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SUMMARY

TFunctional equations of the renormalization group (RG) are
formulated for the theories w1th dimensional coupling constants.
A special attention is:paid to the theoriés with the coupling
constants of negative-mass dimension,”which are nonrenormalizabie
within the usual perturbatlon approach., ‘

The correspondence of general solutions of the RG equation
with the perbturbation expansion in the ultraviolet region yields
the nonanalyticity in coupling constant.

A possibility of the short distance scale invariance is dis-
cussed. .An additional assumption on the finite number of the in-
‘variant charges imposes limitations on the Bogolubov R-operation
parameters. As an illustration of consistency of this hypothesis
an exactly soluble nonrenormalizable nonrelativistic model is

considered.
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1. Renormallzatlonggroup in a theory w1th dlmen51ona1

coupl1ng constant

Renormallzatlon group (RG) may be formulated as a group of

the finite multlpllcatlve Dyson transformations for the Green

functions and “compensating” transformations: of coupling cons-

tants /1/. This v16wpoint makes it easy to understand that the
RG. invarlance is conditioned neither by perturbatlon theory nor
by the dimension of. coupling constant and nor by the structure
of the ultraviolet divergences. This fact was known long ago and
was successfully used for the summation of the 1nfrared diver-
gences in quantum electrodynamics /2/(see also /1/) as well as
for the problem of the nonrelativistic Coulomb screening of the
electron gas /3/. To accentuate this fact, we shall present a

nonstandard derivation of the RG equation which more corresponds

to its fundamental nature.

Consider for 51mp11c1ty an. Lnteractlng scalar fleld theory.

One of the parameters of the. theoxry which enters into the n-par-

.t1c1e amplltudes i (P1""’pn 1) is the mass m whlch arises as

hA

>a position of the pole of the total propagator'

2 :
o =4 . SR
2 2
. . p-m .

In addition the amplltudes T also depend upon. a- parameter
connected with normalization of one-partlcle .state and on some
parameters which‘characterlze the strength of 1nteract10n (cons~
tants of interaction). The first parameter is fixed by a given

magnitude of the functlon d(p ) at a point p = A:



| _ _ z \= d(p%= ). . ()
Then, obviously, the matrix elements (the observable quantities)
cannot depend on the normallzatlon of asymptotlcal states, there— K
. fore _ ' o
= =0/ '
T, (o= 5720 (py,m, M) (1.3) !

In particular,

a(®)= 2,802,122, 3), d() 02, 2)=1. (1.4)
The interaction constants usually are defined as magnitudes
of some matrlx elements at definite values of their invariant
arguments. Let us now asaume that we have only one such a para-‘
meter and define it through the matrix element connected W1th

the four -point
D amplltude T,= [ at the point pl-—1/3pipj..},i,e,,

r(P )= z’, ). F(pi,m ’ )\oS/\)o (1.5)
where ‘

Mo 2ren |

’ v}‘og_)= & . (1.6)
It is clear that we are free to take any point AL, different
from A, out of the region,where d and (" are real fhnctions,
and other constants ‘
. ‘2

=4 (2= 2
Z\L—d(P = >‘.L)’ g)i= 2 » r (Pi=)£)-

The amplitudes should not depend on such a choice, i.e,,

n/ .
2T (Plvm P 1: 3% )=z n/2T (Pltm » My 95) )e (1.7)

In partlcular,
. -2
LI I (P]_tm "2 18y )=z )1 T (Plvm ’ )ng)i)’ (1 8)

2
2, (0,2, g, )- z,,,d(p%,02, MaBy, ). 1.9
The transformations (1.7) = (1.9) under X2 A form &
group with the invariant charge
2
8(0° 107y AsB, )= I (0§ --1/3plpa—p2.m " A ,s,\)- (1.10)
» d (P 1m X 18, e

obeying the well-known fﬁhctionai equation e )
s(p yo .)\ 8,) = - (0,07, MEC M.mz. X 48,0 (1.17)
and the constant of interaction being determined as . t,; h"
B, = @R W1 . (a2

This derivation clearly demonstrates that the RG equations
are valid both for the theory with zero— and positive-mass dimen—

o 4
sion of the coupling constants (e.g., ‘F(D) when C < 4) and_for

" the theory w1th negative-mass dlmenalon, nonrenormallzable from. .

the conventlonal p01nt of v1ew (e.g.,~ Yao)when D > 4). The

RG equatlons reflect the 1ndependence of a theory of a cholce

of deflnltlon p01nt of the coupling constant and of a normallza—
tion of asymptotlcal states, and thus they are fundamental con-
d1t10ns ln,any theory. For Sme11c1ty, we ‘'only confine ourselves
to a scalar field and one interaction parameter. All the argum—
ents, however, can be generalized to ‘other sorts of flelds_end
several parameters, obtaining instead-of,eqf(1.ﬁ1) the equatiohs
of multicharge RG. '

The aim of thls work is to analyze the consequences of the
one-charge RG equatlon for a nonrenormallzable theory with nega-.
tive-mass dlmenSLOn of the coupling conatant lgl = Lm }-k,k,>Q.
Vie assune, of course, that such a theory does ex13t i.e., the-”'
corresponding amplitudes. dependlng on a finite number of parame-
ters of the type. of coupllng constants can be determlned in a
self—con51stent way.. For SlmPIIClty we also assume that at leasti-V

-
some of the models admlt of the one-charge RG- equatlon .

As a subgroup such a group prohably exists in any case.



An example of the riodel which satisfies the.above: assumpti-
ons is- the soluble nonrenormalizable model of a "meson" field

/4/,)

interacting with a Vfixed A"nucleon" (it is-considered in .

Loy = 3 <u)ufu SRVICADN (1.13)
The role of mvanant charge (IC) plays here the meson-nucleon
scattering axﬁplitude f(w) divided by the total meson energy to.
It has the form R : :
_ (e g ‘ -
gld= W TS VoAl

which depends ‘on an additional" parameter c. The renormalized:

=

(1.14)

coupling constant g 1in (1.14) is determmed as follows: ~
‘ = 80, &)- |

Ghanging the normalization point we can rewrite eq. (1.44) in the
form satisfying thé RG equation (1.11){ : ‘

Multiplying both sides of eq.(1.11) by’ (p‘z)k “and passing
to the dmensmnless varlables one can obtain - . .

}’(; 7,;}')= J/(t't )/(673’)) . (1.15)

where X = pz/)‘ , = o /} y b= )L/) ’ ’X>=’ PO
ma § = GDE . |

A-remarkable featurei-c;f eci (1.15) is its univérsality. It
has the same form for any QFT w1th one couplmg ‘constant irres-
pective of its dimension. The general solutlon /5/ of eq. (1 15)
in the limit y =0 (i.e., in the limit p s A>>0 ) has t_he
well-known form ] ) } : o
' 3 RGN, aae

where Cp is an arbitrary function.
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2. RG and’ perturbation theory.

Ohe'of the most inﬁeréstihg pioblemé here is the correspéﬁ-
dence of RG to-the perturbation expansion for the nénrenormali—
zable theory. As is well known, the main drawback of this: per-
turbation expansion is that the number of drbitrary subtraction
constants increases with the order of coupling constant;—_ ‘

COn31der, for 81mp11city. the case k=1. (The essential re-
sults will be formulated for the case k#1, as well. ) The pertur—
bation expansion for IC has the form

yevse §4+ ¥ {Ax bnx s ¢, 5" D] ,
4_2,2[3,1 Cntxe E42ns fcucx ‘) c,,(t 1)] (2.1)
T ST RN O
Let us for the moment accept the follow1ng form of- the

expansion for IC

Fagys Lo pner Pl '@'.g)
and the expansion ) : . L e B o
Blay- 2:2°F 28, @)

for the functlon CP (z) Then, subst:.tutmg (2. 2), (2 3) into )
(1.16) glves for ﬂ polynomials m x whlch obvxously contra:'
dict the perturbation series (2. 1) For i.nstance, _’
Pp= (£-1)Py I To(2.8)

What is wrong here ? ‘Maybe, * the 4an:.'11yticity aiséumption'at V=0
(ct. /6/)" 1f one admits a "weak" nonanalytlclty in z, “i.eey
that’ @ are functions of .z, nonangxlyhc at z=0, then instead
of(24) onecanget ' : _ :

% (pie 2 BGp)-B@), @)
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Comparing (2.5) and (2.6) with (2.1) shows that

q)l (A'J’J = qc en %’r : . (OI‘ c11= 31]11 ]//rs ) : (2-7)
@ ay) = L‘«,Qn"xja’ * %eﬁ'ﬂa'* d, - (2.8)

where a,=A and a,, b are functions of A, B, E- and @. Thus,

for the perturbation expansion to correspond to RG the nonanaly-

ticity in coupling ‘congtant must appear. If k#1 it will be the
branchpoint (y)q/k. For an integer k#1 the branchpoint Iny

will appear, as well.

The second consequence is an interdependence of the -parame-

——————— km
nal arbitrary constant d appears in the third order instead of

ters_ ¢, . As is seen from (2.8), (2.7), (2.6), only one additio-

two in (2.1). In general, using the development

Fiapl= ¥+ () g (@) s 1) (g9)
and the differential RG equation for IC
Fear) -
dj;‘ = ¢ (7 e,77) (2.10)

all the functions %l (n>1) can eas11y be expressed in terms of
tﬁe functlon V3 . For 1nstance, ' ’ .
2 4= Y (r)(lf,'fr}-i) . ‘ (2.11)
Thus, we have shown thatvthe perturbation expansion in the
nohrenormaliiable theqry can be brought in corresﬁondence wifh
the RG equation. Moreover, it turns out that the whole ambiguity
of IC can be expressed in ferms of a first-o:der po}ynomial iﬁ‘x
(in terms of °k1)' i.e., it reduces tq the finite nuﬁber 6f co-
unterterms. This result seems to be a substantial step towards

the construction of the renormalization scheme for the theories

in"question. The most important problem here is the divergences

and renormalization -of the higher-order Green functions.

3. Ultraviolet asymptotical behaviour

A significant property of the expressions found in sect.2
is that the terms : '
x" P, Gg) - P G
entering into the functions f, (x,¥)of the type (2.5), (2.6), can
contain (and do contain) the senior'asymptotic terms (xlnx}’)n,
This means that the leading terms of,differentk"¥k\ are inde-
pendent of each other. Therefore, in particular, the differential

Gell-Mann—Low eqﬁation {2.10) (in distinction with the renorma-

‘lizable case) is noneffective for improvihg the approximating:

propefty of perturbation theory.
Moreover, it is easy to show that in" this case the whole RG

is of 1little use for this purpose. Let us inagine that we.have

succeeded in summing all the terms (x ‘a’lnx 3/)n of ‘the Feynmé.n'

‘diagrams and have found

For GO Wr) e (3.2)
USIBg the general solution (1 16) gives ‘547' ' ’
Fag (12) = y(x ¥ip) - ©{3.3)

instead of (3.2). Due to that for small
Vi~ g0y
the ‘expression (3.3) is in practice the same as (3. 2)
The equatlon (3.2) can nevertheless be useful ‘in the reglon
: x‘,ylnxf 1!Jxa’))1, Xy . . (3-4)

For the waak 1nteracticns it allows an essential step ‘to be made



with Ljqe= g(Foy)(FO¥) (see, €.y /1y,

~ To complete the paper, we would like to‘stress once more
the fundamental character of RG and validity bf its eqﬁations -
not only for the thebries7with polynomial interaction Lagrangians
but also for the nonpolynomial ones,.e.g.,‘of_the.type of chiral
invariant Lagrangian dgpending on a single coupling constant. A
specific feature of RG in suchvtheories is the connection of the
_invariant chargés, constructed by means of the Green\functions

of various orders in the way similar to that in the Yang-Mills

theory. -

In conclusion, we thank N.N.Bdgolubov, I.F.Ginzburg, A.D.Fi-

lippov, B.V.Medvedev, M.K.Po%}vanov and A.N.Tavkhelidze for

interesting discussions.
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