СООБЩЕНИЯ
OБ ВЕАИHEHHOГO ИНСТИТУТА
ЯАЕРНЫХ
ИССАЕАОВАНИЙ
D.I.Kazakov, L.R.Lomidze, N.V.Makhaldiani,
A.A.Vladimirov

ULTRAVIOLET ASYMPTOTICS
IN RENORMALIZABLE SCALAR THEORIES

1974
ААБОРАТОРИА
TEOPETИYЕСНОЙ

E2 - 8085

D.I.Kazakov, L.R.Lomidze, ${ }^{*}$ N.V.Makhaldiani, ${ }^{*}$ A.A.Vladimirov

ULTRAVIOLET ASYMPTOTICS
IN RENORMALIZABLE SCALAR THEORIES

* Tbilisi State University, Physical Department.

1. Introduction

Recent intensive investigations of ultraviolet behaviour of the Green functions in different quantum field theory models have led to the following two facta: 1. There exista a class of asymptotically free theories including non-abelian gauge fields ${ }^{1,2 /}$ or fields with indefinite metrics/3/. 2. The analysis of subsequent logarithmic approximations may change the aaymptotic behaviour drastically and, in aome cases, leads to a finite value of the effective coupling constant/4/. In apite of attractiveness of
asymptotically free theories $/ 5 /$, there have been found no realistic models of such a type. Moreover, the reason for presence or absence of the asymptotical freedom remains unclear.

The present paper is devoted to the investigation from this point of view of two renormalizable scalar models with the dimension of the space unequal to four: model φ^{3} in six dimensions and model φ^{6} in three dimensions. Though these models are not realistic, they can serve as an interesting example of the theories we spoke above.

The paper is organized as follows: In sect. 2 we give an essential information about the dimenaional regularization scheme and the notation we use. Sect. 3 is devoted to the $h \varphi_{(6)}^{3}$ theory. In Sect. 4 we consider 't Hooft's approach and compare the results with the usual BPHZ method. The theory $h \varphi_{(3)}^{6}$ is discussed in Sect. 5. The detailed calculations of multiloop diagrams in sixand three-dimensional space with the help of dimensional regularization scheme are presented in Appendices A and B. The results of calculations and some useful formulae can be found in App. C and D.

2. The dimensional regularization method

Very useful tool for our purposes proves to be the dimensional regularization scheme invented by 't Hooft and Veltman $/ 6 /$. This kind of regularization is known to suit for handling the gauge theories, but it appara to be very useful in the case of scalar models as well, especially for the space-time dimensions unequal to four.

We briefly recall the scheme of the method. Let n_{0} be the
space dimension of the theory we are dealing with. For the given Feymman diagram the corresponding momentum integral is convergent for the set $\left\{n_{i}\right\}$ of the positive integer space dimensions, including n_{0} or not. Then the integral can be defined for all "dinonsions" n through the analytical continuation in n from the set $\left\{n_{i}\right\}$ into the complex $n-p l a n e$. The required formulae are given in Appendix D. The integral becomesthe finite analytical function throughout the whole n-plane except for the integer positive value of n beginning from some M. At these integer points the integral has poles of the type

$$
\frac{1}{(n-M-K)^{N}} \quad \text { for integer } \quad k \geqslant 0, N>0
$$

We shall regard only n near n_{0}, namely $n=n_{0}-2 \varepsilon$.
Then the physical theory implies $\varepsilon \rightarrow 0$. Apparently this
limiting process requires subtractions due to the presence of poles in ε. Only for the convergent diagram we may put ε equal to zero without any subtractions. Provided the diagram diverges or contains divergent subgraphs it has a singularity $\sim \frac{1}{\varepsilon^{N}}$ with $N \leqslant$ number of loops. Because the analytical continuation from discrete set $\left\{n_{i}\right\}$ is not unique, there exists a possibility to add an arbitrary polynomial to the regularized expression of the integral. So one may use different subtraction procedures. For instance, 't Hooft and Veltman/6/ propose to subtract only the pole terms of the Laurent expansion in ε of the divergent integral (some consequences of this proposal will be discussed in Sect. 4). However, in the present paper we subtract the divergent integrals at the point $K^{2}=\lambda^{2}$, according to the BPHZ R-operation $/ 7 /$.

For the renormalization group analysis we need just ultraviolet logarithmical asymptotics, so only pole terms of the diagrams are important. Indeed the unsubtracted expression looks like

$$
\frac{h^{N}}{\left(k^{2}\right)^{N \varepsilon}}\left(\frac{A_{N}}{\varepsilon^{N}}+\ldots+\frac{A_{1}}{\varepsilon}+A_{c}+O(\varepsilon)\right)
$$

Expanding $\left(K^{2}\right)^{-N \varepsilon}$ in power series in ε and subtracting at $k^{2}=\lambda^{2}$ we 1 ind that A_{0} terms are of the type $A_{0} \varepsilon^{m} \ln ^{m} \frac{\kappa^{2}}{\lambda^{2}}$ and vanish as $\varepsilon \rightarrow 0$. So they will not contribute to the logarithmical asymptotics.

We investigate renormalizable scalar models of the type $h \varphi_{\left(n_{0}\right)}^{m}$, where n_{0} is a dimension of space-time. Throughout this paper we use the following notation:
$D(L, h)$ - propagator of the scalar particle with the normalization condition $D(0, h)=1$, where $L=\ln \frac{k^{2}}{d^{2}}$;
$\Gamma(L, h)$ - normalized proper vertex part with m external lines;

$$
\bar{h}(L, h)=h \Gamma D^{\frac{m}{2}} \text { - invariant coupling constant (ICC) }
$$

$\bar{h}(0, h)=h$:
Our netrics is $p_{\mu} \rho^{\mu} \equiv \rho^{2}=p_{0}^{2}-\rho_{1}^{2}-\ldots-\rho_{n_{0}-1}^{2}$
The analysis of the ultraviolet behaviour is based on the differential Lie equations of the renormalization group

$$
\begin{equation*}
\frac{\partial \bar{h}(L, h)}{\partial L}=\varphi(\bar{h}(L, h)) \tag{1}
\end{equation*}
$$

where $\varphi(h)$ is the Gell-Mann-Low function

$$
\begin{equation*}
\varphi(h)=\left.\frac{\partial \bar{h}(L, h)}{\partial L}\right|_{L=0} \tag{2}
\end{equation*}
$$

3. The theory $h\left(\varphi_{16}^{3}\right.$

Consider the renormalizable scalar theory in six-dimensional space-time. The interaction Lagrangian looks as follows:

$$
\mathcal{L}=\frac{(4 \pi)^{3 / 2} h}{3!} \varphi_{(6)}^{3} \text {. The factor }(4 \pi)^{3 / 2} \text { is introduced to simplify }
$$ subsequent expressions. The invariant coupling constant (ICC)

is chosen in the form

$$
\bar{h}^{2}(L, h)=h^{2} \Gamma^{2} D^{3}
$$

The diagrams which contribute to the three-vertex Γ and propagator D are shown in Table 1. As far as we are interested in the high-energy behaviour all masses can be neglected provided that all subtractions are made far off the mass shell. Contributions to the Gell-Mann-Low function only come trom the pole terms in \mathcal{E} (see Sect. 2) of the corresponding integrals.

In the lowest order in h the calculations are rather simple. Before making aubtractions one has

$$
\text { (} \Rightarrow-\frac{h^{2}}{12 \varepsilon}\left(k^{2}\right)^{-\varepsilon}\left(1-c \varepsilon+\frac{8}{3} \varepsilon\right)
$$

where C is the Euler constant arising from the expansion of
Γ-function and f depends on the relation between K^{2}, P^{2} and q^{2}

$$
f\left(\frac{p^{2}}{k^{2}}, \frac{q^{2}}{k^{2}}\right)=\int_{0}^{1} d x \int_{0}^{1} d y x \ln \left\{1-y+\frac{p^{2}}{k^{2}} y+x\left[\frac{q^{2}}{k^{2}} y(1-y)-\frac{p^{2}}{k^{2}} y-1+y\right]\right\}
$$

In the case of $p^{2}=q^{2}=k^{2}$ we have $f=-0,468$.
In above expressions (3) we keep the finite terns in ε which are not relevant here but will be necessary for the R-operation in next-order calculations. After the subtraction at $k^{2}=\lambda^{2}$. we come to the following expressions for D, Γ and ICC
$D=1+\frac{h^{2} L}{12}, \quad \Gamma=1-\frac{h^{2} L}{2}, \quad \bar{h}^{2}=h^{2}\left[1-\frac{3}{4} h^{2} L\right]$
and consequently the Gell-Mann-Low function

$$
\varphi\left(h^{2}\right)=-\frac{3}{4} h^{4}
$$

Thus we have the asymptotically free theory in six dimensions. Note that this result emerges without non-abelian gauge fields and without fields with inderinite metrics.

Now we turn to the next logarithmical approximation. In App. A we consider in more detail the calculation of diagram 5, Table 1 to illustrate the use of the BPHZ R-operation in the dimensional method for the diagramo with overlapping divergences. Contributions of all diagrams are shown in Table 1. They lead to the following expressions for D, Γ and ICC:

$$
\begin{aligned}
& D=1+\frac{h^{2} L}{12}-\frac{h^{4} L^{2}}{36}+\frac{h^{4} L}{6}\left(\frac{91}{72}+f\right) \\
& \Gamma=1-\frac{h^{2} L}{2}+\frac{5 h^{4} L^{2}}{16}-\frac{h^{4} L}{4}(3+f) \\
& h^{2}=h^{2}\left[1-\frac{3}{4} h^{2} L+\frac{9}{16} h^{4} L^{2}-\frac{125}{144} h^{4} L\right]
\end{aligned}
$$

The leading logarithmic terms form, as usual, the geometrical progression. Note that ICC is independent of f containing ail the information about the relations between external momenta.

The Gell-Hann-Low function then will be

$$
\begin{equation*}
\varphi\left(h^{2}\right)=-\frac{3}{4} h^{4}-\frac{125}{144} h^{6} \tag{4}
\end{equation*}
$$

Thus we can see, that the second term is of the same sign and will not chanfe the asymptotic behaviour, just as in the selfinteraction Yang-iIills theory/12/. The theory is asymptotically free independen-

4. It Hoof'ta scheme of renormalization

It would be interesting to compare our results with those obtained by the subtraction scheme of 't Hooft and Veltman ${ }^{16 / \text {. For }}$ this purpose we use the formalism recently proposed by it Hooft

The interaction Lagrangian is $\frac{(4 \pi)^{3 / 2}}{3!} h_{B} \varphi^{3}$. The dimension of the space-time n equals $6-2 \varepsilon$, hence the bare coupling constant h_{B} has the mass dimension ε. We express h_{B} in terms of ε, "unit of mass" μ and the dimensionless renormalized coupling constant h by the following expansion

$$
\begin{equation*}
h_{B}^{2}=\left(\mu^{2}\right)^{\varepsilon}\left[h^{2}+\sum_{n=1}^{\infty} \frac{a_{n}\left(h^{2}\right)}{\varepsilon^{n}}\right]=\left(\mu^{2}\right)^{\varepsilon}\left[h^{2}+\sum_{n=1}^{\infty} \sum_{n==\cdots}^{\infty} a_{n}^{(n)}-\frac{\left(h^{2}\right)^{n}}{\varepsilon^{n}}\right] \tag{5}
\end{equation*}
$$

Similarly the renormalization constant Z_{Γ} of the dimensionless Green function Γ is

$$
Z_{\Gamma}=1+\sum_{n=1}^{\infty} \frac{C_{n}\left(h^{2}\right)}{\varepsilon^{n}}=1+\sum_{n=1}^{\infty} \sum_{m=n}^{\infty} C_{n}^{(m)} \frac{\left(h^{2}\right)^{m}}{\varepsilon^{n}}
$$

The main fact established by 't Hoort $/ 8 /$ is that we can choose $a_{n}^{(m)}$ and $C_{n}^{(m)}$ so that performing the calculations with h_{B} given by (5) and multiplying Γ by the corresponding Z_{r} we can put $\varepsilon=0$, i.e., all poles of the type $\frac{1}{\varepsilon^{2}}$ cancel in any given order of perturbation theory. The requirement of cencellation of the singularities allows us to. calculate $a_{n}\left(h^{2}\right)$ and $C_{n}\left(h^{2}\right)$ uniquely, order by order in: h^{2}.

The renormalized Green function is

$$
\Gamma_{R}\left(\frac{k^{2}}{\mu^{2}}, h^{2}\right)=\lim _{\varepsilon \rightarrow 0} Z_{\Gamma}\left(h^{2}, \varepsilon\right) \cdot \Gamma_{B}\left(k^{2} h_{B}^{2}\left(\mu^{2}, h^{2}, \varepsilon\right), \varepsilon\right)
$$

It satisfies the renormalization group equation of 't Hooft and Neinberg $/ 8,9,10 /$

$$
\left[\frac{\partial}{\partial L}-\beta\left(h^{2}\right) \frac{\partial}{\partial h^{2}}+\gamma_{\Gamma}\left(h^{2}\right)\right]_{R}\left(L, h^{2}\right)=0
$$

where

$$
\beta\left(h^{2}\right)=\left(h^{2} \frac{\partial}{\partial h^{2}}-1\right) a_{1}\left(h^{2}\right)
$$

plays the role or the Gell-liann-Low function,

$$
\gamma_{\Gamma}\left(h^{2}\right)=-h^{2} \frac{\partial}{\partial h^{2}} C_{1}\left(h^{2}\right)
$$

is an anomalous dimension of $\Gamma_{R}, L=\ell_{\mu} \frac{K^{2}}{\mu^{2}} \cdot$
We have performed the calculations using the described
method up to the two-loop level and obtained the following results:

$$
\begin{align*}
& h_{B}^{2}=\left(\mu^{2}\right)^{\varepsilon}\left[h^{2}-\frac{3}{4} \frac{h^{4}}{\varepsilon}+\frac{9}{16} \frac{h^{6}}{\varepsilon^{2}}-\frac{125}{288} \frac{h^{6}}{\varepsilon}\right] \\
& \beta\left(h^{2}\right)=-\frac{3}{4} h^{4}-\frac{125}{144} h^{6}, \\
& Z_{r}=1-\frac{h^{2}}{2 \varepsilon}+\frac{5 h^{4}}{16 \varepsilon^{2}}-\frac{23 h^{4}}{96 \varepsilon}, \\
& \gamma_{\Gamma}=\frac{h^{2}}{2}+\frac{23 h^{4}}{48}, \tag{6}\\
& Z=1-\frac{h^{2}}{12 \varepsilon}+\frac{5 h^{4}}{144 \varepsilon^{2}}-\frac{13 h^{4}}{864 \varepsilon}, \\
& \gamma_{D}=-\frac{h^{2}}{12}-\frac{13 h^{4}}{432},
\end{align*}
$$

where Z is defined by $D_{R}=Z^{-\prime} D_{B}$.
One can see that $\beta\left(h^{2}\right)$ coincides with $\varphi\left(h^{2}\right)(4)$ calculated in Sect. 3. Note should be made that our results (6) are not identical with those of Macfarlane and Woo/11/ who treated the same model by 't Hooft's method.

5. The theory $h \varphi_{(3)}^{6}$

Consider now the renormalizable scalar theory in threedimenaional space-time with the interaction Lagrangian of the forif

$$
\mathcal{L}=\frac{(8 \pi)^{2} h}{3!} \varphi^{6}
$$

The ICC here is

$$
\bar{h}(L, h)=h \Gamma D^{3}
$$

The diagrams which contribute to the six-vertex Γ° and to the propagator D are shown in Table 2. To calculate the Gell-Mann-Low function we are only interested in the pole terms in \mathcal{E} of the corresponding integrals. It should be noted that the diagram

does not oontain such poles and will not contribute to the ICC asymptotical expression.

To illustrate the possibilities of the dimensional method in calculation of multiloop diagrams in three-dimensional space and the use of the BPHZ R-operation we consider diagram 5, Table 2 (see App. B).

The results of calculations for all the diagrams are shown in Table 2. They lead to the following expressions for D, Γ and ICC:

$$
\begin{gathered}
D=1+\frac{h^{2}}{90} L \\
\Gamma=1-\frac{10}{3} h L+\frac{100}{9} h^{2} L^{2}-\frac{15}{4} h^{2} L\left(\pi^{2}+10\right) \\
h(L, h)=h\left[1-\frac{10}{3} h L+\frac{100}{9} h^{2} L^{2}-74.47 h^{2} L\right]
\end{gathered}
$$

The Gell-Mann-Low function then looks as follows

$$
\varphi(h)=-\frac{10}{3} h^{2}-74.47 h^{3}
$$

Thus in the lowest order in h for different signs of h we have the asymptotic rreedom ($h>0$) or "ghost-type" behaviour $(h<0)$. Taking into account the next terms of perturbation expangion we can see that the situation in the case of $h<0$ changes dractically just as it takes place in $\varphi_{(4)}^{4}$ theory $113 /$. Equation (1) in this approximation has the form

$$
\frac{\partial \bar{h}(L, h)}{\partial L}=\varphi(\bar{h})=-\frac{10}{3} \bar{h}^{2}-74.47 \bar{h}^{3}
$$

and leads to the finite agymptotic value of the ICC equal to $H=-0.045$. The anomalous dimension of the field will be very amall: $\alpha=2.22 \cdot 10^{-5}$.

So, the question of relative contribution of the next term to the function $\varphi(h)$ is very crucial. The situation thus is very similar to that in $\varphi_{(4)}^{4}$ theory with the coefficients of the Gell-Mann-Low function"increasing even more rapidly. Therefore one can only suppose the existence of some "compensation mechanism" resulting in a finite value of \bar{h}.

6. Conclusion

The above considered examples allow us to conclude that asymptotical freedom is not an exceptional property of non-abelian gauge fields or of those with indefinite metrics and can arise in other quantum field models.

At the same time it should be noted that the theories with interaction of the form $h \varphi^{2 n+1}$ for eny h and $h p^{2 n}$ for
h positive seem to be nonrealistic for they have no ground state from the quasi-classical point of view: But there are the
theories of such a type, namely $h \varphi_{(6)}^{3}, h \varphi_{(4)}^{4}, h \varphi_{(3)}^{6}$, that exhibit asymptotically free behaviour. It looks like that nature avoids asymptotical freedom.

The authors wish to express their deep gratitude to D. V. Shirkov for auggeating this subject and numerous helprul discussions and to A.V.Efremov for interest in this work.

Appendix A

Here we consider the calculation of diagram 5, Table 1. The corresponding integral looks as follows

$$
J=\int \frac{d^{n} q d^{n} e}{q^{2}(k-q)^{2}(q-e)^{2} e^{2}(k-l)^{2}} \quad, \quad n=6-2 \varepsilon
$$

After the parametrization and momentum integrations according to the formula of App.D we come to the following expression

$$
J=-\frac{\pi^{6} \Gamma(-1+2 \varepsilon)}{\left(x^{2}\right)^{-1+2 \varepsilon}} \int_{0}^{1} d x x^{1-\varepsilon}(1-x)^{-1+\varepsilon} \int_{0}^{1} d y \int_{0}^{1} d z \int_{0}^{1} d t \frac{t(1-t)^{-1+\varepsilon}}{[\phi(x, y, z, t)]^{-1+2 \varepsilon}},(A .1)
$$

where $\quad \phi(x, y, z, t)=t z(1-t z)(1-x)+y(1-t)(1-x y)-$

$$
-y^{2}(1-t)^{2}(1-x)-2 y z+(1-t)(1-x)
$$

The integral in r.h.s. of (A.1) possesses simple pole at $\varepsilon=0$. We rewrite it in the following way

$$
\begin{equation*}
J=-\frac{\pi^{6} \Gamma(-1+2 \varepsilon)}{\left(k^{2}\right)^{-1+2 \varepsilon}}\left[J_{1}+J_{2}-J_{3}-2 J_{4}\right] \tag{A.2}
\end{equation*}
$$

whore

$$
\begin{aligned}
& J_{1}=\int_{0}^{1} d x x^{1-\varepsilon}(1-x)^{\varepsilon} \int_{0}^{1} d y \int_{0}^{1} z d z \int_{0}^{1} d t t^{2}\left(1-t z /(1-t)^{-1+\varepsilon} \phi^{-2 \varepsilon},\right. \\
& J_{2}=\int_{0}^{1} d x x^{1-\varepsilon}(1-x)^{-1+\varepsilon} \int_{0}^{1} d y y(1-x y) \int_{0}^{1} d z \int_{0}^{1} d t t(1-t)^{\varepsilon} \phi^{-2 \varepsilon}, \\
& J_{3}=\int_{0}^{1} d x x^{1-\varepsilon}(1-x)^{\varepsilon} \int_{0}^{1} d y y^{2} \int_{0}^{1} d z \int_{0}^{1} d t t(1-t)^{1-2 \varepsilon} \phi^{-2 \varepsilon}, \\
& J_{4}=\int_{0}^{1} d x x^{1-\varepsilon}(1-x)^{\varepsilon} \int_{0}^{1} y d y \int_{0}^{11} z d z \int_{0}^{1} d t t^{2}(1-t)^{\varepsilon} \phi^{-2 \varepsilon},
\end{aligned}
$$

It should be noted, that the integrals J_{3} and J_{4} are not singular in ε and hence we can put $\varepsilon=0$. Then we immediately get

$$
J_{3}=\frac{1}{36} \quad ; \quad J_{4}=\frac{1}{24}
$$

As for J_{1} and J_{2}, they are singular when integrating over t and X correspondingly. The singular integral has the form

$$
T(\varepsilon)=\int_{0}^{11} x^{-1+\varepsilon} Q(x, \varepsilon) d x
$$

Integrating by parts and expanding X^{ε} in power series in ε we find

$$
T(\varepsilon)=\left.\frac{x^{\varepsilon}}{\varepsilon} Q(x, \varepsilon)\right|_{0} ^{1}-\frac{1}{\varepsilon} \int_{0}^{1}\left(1+\varepsilon \ln x+o\left(\varepsilon^{2}\right)\right) Q_{x}^{\prime}(x, \varepsilon) d x
$$

Provided the remaining integral converges we may put $\varepsilon=0$ and get

$$
T(\varepsilon)=\frac{Q(0, \varepsilon)}{\varepsilon}-\int_{0}^{1} d x \ln x Q_{x}^{\prime}(x, 0)
$$

Using this formula, the calculations are straightforward and give

$$
\begin{align*}
& J_{1}=\frac{\Gamma(2-\varepsilon) \Gamma(1-\varepsilon) \Gamma^{2}(2-2 \varepsilon)}{\Gamma(3-2 \varepsilon) \Gamma(4-4 \varepsilon)} \frac{1}{\varepsilon}-\frac{5}{72}, \\
& J_{2}=\frac{\Gamma^{2}(2-2 \varepsilon) \Gamma(1-\varepsilon)}{\Gamma(4-4 \varepsilon) \Gamma(3-\varepsilon)} \cdot \frac{1}{\varepsilon} \tag{A.4}
\end{align*}
$$

Substituting (A.3) and (A.4) into (A.2) and using the Γ-function expansion we ultimately obtain

$$
J\left(k^{2}\right)=\frac{\pi^{6} k^{2}}{12 \varepsilon^{2}\left(k^{2}\right)^{2 \varepsilon}}(1-2 c \varepsilon+6 \varepsilon)
$$

In order to remove the singularities we use the BPHZ R-operation with the subtractions at $k^{2}=\lambda^{2}$. The diagram containg two divergent subgraphs and leads to the following R-operation procedure
R

where the dotted line denotes the valus of the integral at Then for $J\left(k^{2}\right)$ we find

$$
R T\left(K^{2}\right)=\frac{\pi^{6} K^{2}}{12}\left[L^{2}-\left(\frac{17}{3}+4 f\right) L\right], \quad L=C_{n} \frac{k^{2}}{1^{2}}
$$

All other diagrans can be calculated similarly.

Appendix B

Consider diagram 5, Table 2. After setting all the masses equal to zero the corresponding integral looka as follows

$$
\begin{equation*}
J=\int \frac{d^{n} \varphi}{(p+q)^{2}} \cdot \frac{d^{n} l}{e^{2}(k-q-l)^{2}}-\frac{d^{n} r d^{n} t}{t^{2}(r-t)^{2}(q-r)^{2}} ; n=3-2 \varepsilon . \tag{B.1}
\end{equation*}
$$

Using the formulae of App. D we obtain for the intermal integra-

$$
\begin{align*}
& \text { tions } \\
& \qquad \int \frac{d^{n} l}{e^{2}(k-q-\theta)^{2}}=\frac{i(-x)^{3 / 2} \Gamma\left(\frac{1}{2}+\varepsilon\right) \Gamma^{2}\left(\frac{1}{2}-\varepsilon\right)}{\Gamma(-2 \varepsilon)\left[(k-q)^{2}\right]^{\frac{1}{2}+\varepsilon}}, \tag{B.2}\\
& \int \frac{d^{n} r d^{n} t}{t^{2}(r-t)^{2}(\varphi-r)^{2}}=\frac{i^{2}(-\pi)^{3} \Gamma^{3}\left(\frac{1}{2}-\varepsilon\right) \Gamma(2 \varepsilon)}{\Gamma\left(\frac{3}{2}-3 \varepsilon\right)\left(q^{2}\right)^{2 \varepsilon}}
\end{align*}
$$

Substituting (B.2) and (B.3) into (B.1) results in
$J=\frac{i^{3}(-x)^{9 / 2} \Gamma\left(\frac{1}{2}+\varepsilon\right) \Gamma^{5}\left(\frac{1}{2}-\varepsilon\right) \Gamma(2 \varepsilon)}{\Gamma(1-2 \varepsilon) \Gamma\left(\frac{3}{2}-3 \varepsilon\right)} \int_{\left[(k-q)^{2}\right]^{\frac{1}{2}+\varepsilon}\left(q^{2}\right)^{2 \varepsilon}(p+q)^{2}}^{\left[\left(q^{k} q\right.\right.}$
Performing the momentum integrations and putting $k^{2}=\rho^{2}=(k+\rho)^{2}$ we come to the following expression

$$
J=\frac{\pi^{6} \Gamma^{5}\left(\frac{1}{2}-\varepsilon\right) /(4 \varepsilon)}{\Gamma(1-2 \varepsilon) \Gamma\left(\frac{3}{2}-3 \varepsilon\right)} \frac{1}{\left(k^{2}\right)^{4 \varepsilon}} \int_{0}^{1} d x x^{-2 \varepsilon}(1-x)^{-\frac{1}{2}+\varepsilon} \int_{0}^{11} d y \frac{y^{-1+2 \varepsilon}}{[1-x / 1-y(1-y))]^{4 \varepsilon}}
$$

Changing the order of integrations and using the formulae of App. D we have
$J=\frac{\pi^{6} \Gamma^{5}\left(\frac{1}{2}-\varepsilon\right) \Gamma\left(\frac{1}{2}+\varepsilon\right) \Gamma(4 \varepsilon)}{\Gamma\left(\frac{3}{2}-3 \varepsilon\right) \Gamma\left(\frac{3}{2}-\varepsilon\right)} \frac{1}{\left(k^{2}\right)^{4 \varepsilon}} \int_{0}^{1} d y y^{-1+\lambda \varepsilon} f\left(4 \varepsilon, 1-1 \varepsilon, \frac{3}{2}-\varepsilon, 1-y(x-y)\right)$,
where F is the hypergeometrical function which can be rewritten in the following way
$F\left(4 \varepsilon, 1-2 \varepsilon, \frac{3}{2}-\varepsilon, 1-y(1-y)\right)=\frac{\Gamma\left(\frac{3}{2}-\varepsilon\right) \Gamma\left(\frac{1}{2}-3 \varepsilon\right)}{\Gamma\left(\frac{3}{2}-5 \varepsilon\right) \Gamma\left(\frac{1}{2}+\varepsilon\right)}+\left(4 \varepsilon, 1-2 \varepsilon,-\frac{3}{2}+3 \varepsilon, y(1-y)\right)+$
$+[y(1-y)]^{\frac{1}{2}-3 \varepsilon} \frac{\Gamma\left(\frac{3}{2}-\varepsilon\right) \Gamma\left(-\frac{1}{2}+3 \varepsilon\right)}{\Gamma(4 \varepsilon) \Gamma(1-2 \varepsilon)} F\left(\frac{3}{2}-5 \varepsilon, \frac{1}{2}+\varepsilon, \frac{3}{2}-5 \varepsilon, y(1-y)\right)$.
Expanding now the hypergeometrical functions in the r.h.s. of (B.5) in power series in $y(1-y)$ and integrating over y, we find that the only singular term will be

$$
\begin{equation*}
J \Rightarrow \frac{\pi^{6} \Gamma^{5}\left(\frac{1}{2}-\varepsilon\right) \Gamma(4 \varepsilon) \Gamma\left(\frac{1}{2}-3 \varepsilon\right)}{\Gamma\left(\frac{3}{2}-3 \varepsilon\right) \Gamma\left(\frac{3}{2}-5 \varepsilon\right) \cdot 2 \varepsilon} \cdot \frac{1}{\left(k^{2}\right)^{4 \varepsilon}} \tag{B.6}
\end{equation*}
$$

From (B.6), using the expansions of Γ-functions we imediately Eet

$$
J=\frac{\pi^{8}}{2 \varepsilon^{2}}(1-4 c \varepsilon+16 \varepsilon) \frac{1}{\left(k^{2}\right)^{4} \varepsilon}
$$

For removing the singularities we uge the BPHZ R-operation with the subtractions at $K^{2}=\lambda^{2}$. The diagram conteins one divergent subgraph, therefore the result of the uge of R-operation will be

$)^{\prime}()^{\prime}+\overbrace{\square}^{\prime}, i_{\square}^{\prime})$

For $J\left(k^{2}\right)$ this leads to

$$
R J\left(K^{2}\right)=2 \pi^{8}\left(L^{2}-4 L\right)
$$ where $L=\ln \frac{k^{2}}{1^{2}}$.

Appendix C
Table 1. $\mathcal{L}=\frac{(4 \pi)^{3 / 2}}{3!} h \varphi^{3} ; n=6-2 \varepsilon ; L=\ln \frac{\kappa^{2}}{\lambda^{2}}$.

Table 2. $\mathcal{L}=\frac{(8 \pi)^{2}}{6!} h \varphi^{6} ; n=3-2 \varepsilon ; L=\ln \frac{k^{2}}{\lambda^{2}}$.

Appendix D

The main integration formula which holds for arbitrary n
is:

$$
\int \frac{d^{n} p}{\left(p^{2}-2 k p+m^{2}\right)^{\alpha}}=\frac{i(-\pi)^{\frac{n}{2}}}{\left(m^{2}-k^{2}\right)^{\alpha-\frac{n}{2}}} \frac{\Gamma\left(\alpha-\frac{n}{2}\right)}{\Gamma(\alpha)}
$$

With the help of this equation any acalar diagram may he evaluated if one uses the Feymman parameters:

$$
\frac{1}{a^{\alpha} b^{\beta}}=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{1} d x \frac{x^{\alpha-1}(1-x)^{\beta-1}}{[a x+b(1-x)]^{\alpha+\beta}}
$$

where Γ is the Euler function.
The genaralization of this equation to many factors in the denominator is

$$
\begin{aligned}
& \frac{1}{a_{1}^{\alpha_{1}} \ldots a_{n}^{\alpha_{n}}}=\frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \cdot \ldots \cdot \Gamma\left(\alpha_{n}\right)} \int_{0}^{1} d x_{1}^{1} \ldots \int_{0}^{1} d x_{n} \frac{x_{1}^{\alpha_{1}-1} \ldots x_{n}^{\alpha_{n}-1} \delta\left(1-x_{1}-\ldots-x_{n}\right)}{\left[a_{1} x_{1}+\ldots+a_{n} x_{n}\right]^{\alpha_{1}+\ldots+\alpha_{n}}}= \\
& =\frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \cdot \ldots \cdot \Gamma\left(\alpha_{n}\right)} \int_{0}^{1} x_{1}^{n-2} d x_{1} \int_{0}^{1} x_{2}^{n \cdot 3} d x_{2} \ldots \int_{0}^{1} d x_{n-1} \frac{\left.\left(x_{1} \ldots x_{n-1}\right) \cdot 1 x_{1} \ldots \cdot x_{n-2}\left(1-x_{n-1}\right)\right]^{\alpha_{2}-1} \ldots\left(1-x_{1}\right)^{\alpha_{n}-1}}{\left[a_{1} x_{1} \ldots \cdot x_{n-1}+a_{2} x_{1} \ldots \cdot x_{n-2}\left(1-x_{n-1}\right)+\ldots+a_{n}\left(1-x_{1}\right)\right]^{\alpha_{1}+\ldots+\alpha_{n}}} .
\end{aligned}
$$

For the evalution of the integrals over the Feynman parameters we

$$
\begin{aligned}
& \text { use the following formulae } \\
& \int_{0}^{11} d x x^{a-1}(1-x)^{b-1}=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}, \\
& \int_{0}^{1} d x x^{\lambda-1}(1-x)^{\mu-1}(1-\beta x)^{-\lambda}=\frac{\Gamma(\lambda) \Gamma(\mu)}{\Gamma(\lambda+\mu)} F(\nu, \lambda, \lambda+\mu, \beta), \mid \beta /<1
\end{aligned}
$$

where F is the hypergecmetrical function.
The essential properties of Γ - and F-functions are: $\Gamma(1+x)=x \Gamma(x) ; \Gamma(n)=(n-1)!; \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$;
$\Gamma(1+\varepsilon)=1-c \varepsilon+o\left(\varepsilon^{2}\right) ; \Gamma\left(\frac{1}{2}+\varepsilon\right)=\Gamma\left(\frac{1}{2}\right)\left(1-\varepsilon(c+2 \ln 2)+o\left(\varepsilon^{2}\right)\right)$, where c is the Euler conatant; $c=0.577$;

$$
\begin{aligned}
& F(\alpha, \beta, \gamma, z)=1+\frac{\alpha \cdot \beta}{\gamma \cdot 1} z+\frac{\alpha(\alpha+1) \beta(\beta+1)}{\gamma(\gamma+1) \cdot 1 \cdot 2} z^{2}+\ldots \\
& F(\alpha, \beta, \gamma, z)=\frac{\Gamma(\gamma) \Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha) \Gamma(\gamma-\beta)} F(\alpha, \beta, \alpha+\beta-\gamma-1,1-z)+ \\
& +(1-z)^{\gamma-\alpha-\beta} \frac{\Gamma(\gamma) \Gamma(\alpha+\beta-\gamma)}{\Gamma(\alpha) \Gamma(\beta)} F(\gamma-\alpha, \gamma-\beta, \gamma-\alpha-\beta+1,1-z)
\end{aligned}
$$

Referencen

1. D.J.Grose, F.Wilczek. Phys.Rev.Lett., 30, 1343 (1973). H.D.Politzer. Phya.Rev. Lett., 30, 1346 (1973).
2. S.Coleman, D.J.Gross. Phys. Rev. Lett., 31, 851 (1973).
3. K. Matumoto. Preprint, Toyama-11, 1973.
4. V.V.Belokurov et al. Phyb. Lett., 47B, 359 (1973).
5. C.G.Callan, D.J.Gross. Phya.Rev., D8, 4383 (1973).
6. G.'t Hooft, M.Veltman. NucI. Phyb., B44, 189 (1972).
7. N.N. Bogoliubov, D.V.Shirkov. Introduction to the Theory of Quantized Fields, "Nauka", Hoscow, 1973.
K. Hepp. Comm. Math. Phys., 2, 301 (1966).
W.Zimmerman, in "Lectures on Elementary Particles and Quantum Field Theory", MIT Press, 1970.
8. G. 't Hooft. Nucl. Phys., B6., 455 (1973).
9. S.Weinberg. Phys. Rev., D8, 3497 (1973).
10. J.C.Collins, A.J.Macfarlane. DAMTP Preprint 73/34.
11. A.J.Macfarlane, G.WoO. DAMTP Preprint 74/7.
12. A.A.Belavin, A.A.Migdal. Pigma JETF, 12, 317 (1974).
13. V.V.Belokurov et al. TMF, 19, 149 (1974)., G.M.Avdeeva, A.A.Belavin. Pigma JETF, 18, 611 (1973).

Rece1ved by Publishing Department on July 11, 1974.

