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Functional equations of the renormalization group (RG) are 

formulated for the theories with dimensional coupling constants. 

A special attention is paid to the theories with the coupling 

constants of negative-mass dimension, which are nonrenormalizable 

within the usual pe-rturbation approach. 

The correspondence of general solutions of the RG equation 

with the perturbation expansion in the ultraviolet region yields 

the nonanalyticity in coupling_constant. 

A possibility of the short distance scale invariance is dis­

cussed •. An additional assumption on the finite number of the in­

·variant charges imposes limitations on the Bogolubov R-operation 

parameters. As an illustration of consistency of this hypothesis 

an exactly soluble nonrenormalizable nonrelativistic model is 

considered. 

@J974 06'b'?'0UHeHHb1U UHc•uny• JIOepHWX UCCAei)o6QHUU )ly6Ha 

1. Renormalization group in a theory with dimensional 

coupling constant 

Renormalization group (RG) may be formulated as a group of 

the finite multiplicative D,yson transformations for the Green 

functions ~2 "compensating" transformations o:t: coupling cons­

tan:ts 111. This viewpoint makes it easy to understand that the 

RG invariance is conditioned neither_ by perturbation theory nor 

by the dimension of. coupling constant and nor by the structure 

of the ultraviolet divergences. This fact was known long ago and 

was successfully used for the summation of the infrared diver­

gences in quantum electrodynamics 12/(see also 11/) as well as 
J 

for the problem of the nonrelativistic Coulomb screening of the 

electron gas /31. To accentuate this f~ct, we shall present a 

nonstandar~derivation of the RG equation which more corresponds 

to its fundamental nature. 

Consider for simplicity ap interacting scalar field_ theory. 

One of the parameters of the. theory which enters into the n-par-

. ticle amplitudes T~(p1 , ••• ,pn_1 ) is 

a position of the pole of the total 
2 

(p2) = ~ 
. P -m 

the mass m. which arises as 

propagator':' · 

(1.1) 

In addition the amplitudes Tn also depend upon a parameter 

connected with normalization of one-particle .state and on some 

parameters which characterize the strength of interaction (cons­

tants of interaction). The first parameter is fixed by a given 
. . 

magnitude of the function d(p2) at a point p
2
= ~: 
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z ;.= d(p2=A). (1.2) 

Then, obviously, the matrix elements (the observable quantities) 

cannot depend on the normalization of asymptotical states, there-

fore 

- -n/'?- . Tn(pi)- z >- :rn(pi,m, ).), (1.3) 
In particular, 

2 2 2 . 2 d(p )= z d(p ,m , ). ), d(). ,m , ). )=1. 
~ . (1.4) 

The interaction constants usually are defined as magnitudes 

of some matrix elements at definite values of their invariant 

arguments •. Let us now ass1;1llle that we have only one such a para­

meter and define it through the matrix element connected with 

the four -point amplitude T4: rat the point pf=-1/3PiPj,; }.,i.e., 
• -2 2 

!(pi)= z >- r(pi'm, J-,g,_>, (1.5) 
where 

2 . r ( >- ,m , ). ,g )= g (1,6) 

It is clear that we are free to take any point >-.t, different 

from ). , out of the region,where d and 1- are real fUnctions, 

and other constants 
. 2 "2 2 

z). =d(p "'>-!), g = z... r (pi=).J.)o 
, .1. ~.1. rl . 

The amplitudes should not depend on such a choice, i.e., 

z-~~n(pi'm2,). ,g> )= z-~~~n(p1,m2 , ). 1 ,g.>)• (1.7) 
In particular, 

-2-.2 -2r 2 · 
z >. I (pi'm ,)'. ,g).)= z .>-.1. (pi'm , ).i.,g.-'

1
), (1.8) 

2 2 2 2 z-'d(p ,m ,.>.,g-" )= z_..,d(p ,m ,.>.1 ,g.>-, ), (1.9) 

The transformations (1.7) - (1.9) under ) ·-; )..1 form a 

group with the invariant charge 

g(p
2

,m
2

, j. ,g-,. )= f (pi=-1/3P1Pj=P2 ,m2,). ,g). )• (1,10) 

2 2 2 ' ~ d (p ,m ,,. ,g_.,.), 
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obeying the well-known ~un~tional equation 
-( 2 2 \ . ) . -( 2 2 . -( 2 ~ p ,m , ,.. , g J. = g p ,m , )\1, g ).r, m , ). ,g" )) ' 

and the constant of interaction being determined as 

-( . 2 " gr = g ). ,m '"''g. ). 

(1.11) 

(1.12) 

This derivation clearly _demonstrates that the RG equations 

are valid both for the theory with zero- and positive-mass dimen-
4 . 

sian of the coupling constants (e.g., <.f(D) when u-:::Lj) and_for 

the theory with negative-mass dimension, nonrenormalizable from 

the ~on~entio~al point of view (e. g., f,i,) when D /' 4). The 

RG equations reflect the independence of a. theory of a choice 

of definition point of the coupling constant and of a normaliza­

tion of asymptotical states, and thus they are fundamental con­

ditions in any theory. For simplicity, we o~ly confine ourselves 

to a scalar field and one interaction parameter. All the argum­

ents, however, can be generalized to'other sorls of fields and 

several parameters, obtaining instead of eq,(1.11) the equations 

of multicharge RG. 

The aim of this work is to analyze the consequences of the 

one-charge RG equation for a nonrenormalizable theory with nega­

tive-mass dimension of the coupling constant: f~ 1 = [m
2 

rk,k ;>0 •. 

Vie assume, of course, that such a theory d·oes e~ist,i.e., th~ 
corresponding ampli~udes depending on a finite number of parame­

ters of the type of coupling_ constants can be determined . in a 

self-consistent way. For simplicity we also assume that at least 

some of the models admit of the one-charge RG equation • 

As a subgroup such a group probably exists in any case. 
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An. example of the model which satisfies the. above assumpti­

ons is-the soluble nonrenormalizable model of a "meson" field 

interacting with a fix~d "nucleon" (it is considered in / 4/) 

Ji .. 't.= :~v)f<.l,t)-f'y,t). (1.13) 
,q . 

The role of invariant charge (IC) plays here the meson-nucleon 

scattering amplitude f(w) divided by the _total meson energy w. 

It fui.s the form 
ft'-"") ~ 

a (iv):: ·;:::;:;- =- """"71-'----. --,, c=---v==~.=.). (1.14) 
d - ~ (.U c - ~2._ v:.l.. 

which depends "on an additional parameter_ c. The renormalized 

coupling constant g in (1.14) is determined as follows:· 

g = "g(O, g), 

Changing the normalization p"oint we can rewrite eq. (1.14) :i.n the 

form satisfying the RG equation (1.11). 

Multiplying both sides of eq. (1.11) by (p2 )k and passing 

to the dimensionless variables one can obtain 

where 

and &' 

yc ... y,rJ # fd.{· rct.,y;rJ), 
2 

X = p /;. 

(. 2)k...: p g • 

2 
y ; m />- ' t ; )!./)-. 

(1.15) 

r;g>->-K 

A remarkable feature.of eq.(1.15) is its universality. It 

has the same form for any QFT with one coupling constant irres­

pective of its dimension •. The general solutio;_ /5/ of eq. (1,15) 

in the limit y = 0 (i.e., in the limit p2, )-.. >>m
2

) has the 

well-known form 

-rv .~J" <PuK 4> -i('n), (1.16) 

where cp is an arbi tracy function. 
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2. RG and-perturbation theory 

One of the most interesting problema here is the correspon­

dence of RG to the perturbation expansion for the nonrenormali­

zable theory. As is well known, the main drawback of this per­

turbation expansion is that the number of arbitrary subtraction 

constants increases with tl:ie order of coupling constant_. 

Consider, for simplicity, the case k;1, (The essential re­

sults will be formulated for the case k#1; as well.) The pertur­

bation expansion for IC has the form 

ru.n,. r)(t-1• rcAxev-j( .. c. .. c. .. -<--i)J• 

+ r2[B.,.z e,.,•x.., £..< 2a.,.< .. c.!~c..x-•/..-c~,(.·-1)], 

+ r3 c .. J+ · ~ ~ . 
Let us for the moment accept the following form of the 

expansion for IC 
fu,rJ:: 'J""{1 t r'fJ(Ii)~ r-~fz_vJ~ ... 1 

and the expansion 

cf?cc)~ 2t-2-z.cP:i+B
3 Pz 

(2.1) 

(2.2) 

(2.3) 

for the function P (z)~ Then, substituting (2.2), (2.3) into 

(1,16) gives for ~ polynomials in x which obviously contra-
. "' 

diet the perturbation series (2.1). For instan~e, 
:'{ 

'-fl,: (;t-i)cpf • (2.4) 

What is wrong here ? .Maybe, the .analyticity assumption at ·J"=O 

(cf/6/)? If one admits a "weak" nonanalyticity in z , i.e., 

that' Pi are functions of . z, nonanalytic at z=O, then instead 

of {2.4) one can get 

~ _(x,rJ ~ ,.. ~(xrJ- ~C:r), (2.5) 
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l. ci~(-.o :rJ . . .. . .. 
'f2 (.<,r)~ tf. (:.:,1) .. 'f.v.TJr.IP-,-.. "~" ..<~(qJ-·4}Lr). 

Comparing (2.5) and (2.6) vdth (2.1) shows that 
. .e.., ;..: y pi (,.J'J = a, f'> (or c11= a11n ¥/r ) 

C1i t":r J". Ct2 ~1xr .,. {,~x'd' .. cl, 

(2.6) 

(2.7) 

(2.8) 

where a1=A and a2 , b are functions of A, B, E and ~· Thus, 

f2E~~~-E~rt~EE~~!2~-~!~Sl2~-~2-£2E~~E~!2_RG~~2~~~!l­

~!£!~-~£2~E!~5~£2~~~~~-~~~-~E~~· If k~1 it will be the 

branchpoint ( q) 1/k. For an integer kfi1 the branchpoint 1n r 
will appear, as well. 

The second consequence is ~--~2~E~~2~g£~_2f_!~~~E~~~­

~~E~--£km• As is seen from (2.8), (2.7), (2.6), only one additio­

nal arbitrary constant d appears in the third order instead of 

two in (2.1). In general, using the development 

fv,rJ-= r1 {t-t)'f,({J• £;i-1.J'fztrJ ... (2.9) 

and the dif'ferential RG equation for IC 
o1{-(~.rJ -

x " <1; c r L-'J') J ... (2.10) 

all the functions tf n (n > 1 ) can easily be expressed in terms of 

the function tft . For instance, 

2 vz rr J ~ if. t r J ( t~,' i r J - 1. ) • (2.11) 

Thus, we have shown that the perturbation expansion in the 

nonrenormalizable theory can be brought in correspondence with 

the RG equation. Moreover, it turns out that the whole ambiguity 

of IC can be expressed in terms of a first-order polynomial in x 

(in t.erms of ck1), i.e., it ·reduces to the finite number of co­

unterterms. This result seems to be a substantial step towards 

the construction of the renormalization scheme for the.theories 

• 

ij 
:f 

i.J 
I.:J, 
i' 

.J 

in' question. The most important problem here is the divergences 

and renormalization·of tpe lligher-order Green functions. 

3. Ultraviolet asymptotical behaviour 

A significant property of the expressions found in sect.2 

is that the terms 

x" cF., (;<a')~ d>"U<} (3.1) 

entering into .the functions f.,.(",'Y}:lf the type (2.5), (2.6), can 

contain (and do contain) the senior asymptotic terms (xlnx r )n. 

This means that the leading terms of different ·'f"' are inde­

penaent of each other. Therefore, in particular, the differential 

Gall-Mann-Low equation (2.10) (in distinction with the renorma­

lizable case) is noneffective for improvihg the approximating 

property of perturbation theory. 

Moreover, it is easy to show that in this case the whole RG 

is of little use for this purpose. Let us imagine that we have 

succ.eeded in summing all the terms (x qlnx r>n of the Feynman 

'diagrams and have found 

r P.T.. (X Q) " ¥ (CJ') • 

Using the general solution (1.16) gives 

f.Rc; u,:r) ·= lJ!(x !f"1trJ) 
instead of (3.2). Due to that for small 

i . y- trJ,:: r-~ oa1
; 

the expression (3.3) is in practice the same as (3.2). 

(3.2) 

(3.3) 

The equation (3.2) can nevertheless be useful in the region 

xr1nxr ~ 1, lnxr>;.1, xr 4:..;.1. (3.4) 

For the weak interactions it allows an essential step to be made 
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0 (- • ) (.,.. • ) ( /11/) w1.th Lint= g y•oor t.yo '( see, e.g •. , • 

To cgmplete the paper,·we would like to stress once more 

the fundamental character .. of RG and validity of its equations 

not only for the theories. with polynomial interaction Lagrangians 

but also for the nonpolynomial ones, .e.g., of the type of chiral 

invariant Lagrangian depending on a single coupling constant. A 

specific feature of RG in such theories is the connection of the 

invariant charges, constructed by means of the Green functions 

of various orders in the way similar to that in the Yang-Mills 

theory. 

In conclusion, we thaxUc N.N.Bogolubov, I.F.Ginzburg, A.T.Fi­

lippov, B.V.Medvedev, M.K.Po~ivanov and A.N.Tavkhelidze for 

interesting discussions. 
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