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1. Introduction 

Recent intensive investigations of ultraviolet behaviour of 

the Green functions in different quantwn field theory models have 

led to the following two facts: 1. There exists a class of asymp­

totically free theories including non-abelian gauge fields11 •21 or 

fields with indefinite metrics/JI. 2. The analysis of subsequent 

logarithmic approximations may change the asymptotic behaviour 

drastically and, in some cases, leadsto a finite value of' the· 

effective coupling constant141• In spite of attractiveness of 

3 



asymptotically free theories151, there ha~• been ~ound no realis­

tic models of such a type. Moreover, the reason for presence or 

absence of the asymptotical freedom remains unclear. 

The present paper is devoted to the investigation from this 

point of view of two renormalizable scalar models with the dimen­

sion of the space unequal to four: model 'f 3 in six dimensions and 

model lf
6 

in three dimensions. Though these models are not rea­

listic, they can serve as an interesting example of the theories 

we spoke above. 

The paper is organized as follows: In Sect. 2 we give an 

essential information about the dimensional regularization scheme 

and the notation we use. Sect. J is devoted to the h'fJJ theory. 

In Sect. 4 we consider •t Hooft 1 s approach and compare the results 

with the usual BPHZ method. The theory h 1(~ is discussed in 

Sect. 5. The detailed calculations of multiloop.diagrams in six­

and three-dimensional space with the help of dimensional·reiru:lari-

zation scheme are presented in Appendices A and B. The results of 

calculations and some useful formulae can be found in App. C and D, 

2. J~Qe dim~nsional regularization method 

Very useful tool for our purposes proves to be the dimensio­

nal regularization scheme invented by •t Hoeft and Veltman/61. 
This kind of regularization is known to suit for handling the 

gauge theories, but it appears to be very useful in the case of 

scalar models as well, especially for the space-time dimensions 

iµiequal to four. 

\Ve briefly recall the scheme of the method. Let n
0 

be the 
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space dimension of the theory ~e are dealing with. For the given 

Feynman diagram the corresponding momentum integral is convergent 

:ror the set {n,} of the positive integer space dimensions, inclu­

ding n
0 

or not. Then the integral can be defined for all "dimen­

sions" n through the analytical continuation inn from the set 

{niJ into the complex n-plane. The required formulae are given 

in Appendix D •. The integral becomesthe finite analytical function 

throughout the whole n-plane except for the integer positive 

value of n beginning from some M. At these integer points the 

integral has poles of the type 

1 
(n -11-Kj/V 

for integer K ~ O , ;V > 0 

We shall regard only n near n0 , namely n = n0 -2£. 

Then the physical theory implies E _.. O • Apparently this 

limiting process requires subtractions due to the presence of 

poles in £ • Only for the convergent diagram we may put £ 
equal to zero without any subtractions. Provided the diagram di­

verges or.,::ontains divergent subgraphs it has a singularity~ ~N 

• ... · E 
with ;11~ number of loops. Because the analytical continuation 

from discrete set (n,} is not unique, there exists a possibili­

ty to add an arbitrary polynomial to th~ regularized ,expr~~sion 

of the integral. So one may use different subtraction procedures. 

For instance, •t Hoeft and Veltman/GI propose to subtract only 

the pole terms of the . Laurent expansion in E of the divergent 

integral (some consequences of this proposal will be discussed 

in Sect. 4). However, in the present paper we subtract the diver­

gent integrals at the point K 2 = ,\2 
, according to the BPHZ 

R-operation171• 
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For tne renormalization group analysis we need just ultra­

violet logarithmical asymptotics, so only pole terms of the diag­

rams are important. Indeed the unsubtracted expression 1ooks like 

h,Y ( AN A.4 A O(E),I 
(K'1/'"'' BN + + T + C + 1/ . 

Expanding {K 2)-,n: in power series in 

we find that A0 terms are of the type 

£ and subtracting at Kz=A 2 

,n D m 1(2 
Ao E <-11 Ji" and 

vanish as £.-o . So they will not contribute to the logarithmi-

cal asymptotics. 

We investigate renormalizable scalar models of the type 

h If/:.) ,where n0 is a dimension of, space-time. Throughout this 

paper we use the following notation: 

D (L, h) - propagator of the scalar 

lization condition D(o, h/=1 , where 

particle w1th the norma­

l= .t,, K2 
A'· 

r(L, h) - normalized proper vertex part, with m external 

lines; 

h(L,h)=hrDif- · - invariant coupling constant (ICC), 

h(o,h)=h; 
Our metrics is 

I'- 2_ ·2 2 2 P;, P = p - Po - P1. - · · · - Pn. -1 

The analysis of the ultraviolet behaviour is based on the 

differential Lie equations of the renormalization group 

where 

oh (L, h) = 11; 1t_ h JI 
"rJL 'Ir· (L, 'II 

'f (h} is the Gell-Mann-Low function 

(1) 

<t0/ = c) h (L, h)! 
oL 1, =o 

(2) 
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J. The theory h if<'l 

Consider the renormalizable scalar theory in six-dimensio­

nal space-time. The interaction Lagrangian looks as follows: 
(It j3!2h 3 I. ./¾ 'J:.. = !Ti! lf(o/ • The factor 1't1r1 is introduced to simplify 

subsequent expressions. The invariant coupling constant (ICC) 

is chosen in the form 

h 2(L, h) = h 
2r 2 

D
3 

The diagrams which contribute to the three-vertex r and pro­

pagator D are shown in Table 1. As far as we are interested in 

the high-energy behaviour all masses can be neglected provided 

that all subtractions are made far off the mass shell. Contributi­

ons to the_Gell-Mann-Low function only come from the pole terms 

in E (see Sect. 2) of the corresponding integrals. 

In the lowest order in h the calculations are rather simple. 

Before making subtractions one has 

(J) 

~ h2 -£/ . 5') 
~ => -12£ (K2) 1.1- c£ + ""FE. , 

P~ K ~ .!:!__
2
(K2j-'E/:f-c£+f-2fE} 

~ 2E (.: 

where C is the Euler constant arising from the expansion of 

r -function and f depends on the relation between K 2 
, p 2 

2 
and q 

1(!,',f,)-f,A K t.(1-1, f.'¥' x[-!,':i-1)-5!J- 1 'd} 
2 2 2 f In the case of p = 9 = K we have = -0,468. 

In above expressions (J) we keep the· finite terms in E 

which are not relevant here but will be necessary for the R-op~­

ration in•next-order calculations, After the subtraction at K
2 =A 2 

we come to the following expressions for D ' r and ICC 
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D=.1.+h
2

l 
12 ' 

r:=1-h
2

L 
2. 

, h 2
=h 

2{1- t h 2L] 
and consequently the Gell-Mann-Low function 

'f(ho/=-thv. 
Thus we have the asymptotically free theory in six dimensions. 

Note that this result emerges without non-abelian gauge fields 

and without fields with indefinite metrics. 

Now we turn to the next logarithmical approximation, In 

App. A we consider in more detail the calculation of diagram 5, 

Table 1 to illustrate the use of the BPHZ R-operation in the 

dimensional method for the diagrams with overlapping divergences. 

Contributions 

the following 

of _all diagrams are shown in Table 1 •. They lead to 

expressions for D , r. and ICC: 

D ·= i + h
2

L .tz 

r = j _ h
2
L 

2 

h"L
2 

+ h1tl (91 +f'J 
36 ·5 ?2 i 
S"hVL2 

+ -­
:t6 -

' h:L(3+f), 
h 2 

= h 2 0 - 1.. h 
2L + .J_ h 1/_ 2 

- E.£ h t;L} L... r .16 1H . 

The leading logarithmic terms form, as usual, the.geometri­

cal progression. Note that ICC is independent of' f containing 

all the information about the relations between external momenta. 

The Gell-L1ann-Low. function then will be 

10 /hz) = _ J_h Y _ .f2S" /2 6 
rf I I y .iv'! (4) 

Thus we can see, that the second term is of the same sign and will 

not change the asymptotic behaviour,just as in the aelfinteraction 

Yang-I.Jills theory1121• The theory is asymptotically free independen-
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tly of the low-energy value h = h (o) up to the two-loop level. 

4. •t Hooft•~ sch~me of renormaliz~tion 

It would be interesting to compare our results with those 

obtained by the subtraction scheme of •t Hoeft and Veltman
161 • For 

this purpose we use the formalism recently p~oposed by ·, t J-loort
18( 

/b_/½ 
The interaction Lagrangian is 1!:!.1-h {JJ

3
• The dimension or 

3 f s T 

the apace-time n equals 6-2£ , hence the bare coupling cons-

tant hs has the mass dimension £ • iVe express h8 in terms 

of E , "unit of mass" /1. and the dimensionless renormalized 

.coupling c_onstant . h by the following expansion 

h:=02/{l/+h°t; 01J = 01rLA 2 :l t .. ~:mJJ::nJ. (5) 

Similarly the renonnalization constant Zr of the dimensionless 

Green function r ia 

Zr o:: i + i cn0J =:/ + Z 'i: /;IM; 
• n~, E 11=1 ""=n £ 

The main "fact established by 't llooft/B/ is that we can 

choose O~m) and c';/ ei"o' that performing the calculations with 

hs given by (5) and multiplying r. by the corresponding Zr 
.L 

we can put E = 0 , i ,e. ,all polElB of the type E,v cancel in .. a11y 

.given order of-perturbation theory.· The.requirement of cancellation 

of the -singularities allows us. to, calculate On (h 2/ and Cn (n 1/ 
2 

uniquely, order by order in. h • · 

The renormalized Green functi_on .is 

r; (;: , h / = /!!:10 Zr (h ~. E) · ;; ( k ~ h: ( j1 
2

, h : E), £} _ 
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It satisfies the renormalization group equation of 1 t Hooft and 

,Veinberg /a, 9 , 101 

lra~ -13(htJ~~z + J;.(h 2}} r; (L, h 2/ = 0 J 

where 

f (h 1/ = r·h \: z - .1) Cid 01/ 
plays the role of the Gell-1Iann-Low function, 

. J-: It/ I = _ J/ 2_ C 1;, 2 I 
rf 1 I 7Jl,2 ~(' I 

is an anomalous dimension of (;_ l=&~ 
/" 2 • 

We have performed the calculations using the described 

method up to the two-loop level and obtained the following results: 
' 2 fl :z ET Z 3 ht 9 h 6 

12S "J 

where 

hs=<J1'/Lh-ry+.i6t: 2 -:2nY , 

~(1/) = _.:th'f- EI ;,,6 
r f 1~$' - ' 

J/ sltt 23h~ 
Zr =..i - 2E + .f6e 12 - .96E 

r, = r. + :23 I. y 
r 2. l(i 

J, 2 st/ Z=.t--+-
1:2£ 1H f 2 

f. = _J:L2 - .:f3hf 
D ..12 4'32 

-I Z is de:t'ined by .I)~ =Z D8 

.:/3 /,y 

,f6'f E 

One can see that J(h2J coincides with rfh2J <4> 

(6) 

calculated 

in Sect. J. Note should be made that our results (6) are not 

identical with those of ·Macfarlane and Wool11/ who treated the 

same model by •t Hooft's·method. 
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5. The theory h (f(3/ 

Consider now the renormalizable scalar theory in three­

dimensional space-time with the interaction Lagrangian of the 

form 

. '£ = (8n-)
2

h ff 5 

. 3! 

The ICC here is 
3 

h(L,h) = hr D _ 
The diagrams which contribute to the six-vertex rand to 

the propagator Dare shown in Table 2. To calculate the Gell­

Mann-Low function we are only interested in the pole terms in E 

of the corresponding integrals. It should be noted that the 

diagram 
-~ 

does not contain such poles and will not contribute to the ICC 

asymptoti~al expression. 

To illus1rate the possibilities of the dimensional method 

in calculation of multiloop diagrams in three-dimensional space 

and the use of the BPHZ R-operation we consider diagram 5, Table 

2 (see App. B). 

The results of calculations for all the diagrams are shown 

in Table 2. They lead to the following expressions for D, r 
and ICC: 

hz. 
D =.1 +.-L 

90 

r=.:t - :to hl + .1;0 J/L 2
- ~s-h

2L (Tr 2+.:10), 
.3 . 

h fl. h) = h [.:t. - {0 hL + 1 ~ 0 1, ~ 2 
- ?y_ I/? h 2L ]_ 

· 11 



The Gell-Mann-Low function then looks as follows 

ff (h) = - ~oh 2 
- 7'1. ty:; h 3 

• 

Thus in the lowest order in h for different signs of h 
we have the asymptotic freedom {h >o} or "ghost-type" behaviour 

{h<o}. Taking into account the next terms of perturbation expan~ 

sion we can see that the situation in the case of h..c.o changes 

dractically just as it takes place in 'f(t .theor/1 J/, Equation 

(1) in this approximation has the form 

"°h_[z,h) = yi(h) = - ~0 h1. - 1~ yJ h 
1 

arid leads.to the finite asymptotic value of the ICC equal to 

H=-0,045, '.l'he anomalous dimension of. the field will be-very small: 

()( ;. 2.22•10-5 • 

So, the question of relative contribution of the next term 

to the function 'ffh) is very crucial, The situation thus is very 
{I) y . 

similar to that in r'ftt/ theory with the coefficients of the 

Gell-ll!ann-Low function·increasing e:ven more rapidly •. Therefore one 

can only suppose the existence of so.me "compensation mechanism" 

resulting in a finite value o.r h 

6. Conclu_!!_ion 

The above considered examples allow us to conclude that 

asympt6tical freedom is not an exceptiortal property of non-abelian 

gauge fields or of those with iridefinite'metrics and can ari~e in 

other quantwh field models. 

At the same time it should be noted that the theories with 

h fhr +.1 \ h h !J.;, 
interaction of the form f for any and f for 

h positive seem to be nonrcalistic for they have no ground 

state 1·rom the quasi-classical point of view- But there are the 

12 
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3 h y theories of such a type, namely h '/(6) , f"M 6 
h ~(s/ , that 

exhibit asymptotically free behaviour. It looks like that nature 

avoids asymptotical freedom. 

The authors wish to express their deep gratitude to 

D.V.Shirkov for suggesting this subje~t and numerous helpful 

discussions and to A.V.Efremov for interest in this work, 

' 
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Al!l!..~ndix A 

Here we consider the calculation of diagram 5, Table 1. The 

corresponding integral looks as follows 

rd" d"e 
T= 7 2. .t. z 2. r/(K-f/ (r;-e) ~ (K-ej · 

h = 6-.t.e:. . 

After the parametrization and momentum integrations according to 

the formula of App.D we come to the following expression 

:1 :i. :t 1/-He 
J = - ,r

6 rf.L+,u)/1. 1-E;, J'-,cf dJ 1 dz I df -l: {:t-t- , (A.1) 
(,<•J-t-+2c odxr (1-1<; a o o [<1>(><,'j,e,i}]-, .. 2c 

where ¢(x, 1• ?..1 t) = ie ~-;-t~}{t-x) + g/4-t-){1-~iJ­

- i/4--t)z/4-J ~.fiJi! f/4--t)/4-x). 
The integral in r.h.s. of (A,1) possesses simple pole at E=O. 

We rewrite it in the f'ol:J.owing way 

T= - ,r'rf.-:t .. u)[ 
(K•j-1-+U: ~ + J._ -. T-s - 2 T~] (A.2) 

where 

~ = t dx x ,-c(,-x/j :J.dtt (~ dz J\u i 1 /4--t?}~-J-, .. 4' -u 
0 D q lo D ' 

f.~d 1-c -1-+£ (::I. I } f :J. 1· ::I. c -.tr Ta = 
0 

XX (,-1<) 10 dd J(d-Y~ lo d2 
0 

cU i ('i-t) c/:, 

l:J. , EI. 1cj.1. [1 1:J. /. . ,,-:c -tE. 
Tl = /,, dx X - (!-x; d,, 1/ de (vt fr:t--f/ <f, 

o 000 0 0 

(.i. f-C 1:t //:I 1:t 2/_, , JC -.U 7t = In dx x {t-x) ~ d'1 L z de d-t -t (!f-1/ ¢ 
0 0 Q O I) 

14 ,., 

It should be noted, that the integrals ~ and Ty are not 

singular in E. and hence we can put £ =O • Then we immediately 

get 

i 
73 = 36 

1 
Tt, = 21; (A,J) 

As for Ts. and T,. , they are singular when integrating over 

i and X correspondingly. The singular integral has the form 

T{Ej = fo1 
x-'+E q(x,E)dx 

. . C 
Integrating by ·parts and expanding X in power series in £ we 

find 

r/t) = :E r;(x,c)~i - : /,.if_t+£ 6t)' +of,2J} trJ; (x, E) dk 

Provided the remaining integral converges we may put £ =0 and get 

T(£) = (l (o, E) - l.:L dy f11 )' ~/ (x, o) . 
£ · lo 

Using this formula,the calculations are straightf'orward and 

give .. 
# 

J: = r(t-E}rµ-E)r
2
{t-,u) :t 5" 

.,_ r(3-2E)r(1t-1tc) £ - n 
(A.4) 

T, = r2/t-.2£) r~-£)_£ 
2 

F(f-h) r/3-c) E 

Substituti~g (A.J) and (A.4) into (A.2) and using the r -function 

expansion we ultimately obtain 

I tl 7T° K
2 t ) T ( K J = ~ 1, tJ f£ ':I. - 2 c E + 6 E 

.i2 £ lK) 

as 



In order to remove the singularities we use the DPHZ R~ope­

ration with the· subtractions at k 2 = )
2

, The diagram contains two 

divergent subgraphs and leads to the following R-operation proce-

dure 

R CD= CD-(])- 2 (0-0~ 
where the dotted line denotes the value of' the integral at 

Then for T(,<J we find• 

R Y~1/ = ::K 2 {L 2 -(f ~ ?ij L} , L ·= tnA~~ 
All other diagrams can be calculated similarly, 

/<l_,.-,\ 
\ I 
\ . I ,_., 
fl. 

AE.eendix B 

Consider diagram 5, Table 2. After setting all the masses 

equal ~o zero the corresponding'integral looks as follows 

~ "~ ' H d" 
T =/_i_i_· d c. - d r -f . n= 3-u 

(p+9/ e2 (1<-9-ep· -t 2 (r-t) 2(9-r) 2. J 

(n.1) 

Using the formulae of App, D we obtain for the internal integra­

tions 
. _//2 /1 • J 211 ' ) 

l {-N; 1 ( 2 + £/ 1 (~ - c 

rµ-~£) [(K-yfj1 +E 

d~e r t 2(K-7-ef (B.2) 

! d"r dHi _ i 2(-nJJr3(-f-.)F(zt:) 
-t' {r-t/(9-r} 2 

- r(¾ -1£) frlY 2
E ,. , (B.J) 

Substituting (B.2) and (B,J) into (B.1) results in 

T = 1
1(-HJ½r(i+E)r"(-f.-::EJr(z,:)f· ~- d"~ 

1
E~ 

1
. 

, .. ,r/4-2£).rf¾ -3t) , .. /(1<-r/] 2
+ &1/ (ffr/ . 

' ' ' ' ,, ' ' ':1. 
Performing the momentum integrations and putting K 2 = JJ 2 =(K+ p) 
. . ' . . . . . 

we come to the following expression 

' Ii _'j Ir ) ' ~ I i:f -/+.2£ (a lf) 
Jlcry-E/f"lr£ _!__ J -2f -1+£ d ___)j .'· V, ' 

T = . --1, 2 Jfe dx ,r (t-x) d' . 1n?t: 
r(!,_✓,:)r/4-1£) (K / o O [:t-x/t-;/:t-1);_1 

Changing the order of integrations and using the formulae of 

App. D we have 

T = ,r,; r·(-1--e)r(f.--e)r/'r'iJ 1 f.1, 
r(-1 -3t) r(¾- e) {Kt/£ 0 dd 

-/-f,1£ f . 1/ 
'J F(tE, J-.H:I ¾-l·, .1-;/-1}, 

~l 16 I 17 



where F is the hypergeonretrical function which can be rewritten 

in the i'oll01ving way 

F~E
1
1-tt:, f-E, :f-j~-!JJ} = r(f-c)r{-f-0 -Ff•,1-2~, -¾+J,, 'l~-J'J} + 
' r(f-n)r{-i. +E) 

-t-3E /1 )(-.1 ) ~ /..JJ(B.5) 
+ f:J/4-y)} f'r-t -t: r - ,. + 3t F --}-s~ f +£, f-n:, J(:f-!fJ/. 

r(~t:) r(.t-1t:} 

Expanding now -the hypergeometrical i'unctions in the r.h.s. of (B.5) 

in power· series in 'if {1-J} and integrating over j , we find that 

the only singular term will be 

. . ,r 6 r'/-f-e) r('t£)r(-}-3e) 1 
J ~ --,----'--'-------<-. - (B.6) 

r(¾ -3£) r(t -s-E_). 2£ (KzJ"· 

From (B,6), using the expansions of r -functions we immediately 

6et 

T = ~: ~~Yee +.16 E) (:2)"• 
For removing the singularities we use the DPHZ R-operation with 

the subtractions at K 2=A 2
• The diagram contains one divergent 

subgraph, therefore the result'of the use of R-operation will be 

R@= 0-~J-
. --

For T fi<1/ this leads to 

R r(KzJ=2nr(L 2 -ltL}, 

18 

CD,rf\,+ ,'ii\, ,m, 
'W, W 1 'W' , _ _.. \:_.,,,,, ,_...,, 

where L = /;1 .!!..z 
)% . 

A~cl_ix C 

TaJ>le 1, :r_ = ~:,;)½ h rn 3 

3( T 
n = 6-.2£ I L = /;,,3..

2 

,I z . 

Diagram I Regularized 
expression I Contribution 

to the Green 
i'unction. 

1. -0- 1/ ~ J,2L -- .1. a . 
(k3/E :NE .1-cE + J°E) .12 

"A J/ j ~ E ~ _ _ 1/L 
(K2l 2£ 1-cE +z-1{£ 2 

3. 

-0-0- " h ~L 2
• LL~ :16) {1<3/u. :tH,2 :f.-2cE+TE -.:1 ~ 'I 

~--e- It _}!_f 2_ JLL) _L_L ~- f39 . (K1)2E ..1He2 fcf+6 _ff;'/ .·. 3. 

'-(])--- ' 
h" .1. p 1 f ) h RH 

(K'/1£ 2't£a '::/.-.?cE+6€ 
--{L--t -f/L tr 3 

.A h .:1.. hf . 2 
f I {K.tju ~6E•~-.RcE-1-1E-fl9 - .:16 (L +Jl +yfL) 

'·A hf .:1. J, "L --(K2)n i£ --y 

'A • 
h~ 3 p : Av{L 2-L) (K2)%E f£2 'J.-JcE+j-E-4/c) 

19 



Table _2. 'f> _ (i11lh11J 6 • n=3-2£ · L = f1-1 K,z · 
~--- r , ' A 

Diagram 

1.. 

>0 
!Z.. 

}00( 

'@ 
.. % 
,.~ 

6. ' 

-@-

6.' 

Regularized 
expression 

(K;u 
3
~ {-t.-2c£ + 6£) 

h2 s 
k1~r --;;;2 ~-fc£. +:1:u) 

z 
h :ts ,,.a ---{K,PE. :l.6E 

2 
. h. s 
- {K3/~£ 8£. 

Contribution 
to the Green 
function 

:to hl 
- 3 

1f h 2L 2 

_:1s-1r21,2L 
r 

s 2L -h 2 

~~. 2;, (1- ~c~·:..16E) 1 · .1.0 h .t (L :z_ t;L) 

hi :t 

-(K2j'tE 360£ 

20 
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Appendix_J) 

The main integration formula which holds for arbitrary n 

ia: !1 

r~-f) 
r(otj f d"'p _ i (-17)

2 

(p 2 -2Kf +mo/,{ - (m 2
- K 2).t-i; 

With the help of this equation any scalar diagram may he evaluated 

if one uses the Feynman parameters: 

.., 
0,1 

· 1. r0 +,e) ·1:1 .1-1i- ;,c-, 
- =--- ·t d-t ,r ,r 
Q.t g,s r(o1Jr(,B) / 0 {a,r-1- tft-Y)J-'+Jl 

where r is the Euler function. 

The generalization of this equation to many factors in the 

denominator is 

1. 
a-,, 

"1 

I ) .t :t ,t _, .t. -, I'. J = rr«, + ••• + <X;, rd (_, _X, ' .. _. X;, H t'(:t-)(,-... --K..;_ 
•/) •/j,J,,L)'l••·[f,fh -fi.t, · ... ·fi«n O O [a,t,+,,,+a.,t .. ]"'1 +,.,+,1., 

,/ ) it :J. 1 ,(-I "·-I I Jc1,.-1 
. = r1.t.+. .. +«. /r•·•c!K.fx.•·•d fd /4:.:Y,..,j. µ,-.. :K..,f-Y •. ,g .. .. :11-Y, ---

•/ ) t I ;;.t X, ... .( /. )}I,(~ +al r{.t.J• ... .rr',.1. .. •·,fc?., . . v +Cir.• .,,r. ~-Y •• ,)+,,_+Cl,.(:t-,Y, ..... 
o "o L"",", ... 11,,._, z, ... 11-zt2 • 

For the evalution of the integrals over the Feynman parameters we 

use the following formulae } '/2 
r';idx x 0 -'(,-x)t-, = r(a r, '!) 

,Jo 1(C1+8, 

fdx xA-,11.-x),M-,~-,,r)-1 = r/,4)r!JJ f'~ A .J+h R) /p/<.t Po l· (.:l r(,H-,11) ( JI, I / I,-, , , 

where Fis the hypergeometrical function. 

The essential properties of r- and F-functions are: 

r(1 +x) = x r(x) ; r (h) = {11-.:t} ! ; r (-f) =in ; 
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r~+E)=d-cE:+0(£3/; r{-J+E}=r/J-)~-f.(cHt..2}+o(E:3/), where C is 

the Euler constant; c:::: 0.577; 

F(o( R y i!) = .1 + _!!..:L i! + ,:,((t+.:t.) ,8 (f+1} z :J. ./-
, r' I f•.:f. · J'(f_,.Jj-..f •2 . 

) 

F(t1,f,~ 2)= r(r)r/r-.1-p) F(x, p, o(+13-1-.:1, 1-2)+ 
r(r-,t} r(r-1) 

+ {1- r)t-.1-p r(r) r(.1+p-r} F(r-.,1, f-p, f-,,1-13+.:1, .:1-J 
r(ot) r/,J . ' 
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