 +
:]: =37 Ve (TL)¢/5\«}5

( here T; are the Paull matrices) aud the basic vectors are

£ e T >
In this scheme all scalar operators are functioms of the
gperator N =V} V., whose eligenvalues are connected with the
spin Nfsrlkf::

We can construct realizations of the algebras of various
groups, containing S0(3) as their maximal compact subgroup,
using the above described scheme, Take for instance the Lorentz
group S0(3,1). Besides the generators J; the group has
the generators ﬁ4;'i = 1,243 forming a %ector and obeying the
commutation relations

CMe M T =0 ey T (6)

In order to write explicitly these generators, we must
find the general fbrm 0of a vector operatcr constructed from
v, and VQT and substitute it into eq . (6). It is evident

that V;(Vf) are in fact some covariant ( contravariant)



spinors. Therefore only three kinds of vectors can be

7

+
constructed from V., and Vi . Namely

1
(1.0)>W; = {,v‘(ifl;)‘/sv/b) (%'—12-)—)31] (0'1)-—9\,(5: T\/I(l]i)%\?zv

0
where ¢ = (_1 g) is the antisymmetric 2x2 matrix.

These operators obey a number of useful identities
(Appendix A) which are easily checked with the help af the
completeness condlition.

Multiplying these vectors by an arbitrary function of N
we agaln obtain vector operators. So the general form of
hermitian M, 1s

M; = AU s ul A+ o V) T )

where A(h” and \(OVJ: Y*U/) are arbltrary functions ( 1denti-
ty (A.1) requires that W, T and W' change the

spin of the vectors f: by -1,0,1 respectively so that
these functlons corresponmd to the Wigner-Eckart reduced matrix
elements). We can now obtaln a set of finite-difference
equations for A(N) amd ¥ (&) substituting (7) imto (6)

and using the identities of Appendix A. The solutions of

these equations provide just the same sequence of I.U.R. of
AS0(3,1) as that described 1in ref, 8 ( for a more detalled
discussion see Appendix B). It 1s worth mentloning that besldes
its clarity, our realization 1s distinctive also because
varlous operatlons over the generators are quite readily
carried out due to the identitles of Appendix A . ( This is
demonstrated in Appendix B by the example of the Casimir

operators).

The case of ASL(3,R) is completely analogous, Here we

must construct a temsor operator 77‘ ( 1t 1s conventent

to use the vector notation for this tensor). There are exactly

five constructions of tensor type:

2,0)>uin; (2, 4)s T vu T
QoY= (3, 2)> T +u T )= T +]T- 58,77

4 3 ¥ ;
(1:3)>u; :]-‘ f‘*;:)-,;, (0,2) » ul u: .

After multiplying by an arbitrary function of N and taking
into account the hermiticity condition the general form of 72}&5

T‘J‘=A(N)u; u; +ufM}A+(A/) +B(M)(u; IJ'*UJ J‘L)*(K;"J;+U;I‘:)B+(N)
WM (TT 2T -2 8,72, (8)

where ' (V)= ¢ (V).

Substituting (8) imto (1.b) we agaim obtaim a set of
finite-difference equations for the functions A(K), B(N) and
¢ () ( again tdentities (A) are used in obtaining the

equations), This set has exaotly the same features and the

same solutions as set (3):

I3 q c? c -
O e (y+3)2], W)= gepmsy  BWI=0. (9

( ¢ 1s a real number parameter; C =0 1f N=7 1ig
permitted).

Therefore we have suoceeded to realize all primitive
I.U.R. of ASL(3,R) in a very simple and clear form (8) and (9).



Here the technical advantages of this type of realization
(again due to the identities A) are even more obvicus than in
the case of the Lorentz group.

We would mention that a similar kind of realization was
used in ref. 2-, but there the generators were written in a
spherical notation which lacks clarity and is less convenient
in calculations, We point out also that there are not

discussed all possible oonstructions of the generators.

APPENDIX A

[v7.1=0, Nw-= W (N-2), Mul=uS W+2) (A1)
Tou =0, TLul=0, u,u=0, uwul =0 (A-2)
3.3, = ,')\f(kfd) U M, _Z(A/fl’()\/+3) ulu, =2M(N- 1) (A.3)
u] u‘ruzuL:h()fﬂ‘c%yl wou - uau ——4L(U+3)i‘dk ’[S (A.4)
W, J ) I (/V* lf)ﬁ'a'u U, rj— u- I‘ "’"(A/'.Z)it.lk M.(
utu;»fuu -z(mz) ENRLECAL +I %) } (A5
u! u3+ud L= 2N? &d -—tf(:]'Jij )

. +
[7, I]_Li%“jk [M‘lj]-L‘LLJKuK LHL, A']=¢€L8y%u} (A»é)

Cu, JJ‘O’ Cul, u l 0, [u, u*] ‘f(,lfﬂ)&_d —ZL%dKI.‘

12
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APPENDIX B

After inserting (7) into (6) we obtain the system of
equations
(M+4)(M+2) -Ar g (W)= 0
\ (e3) AW - (A=t TA- = £+ & @' (V)

The solution of this set reads
2

1»_1_— a g ) ) g
(AW} = 7¢ (H VelliNe3) — ven(Weg)2ve3) ) (W= jiprz
where A and é are arbitrary constants ( note that Z
is a real number since ¥ 1s hermitian; if A =0
is permitted then & = O ).

Further, the existence of a minimal spin kKo 1leads to
the condition A(N)u; {* =0 , lee., Al2k-2)=0
except for the cases ko =0, i‘ « In the latter case

W;§% = 0+ This means that

7 C( _ €2 — 0
Y BTl | (21 R (T%r 1)

The existence of this relation enables us to introduce the

notations ( note that they correspond exactly to the
Neimark notation )

Q:7"lf‘(oz'zfczl g'—_’4‘l."(acy
where ¢ 1s sultably chosen constant ( pure imaginary if

Ko>0 ). The detailed analysis, shows that these notations are

appropriate in the specific cases ko= 0, 5‘ also.

13



Additional restrictions on the parameters 4 and 8
( that is, on Ko and ¢ ) are due to the condition
(AMI*20. The final result ooimoiding completely with the
results of ref. 8 is as follows:

a) ko 1s an arbitrary non-negative integer or half-
-integer number, C is an arpitrary pure imaginary number.
These are the conditions for the prineipal series of repre-
sentations. '

p) Ke=0, O0£C< 7 - the additional series.

At the end we give an illustration of the use of the
identities (A):

C = T MP= T2 [AWM U+ ul A'W) = ew)3:]°
S TR AW u - AW ) T == F §=wlectt

C,= T M= T [AM w +ul Aw)+ e W) T, ] = W)t £ = ikoc

4
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