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1. Introduction

‘Recent intensgive investigations of ultraviolet behaviour of
the Green functions in different quantum field theory models have
led to the following two facts: 1. There exists a class of asymp-
totically free theories including non-abelian gauge fields/1’2/ or
fields with indefinite metrics/a/. 2. The analysis of subsequent
logarithmic approximations may change the asymptotic behaviour
drastically and, in some cases, leads to'a finite value of the-

Y,

effective coupling constan . In gpite of attractivenesgs of




asymptotically free theories/5/, there have been found no realig-
tic models of such a type. Horeover, the reason for presence or
absence of the asymptotical freedom remainsg unclear.

The present paper is devoted to the investigation from this
point of view of two renormalizable scalar models with the dimen-
sion of the space unequal to four: model V in six dimenslons and
‘model ? in three dimensions. Though these models are not rea-
ligtic, they can serve ag an interesting example of the theories
we spoke above,

The paper is organized as follows: In Sect. 2 we give an
esgential information about the dimensional regularization scheme
and the notation we use. Sect. 3 ig devoted to the h Vﬁ; theory.
In Sect. 4 we consider 't Hooft's approach and compare the results
with the usual BPHZ method. The theory h V{; ig digcugsed in
Sect. 5. The detailed calculations of multiloop‘diagrams in six~
and three-dimensional space with the he;p of dimension&l'regulari—
zation gcheme are presented in Appendices A and B, The results of

calculations and gome ugeful formulae can be found in App. C and D.

2+ The dimensional regularization method

Very useful tool for our purposes proves to be the dimensio-
nal regularization scheme invented by 't Hooft and Veltman/s/.
Thig kind of regularization is known to suit for handling the
gauge theories, but it appears to be very useful in the cage of
scalar models ag well, egpecially for the space-~time dimensiong

unequal to four.

We briefly recall the scheme of the method. Let M, be the
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A

space dlmenslon of the theory we are dealing with. For the given

Feynman dlagram the corresponding momentum integral is convergent

. Tor the set {n‘} of the positive integer space dlmens;ons, 1nc1u-

ding n, or not. Then the integral can be.defined for all "dimen~-
sions" n through the analytical continuation in n from the sget
(h-} 1nto the complex n-plane. The requlred formulae are given
in Appendix D. The 1ntegral becomesthe finite analytlcal function
throughouttvthe whole n-plane except for the integer positive
value of n beginning from some M. At these integer po;nts"the
integral has poles_of the type:
4
=m=x]" en Ko, AT
We ghall regard only n near /], , namely /7 =;n,—2§.

Tor integer kK20, /N >0

Then the physical theory implies E£—0 . Apparently tbis
11miting process requlres subtractlons due to the presence ol
poles in £ . Only for the convergent diagram we may put £
equal to zero without any subtractions. Provided the diagram di-
verges or.pontalns divergent subgraphs it has a slngularlty -E;;
with A< number ol' loops. Becausge the analyt1ca1 contlnuatlon
from digcrete set (ﬂ } ig not unlque, there exlsts a pOSSlblll—
ty to add an arbltrary polynom1a1 to the regularlzed expresslon
of the 1ntegral. So one may uge different subtractlon procedures.
For instance,r't Hooft and Veltman/ﬁl propose to subtract only
the pole terms of the Laurent expanslon in £ of the dlvergent
integral (some consequences of this proposal will be dlscussed
in Sect. 4). However, in the pregent paper we subtract the diver-
gent integrals at the point kZ=)? , according to the BPHZ
/7/

R-operation



For the renormalization group analysis we need just ultra-
violet logarithmical asymptotics, so0 only pole terms of the diag-

ramg are important. Indeed the unsubtracted expression ]ooks like
V%

h /4,1/ ' /41 )
ot — + 0(e)
/KZ/ME e e T -
Expanding (K 2} in power series in’ € and subtracting at ki=A?
we find that A, terms are of the type A, €7l MK x* and

/{2
vanish as £ —0 . So they will not contribute to the logarithmi-

cal asymptotics.

We investigate renormalizable scalar models of the type:
h (/7(:; ) ,whgre H, is a d:f.mvensionrof‘ space-time. Throughout this
paper we use the following notation:

D/L, /1/ - 'propagator of the scalar particle with the norma-
. / 2
lization condition D0 #/=1 | where L = Zn:—z 5

lines;

h/[, h/“‘/l/—'.D 2 ' - invariant couphng consgtant (ICC),:

hlo4)=4
2 ‘2 2 . ;
Qur metrics is p/,p/’ Ep = P ‘_P1‘—‘... ’/Dn.,—1
The analysis of the ultraviolet behaviour is based on the

differential Lie equationg of the renormalization group
9h(L,n/ /—" /. " ‘
L= _/;/L A (1
where 5”//’ is the Gell-Mann-Low function
w(h] = 9/12/4, /7// o (2)
L . .

L=0

/—'/[_’ h/ - normalized proper vertex part»with 77 - external )

e ——y

3
‘3. The theory /760(Q

Consider the renormalizable scalar theory in six~dimensio~
nal space-tlme. The interaction Lagrang:.an looks as follows:
L_A__ ¢/6} « The factor {977/ is introduced to Blmpllfy

subsequent expressions. The invariant coupling constant (ICC)

/71/[_’A/=h2f2D3

The diagrams which contribute to the three-vertex [ and pro-

ias chosen in the form

pagator D are shown in Table 1. As far as we are interested in
the high-energy behaviour all masses can be neglected provided
that all subtiractions are made far off the mass shell. Contributi-

ong to the Gell-Mann-Low function only come from the pole terms

"in &€ (see Sect. 2) of the corresponding integrals.

In the lowest order in h the calculations are rather simple.

Before making subtractions one has

O = by (e

p -
> = f/z-m%—w/,

where C is the Euler constant arising from the expansion of

(3)

A 2z
/--function and { depends on the relation between k? s P

and q
5 - /
e ,.f—/ /dx/dg xzh(j - 2 151 Ly 14y
In the case of ID ‘= k? we have £ = -0,468.
In above expressions (3) we keep the finite terms-in €
which are not relevanf here but will be necessary for the R-ope-

2
ration in next-order calculations. After the subtraction at K*=1 .

we come to the following expressions for D s /-' and ICC

e,



kL _ b
D—i*‘}?‘; [-"‘1 —2——

2 3 4 2 -
=4°[1-Fh"L]
and congequently the Gell-Mann~Low function

plh}) = -2 4"
Thus we have .the asymptotically free theory in six dimensions.
Note that this result émerges without non-abelian gauge fields
and without fields with indefinite metrics.
Now we turn to the next logarithmical approximation. In
App. A we congider in more detail the calculation of diagram 5,
Table 1 to illustrate the use of the BPHZ R-operation in the

dimensional method for the diagrams with overlapbing divergences.

Contributions of .all diagrams are shown in Table 1. They lead to

the t'ollowing expressions for D ,‘ . and ICC. )
4 ¢

b _ h'LE /. / _

D=1+ 12 35 4

4L fh‘i. W/
r 7 2+—1_6—__T/3_+7[/

2 _,2f,_ 3,2 9,92 425 .9

The leading logarithmic terms form, as usual, thei,geometri—
cal progression. Note that ICC is independent of -f contai‘ning
ail the info’rmation about the relations between external momenta.

‘The Gell-Mann-Low function then will be

p(hy) = -2 4" 225,4° @)

T 19y

Thus we can see, that the second term is of the same sign and will

not change the’ asymptotic behaviour, just as in the selfinteraction

/12/

Yang-llills theory . The theory is asymptotically free independen-

tly of the. low-energy value /1=/I(0)‘ up to the two-loop level.

4. 't Hooft's scheme of renormalization

It would be interesting to compare our results with thoge
/6 /. For
/8/

obtalned by the subtraction scheme of 't Hooft and Veltman
this purpose Wwe use the formalism recently proposed by 't Hooft
The interaction Lagrangian is Q_’Z— . The dimension of
the space-time /1 equals 6—2¢ , ‘hence the bare coupling cons-
tant /13 has ‘the mags dimension £ . i‘{g express hg ‘in terms
of & ’ "unit of mags" /‘1 and Vthe dimensionless renormalized
,coupling:cpnstant‘h by the following expansion

gt e 5B < (5 5 A

n=/ ni=eer

Similarly the renormalization conetant Z,—- qf the dimensionless

Green function /’ is

C/h =z (///7/
-1+Z =1+25 ¢,
h=l n=; m=pn
The main Tact establighed by 't Hooft/s/ is that we can
(w1}

chooge 0,{.,'"/ and Cn go" that performing the calculations with

hg given by (5) and multiplying /—' by the c‘qx:trespori‘ding Z,
we can put E=0 , i.e.,ali polgs of’ the type Ex/ cancel in. any
: given order of - perturbation theory. .The requirement of cancellation
of the -singularities allows us.to.calculate &, /A/and Cn//i/
uniquely', order by order in.- A 2 .-

The renormalized Green function.is

/z,h/ &m Z/ﬁé///‘( A//wh //



v

It satisfies the renormalization group equation of 't Hooft and
Veinberg

/8,9,10/
[‘“"/5//7 42 J//'//’V//;//-,/72/=0 y

sl = (15 -2)a (i

plays the role of the Gell~Mann-Low function,

L) = - K2 e fhy

is an anomalous dimengion of /; , L = 51/—; .

where

¥e have performed the calculations using the described

method up to the two-loop level and obtained the following results:
z/[h 3_&‘ 9 h® _ 225 4°

f46 €1 T 259 € )

mv=—fﬂ—;%;4f ,
z = “_h_ st 234
r 2 *Zee? J6 ¢
yo=&, st )

2 Y8 ’
A S VA 13 4°

126 144€? s6y e

f, = —h°_ 134%

12 ¢32

where 7 is defined by D, =7 DB .

One can see that /B/h/ coincides with 50//1/(4) calculated
in Sect. 3. Note should be made thai our results (6) are not
identical with those of Macfarlane and qu/11/ who treated the

same model by 't Hooft's method.

0

B U S = S

s
5. The theory h Y

Consider now the renormalizable scalar theory in three-
dimensional space-time with the interaction Lagrangian of the

form

7 h
X = /83//

The ICC here is
F(L k)= kD’
The dlagrams which contribute to the six~vertex /" and to
the propagator Z) are shown in Table 2, To calculate the Gell-
Mann-Low function we are only interested in the pole terms in £

of the corresponding integrals. It should be noted that the

does not oontain such poles and will not contribute to the ICC
agymptotical expression.

To illus@rate the possibilities of the dimensional method -
in calculation of multiloop diagrams in three-dimensional space
and the use of the BPHZ R-operation we congider diagram 5, Table
2 (see App. B).

The results of calculations for all the diagrams are shown
in Table 2. Théy lead to the following expressiong for D , /“
and ICC: z

D = .1"/‘3;—0-1.

?

| =1-£5 +%'_042L2,\~ %{zf[ /77’+1a/)
./7{1,/,/=/;[1-:;2/,L-+‘1-;£/,2z2.-79. o2 h°L]



The Gell-Mann-Low function then looks as follows
Olh)= -224* 34 42 4°
Thus in the lowest order in h for different signs of A
we have the agymptotic freedom 6h>q/or "ghost-type" behaviour
(h < 0) . Taking into account the next terms of perturbation eipan~
sion we can see that the aituation in the case of /1<tDchanges
/13/

dractically just as it takes place in 9?5 theory « Equation

(1) in this approximation has the form

DRLH _ pl) =~ L5 2442 F
and leads. to the flnite asymptotic value of the. ICC equal to
==0,045. The anomalous dimension of -the. field will be -very small:
& = 2,22-1075,

So, the question. of: relative contribution of the next term .
to the function P/Z/ is very crucial. The situation thus is very
similar to that in 9%¢ theory w1th the coefficients of the
Gell-Mann~-Low function-increasing even more rapidly.. Therefore one
can only suppose the existence of some "compensation mechanism"

resulting in a finite value of h .-
6. Conclugion

The above considered examples allow us to conclude that
asymptotical freedom is not an exceptional propérty of non-abelian
gauge fielﬁs'or of those with indefinite metrics and can arise in
other quantuﬁ field models.

At the same time it should be noted that the theories with
2net mrmyﬁ,mdﬁfﬂ

h positive geem to be nonrealistic for they have nb ground

interaction of the form A 4

state from the quasi-classical point of view: But there are the .

12
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. 3 ¥ & ;
theories of such a type, namely /7 ‘ﬂ(s/ , /750/‘,/ . h V{;/ , that
exhibit asymptotically free behaviour. It looks like that nature

avoids asymptotical freedom.

The authors wish to express their deep gratitude to
D.V.Shirkov for suggesting thig subject and numerous helpful

digcugsions and to A.V.Efremov for interest in this work.



Appendix A

Here we consider the calculation of diagram 5, Table 1. The

corresponding integral looks as follows

d"? Jd7e
9%k-g)*(9-¢)%e* (- e)*

After the parsmetrization and momentum integrations according to

h = 6-2¢ .

the formula of App.D we come to the following expression

4 - _ F‘Ft’l‘ff/ I~f 7tEf of z [dt £ ‘:(— Z—l+£ .

T ( (x?)~1"2E /dXX ( X/ / J/d / [4’/,( g ,{/]-/415 s(A.1)

were  B(ry,2,t) = da(tts)fir) v yli-t)t-ry) -
"31/1“*/2/1‘*/"7232 tlr-2)fa-x).

The integral in r.h.s. of (A.1) possesses simple pole at £=0,
We rewrite it in the following way

<
K f'(-—.uz:
T= ‘(k‘/-/*lf / 'J;+J-1 —ITX‘ZT"j ’ (A.z)
where ree

_f‘dx x"lx)" /e/;/zdz/ ot 13 f1-tzfle-e] & ",
=/a dr x'” 5-,(}"“0 d”/i-y,//o clzécbh‘/t-f/ E
T, ="(:c/x x’“‘(-x/‘/:da z,*fae/:u efee) ST
7, = fdx x"‘{w}‘[ 13 dy /: T Je '[ i )t T

'4 kR

It should be noted, that the integrals J; and J, are not
singular in . € and hence we can put £€=0 , Then we immediately

get

F
T, = 2q : (a.3)

As for Ti and 7T y they are singular when integrating over

+ and X correspondingly. The singular integral has the form

T(e) =[x @ss)dx
. W E
Integrating by -parts and expanding X in power series in £ we

find
T/s/ = _/_V_EQ/,‘E//‘{;- %‘/’JA+£ ﬂy,}’+aé"//@:/xl z/ dr
& ) ()

Provided the remaining integral converges we may put £ =0 and get

T~ LG [ br 0/lio]

Using this formula,the éalculations are straightforward and

-

re-e)rfe-e)r (-2
r(s-2¢) r(4-1<)

r z/?—Ze/ f'/‘l‘i/
/'/f-%z//‘/3 —5/

give

£ _
€

M

J:L =
(A.4)

=
£

Substituting (A.3) and (A.4) into (A.2) and using the [/ -function
expanpion we ultimately obtain

/K/_ e K,/zs (j zcs+6s/'

12¢?



In order to remove the singularities we use the BPHZ R-ope-
. 2
ration with the subtractions:at k?= A", The diagram containg two

divergent subgraphs and leads to the following R-operation proce-

.dure

R{]) - {])- CD Q“O Q

where the dotted line denotes the value oi the integral at

Then for Tﬂ(/ we finad: - P A

R T(c* ﬂ+%ﬂ]

All other diagrams can be calculated similarly.

Y
f&rf%» I

Appendix B

Consider diagram 5, Table 2. After petting all the magses

equal to zero the corresponding 'integral looks as {ollows

dr d L (B.1)

= 3-2¢
s

=/d?v 4"
(r+3)" € *e-g -¢)* *’(r-f/’/s*—r/l

Uslng the formulae of App. D we obtaln for the 1nternal 1ntegra-

_ z{r//l/"/ +£ /'/ e/
rfae) [le-gBRE

fd/"d{ _z{r//"/"f/ﬁf/
r_‘_[?#_,{/z&_,/z, /-/3 ,32/ [y/“ w oo (Be3)

Subatituting (B.2) and (B 3) 1nto (B 1) results in

Pl r s/fﬁi/ o
IS —3&/ Jx- ?/]1‘5/7/25//’"7/

Performlng the momentum 1ntegrat10ns and puttlng k2 _/J :ﬂ{+//

tlons

(B.2)

d"¢
J'€ (k /

we come to the follow1ng expression

f/;r—;g//*/i—Z/ [‘(/”/d rle / ”9@ ~afh- j/f i//]

Changing the order of integrations and using the formulae of

T

App. D we have

veril gl £ 1.
T = /‘25'35//"/%"5/ (qug/g d F/f_{lf/——é J_J/_J//,

17



where F ig the hypergeometrical function which can be rewrit ten

F'/’/£ 1—15 ,3-¢, 1-5/ ;// LL_/L/':—“/ /E.{-zsl--;-+3£’ yﬁvj/+

1% -« }/‘/1 +£

43¢ /‘/7’-5//'/-:+3d e fee 3ose, gl (B.5)
+[‘7/1»-’./] rlhe) ri1-2¢) 7f/ 2 y/ //

in the following way

Expanding now the hypergeometrical functions in the r.h.s of (B.5)
in power geries in g/t-(y/ and integrating over y , we find thét

the only singular term will be

N L4 —-E/f//f/'3£ z (B.6)
it s T

From {B.6), using the expansions of [ ~functions we immediately

get
222 K{ (233 +15£ (K/"E

For removing the singularities we use the BPHZ R-operation with
the subtractione at KzﬁJz . The diagram contains one divergent

subgraph, therefore' the result of the use of R-operation will be

D -B-O-00- QD

For Tﬂ(/ this leads to -

R Tﬂ(‘/=z;r"/L"— 4/_/’ th L =4 x

Appendix C
3/2 : 2
47 3 - = X
Table 1. I=—/?7/—/7$ﬂ ’/7=6'2£/L &Jz‘
Diagra:ﬁ Regularl:.zed’ Contribution
- expresoion to the Green
vfunction'
1. ’ » 2 . 2
- _h L C‘t-CE +£E) hL
(Kz/E 12¢ 3 z2
2. v h 2 V 2,
bl
) ({—-ct +-—-2 ) -
A (K’/E 2¢ ( f z
3 .
: ¢/2
/: 46 AL
OO |feabonertd] 4

M/" 26t ({—]c£+6€)

w“m e getrg

/14
(7/"??

(szzs (Z 2c£+-*£ 4f6)

’
(j}"]”z (1 % +¢35),
é

2 11/_/
199
5’ 2122, _yg z/
_7}_/4 sL =

_hf_(é +2L +9/A/
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)

}2 / P
6 . = &,
Table 2. . I:%—/vsﬂ ;on=3-2¢ ; L =4thig
] Regularized ggnzﬁibéiigg
. Diagram expregséon‘ function
1. h &
LNy 6 {7
_9@ (ey*t 3¢ ﬁ Zet +. E) 5t
2. - ’ :
s 5‘( ) 20 4% 2
— —— ({-YeE+12¢ = h
KK g (e | 4
h 157° 2
h 152
Tk Rk
2 5 2
h. 5 2hL

S

©
A
&

e ze

5 ({ 9:5*155}

e

2

(k*)* 360 ¢
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Appendix D

The main integration formula which holds for arbitrary n

is

i)

f/f" ~2up em?) "

T

ri<-%/

r{)

With the help of this equation any pealar diagram may he evaluated

" if one uses the Peynman parameters:
i T ﬁ( +,R/
%87 "l

/f/ ¥ -/

[ax + ¢fe- ,r/_/'”’? ’

where fﬁ is the Euler function.

The generalization of thig equation to nany factors in the

" denominator is

4 _ /_'%(,*..."""(n/
o’ . o _r/.«,/-._.-f/aa‘,//z/}c /J[ax

K{ -+, 40/_/
rM fﬁ’?

&1

"dx/x' x| d (E WY [
¢
o

/ w ]

J‘/1—x, =~ /

+“+01_7d+ “n

)"

[0)’ 'l‘,- 40,):

use .the following formulae

fidx Xa-/ﬁ_le‘/ _ /;(;q{/;fg/

/dx,r“(i )" a-pr) 7 =

i)

where F ig the hypergeometrical function.

The esgential Properties of

rt+x)=xr)

2]

/1- /* ‘0[1—)’ LA

_ For the evalution of the integrals over. the Feynman parameters we

/‘///"//F//’ ,4,,,1'1«/«,,/3/). Jp/<4,

[ - and P-functions are:

rln)=b-9! ; ri4) s



("/14»2'/—- —C€+0/£/ F/‘*g/ /-’///t eﬁ‘+2€n2/+o/e}/ where C is

the Euler constant;.C = 0.577;

F/ p/z/ 1+—‘B—z+4@/—’“—ﬂ"—”zzz+...- ;

V(1)1 -2

Alar o) < LU Rl s, <1t 12
+(7- I—L-p f'///‘/,u/f-’/ - /_ '[_0/_/;,_,) _{-;_./
g A f ,,
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