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1. Introduction 

In present theoretical physics appropriate approxima
tion schemes are of enormous importance both to sys
tematize data coming out from the larger and larger 
accelerators and to search the laws, which govern the 
phenomena being behind the data. No doubt, one of the 
best guides to find successful approximations has been 
infinite momentum limit / ' / . Most popular applications 
attribute to infinite momentum frame (IMF) description 
the following two, interrelated, implications: 

1. In field theory the P - ~ limit is equivalent to 
quantizing the fields on a light-front 2/ ; 

2. There is a correspondence between IMF physics and 
two-dimensional Galilean phys ics / 1 , 3 / . 

Both of these points crystallized out from direct or 
indirect attempts made at interpreting the results of 
Weinberg's classical paper from 1966 ^4 (Though the use 
of IMF was initiated in current algebra^ 5 ' . ). The inves
tigations of the present paper will be focused on the second 
point, which became a first principle in some formulation 
of parton model / 'Л 

First of all we remark, thai as far as kinematics is 
concerned IMF does not favour any subgroup of the Poin
care group to the others, therefore on the kinematical 
level point 2 is a completely arbitrary statement. The 
argument for this is shortly as follows. Relativistic 
particle kinematics is not more, than representation theory 
of the Poincare group. From a group theoretical point 
of view infinite momentum limit is nothing else, but 
contraction of the Poincare group/ 6/. Group contraction 
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is, however, a tar not unique procedure. In the present 
case it turns out, that the arbitrariness manifests itself 
just in destroying the distinguished role of the Galilean 
subgroup in the infinite momentum limit. The "favoured" 
subgroup may equally be a two-dimensional Poincare 
group. This will be demonstrated in Sect. II. 

Any distinction between the different kinematical 
possibilities may be of dynamical origin only. Therefore 
we investigate a simple interacting scalar field theory. 
Lagrange formalism gives us a realization cf the gene
rators of the Poincare group in terms of field operators, 
and we ask, how they are acting on the states of a moving 
Lorentz frame, especially, when the relative velocity of 
the frames in which the generators and states are specifi
ed tends'to the velocity of light. We show, that the two 
kinematical cases, presented in Sect. II, can be enlarged 
to consistent dynamical pictures. One of them exhibits 
the two-dimensional Galilean structure, which is usually 
discussed in connection with Weinberg's infinite momen
tum limit of the non-covariant perturbation series. The 
second case shows the characteristics cf a (two-dimen-
sional)relativistic theory. This offers an alternative 
group-theoretical interpretation of Weinberg's result, 
and possibly useful new approximation schemes. After 
recapitulating the needed field theoretical formulas in 
Sect. HI., these ideas will be developed in Sect. IV. 
Section V contains concluding remarks and ideas about 
applications. 

Throughout the paper we will use the following termi
nology: The usual Poincare group in three space + ore 
time dimensions will be called 3-Poincare group. We will 
deal with Galilei and Poincare groups, in two space + 
one time dimensions, they will be called 2-Galilei group, 
2-Poincare group, respectively. 

П. Contraction Schemes for the 3-Poincare Group 

In order to specify what in our view infinite momen
tum limit (IML) means on a kinematical level, we start 
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with some elementary questions about Lorentz transfor
mations. Consider a spin-zero, mass-m, positive time
like representation of the 3-Poincare group. Denote the 
basis functions of the corresponding representation space 
by I p j , >, p^ = Po - p 2 = m 2 , where the four-momenta p „ 
are measured in a coordinate system 0. In this coordinate 
system finite Poincare transformations of the basis 
functions can be given with the help of the infinitesimal 
genetarors P^ , M„v (mostly the notation M. = - i £ . . t м ' к , 
Nj = M°' will be used), and an appropriate ten-dime'nsional 
parameter space. The generators satisfy the familiar 
commutation relations 

[M. ,M.] = -[N., N. ] 

[Mi .Nj ] = U i j k N k > 

[M*"', Pp] = К в ^ Р ' 1 

Now let us imagine an observer who is sitting in an 0' 
coordinate system. In this system we also may specify 
the functions of the previous representation space, on 
which now the Poincare transformations are generated 
by the operators P^ , M' .satisfying the same algebra 
as (II. 1). We ask, how the observer of the 0' system 
will describe the functions |P, ,>. given in the 0 system, 
if 

1. the two coordinate systems, 0 and 0', are moving 
with a relative velocity tanh f •, f being the cor
responding boost angle; 

2. some parameters of the ten-dimensional parameter 
spaces a re measured on different scales in the 0 
and 0' systems. 

In explicit terms, from the point of view of the 0' observer 
the following operators are appropriate as generators of 
Poincare transformations on the basis functions | P > : 

M f - N | = A( f )U( f ) (M ' 1 -Npu - 1 ( f ) , 

i t . ., M , , 

(П.1) 

- ^ P " ) 
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Nf- Mf=U(f)(N,'-M' 2 )U - 1 (f) , 

N^+ M f = U{£) (N' + M') 1Г ](£) , 
2 1 2 1 

M| = U(£) M'3U_1(f) , (П-2) 

p / - pf = H£) U(f)(Po - Рз>и~'<^ -

p£ + P 3

f= iKf)(Pi + P 5 ) U _ 1 ( f ) . 

P.^=U(f) P: U'"1 (f) , i = 1 , 2 . 

We denoted by V(£) = е г-boost with parameter f. 
These operators are to be used by the 0' observei, if for 
constructing finite Poincare transformations on the states 
|p„>, the parameter space of the 0 system is applied. As 
is clear from (П.2), a relative \{£) scale factor is 
assumed between certain parameters of the 0 and o' 
systems. When £ goes to infinity, the operators (П.2) 
either become zero (like the ones Nf- M^, N^+M^, 
P0^+ P3' ), or can simply be related with the operators 
Рц , М(да of the 0 system, if for the function л (£) the 
behaviour k(£) ; л е " ^ is assumed. The surviving 
operators give, what we call the description of the space 
spanned by the basis I p „> from the point of view of the 
infinite momentum frame observer. These operators read 
as: 

S,alim dVi|+N$ =M 2+N,, М3 = ШпМ£ ( n _ 3 ) 
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S2r-lim ( - M , ' + N | ) = - M , + N„ N 3 = lim N | , 

„ = lim (P 0^- Pf)= P 0 - P 3 , Pi = lim Pf, U 1,2. 

(Later on it turns out, that in the field theoretical frame
work such a simple connection between the IMF operators 
and the 0 frame ones appears only in the free field case, 
see sect. IV). 

It is easy to verify, that the operators S| , Sj , l l j , 
P] , P2 , ц form a two-dimensional Galilei algebra, in 
which y. plays the role of non-relativistic mass, M 3 ge
nerates two-dimensional rotations, P 1 , P 2 translations, 
and S 1 , S 2 are the generators of velocity transformations: 

[S] ,S 2 ] = 0. [ M 3 , S j ] = i S 2 , [M 3 ,S 2 ] = - i S , , 

I P 1 . P 2 ] = 0 , I M 3 , P , J = i P 2 , [M j , P 2 ] = - i P , , 

I P j , /1]= 0 , [ M 3 , ,' J = 0 , [S j , ,x ] = 0 , 

I S. , P. |= \S.. ,, . ( I I 4 ) 

We may conclude, that for the IMF observer the irredu
cible 3-Poincare space of mass m splits up with respect 
to irreducible 2-Galilei representation spaces of all 
positive masses /< = p 0 - n 3 . (In what follows the same 
notation will be used both for the operator /< and for 
its eigenvalues). 

There is stil l one more surviving operator N 3 .which 
may be joined with the previous ones to form a closed 
algebra: 

[N 3 , M j ] = 0 , [ N 3 , ( i l= i « , 
(II.5) 

[ N j . P j l - O . [ N j . S , . ] - i S . . 
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The significance of the presence of N 3 among the IMF 
operators has so far not been cleared up in the literature. 
In our opinion it is very intimately related with the con
traction procedure described above. Let us notice ,that 
when we scaled out aji infinite factor from the operators 
M^-N| , M | + N ^ and P/-P3S we neglected a one-parameter 
freedom. Namely, the operators Sj'=aS; , fi = ap , Pj , 
M3 would give exactly the same algebra as (Q.4). On 
the other hand, we see from (II. 5) thai transformations 
generated by N3 correspond just to a similar rescaling 
of the operators S 1 , S 2 ,м .This means, that from the 
point of view of the IMF observer the relative scale of 
the quantities p 1 , p 2 and ц , respectively, is undeter
mined by construction. If, however, some fundamental) 
reason, like dynamics, determines this relative scale,' 
then similarity transformation by e x P ( - i a N 3 ) always 
enables us to redefine kinematics in order to be compa
tible with this natural scale. 

So far we discussed IML more or less along the same 
lines as was done in refs. 3 and 1. Now we describe 
another possibility, which might also be relevant in high 
energy physics. Instead of (II.2) let us define the IMF 
generators via the following formulas: 

Mf-Nf =ae~^U(^)(M'2+N'1)U~1 ( a+be^tXaWj-MyiT 1 ^) , 

Mf+Nf=-ae"fU(?)(Mj'-NpU~1 [ф +b /u( f ) (Nj+MpiT1 (ф , 

+ b e ^U(f)(P 0 '+ppU- 1 (f) ) (U.6) 

where a and Ь are arbitrary positive numbers. For 
the remaining seven operators we keep the definitions 
in (II.2). We introduce one further operator, which is not, 
of course, independent of the previous ten while f is 
finite, but IKS important role when Z oo : 
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be^u(a (P5+p^)u- 1 ( f ) . ( I I - 7 ) 

Now in the limit f •» ~ the following operators survive: 

K, slim(M 2^-Nf), K 2 Slim(Mf + N | ) , М 3 *НтМ|, 

H s lim(P,f - P*) , P; = HmPf, | i ' = Iimi* 
С 

and, as previously, t~e operator lim N 3 = N 3 . It is easy 
to verify, that the operators enumerated in (П.8) form 
the Lie algebra of » Poincare group (2-Poincare group) 
operating in a Minkowski space of two space-- one time 
dimensions: 

[Kj, K 2 ]= -i4abM 3, [M 3,K. ]= W jj Kj, 

[M,,H] = 0 , . [Ma, P.l= !«„ P ] f ( U 9 ) 

[Kj, Н ] = + ; Р ; , [K ; , P . ] = +i4ab8 i J H. 

All the other commutators between К; , P ; , H , M 3 , 
IJL ' are zero. It is interesting, that the two parameters 
a and Ь , introduced in the contraction procedure, appear 
in the algebra (11.9) only in the combination 4ab and the 

quanta. ~i_=- is direct analogue to the light velocity. 
V 4a b 

Since p ' commutes with all the operators К; , M 3 , 
Pi , H , it can be considered as number from the 
point of view of the algebra (П.9), and, for the IMF 
observer, it plays analogous role to the rest mass. 
(Again, the notation ц' will be used both tor the operator 
and its eigenvalues). As a matter of fact, the Casimir 
operator of this algebra is 4abH 2-. ?jj its eigenvalues may 
be prescribed as 
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(The notation Pi2= P]2+ P2

2 is introduced here). 
In this case of contraction, lor the IMF observer, the 
irreducible 3-Poincare representation space splits up to 
subspaces, which are irreducible with respect to a rela-
tivistic type subgroup of the 3-Poincare group, the above 
2-Foincare group. 

We must again discuss the role of the N 3 operator. 
In contrast with the previous case, now it does not form 
a closet? algebra with the operators (II.8). It turns out, 
howeve., diat its presence may again be related with an 
arbitrariness in the contraction prescription. Namely, 
the use of the numbers ca, — b in (II.6,7) instead of the 
ones a and Ь leaves thecalgebra (II. 9) unchanged. But 
similarity transformations of the type e+iaN3jK ,H,, i'i <r l a N3 
induce just the change la, Ы -. iea а, е~а ЬI. Therefore we 
argue, that from the point of view of the IMF observer 
the only use of N3 is to restrict the values of a and Ь . 

To conclude this section we show, that the non-
relativistic contraction of the algebra (II. 9) is just the 
one (II.4). Namely, when Ь -> 0 , that is , when the "light 
velocity l/\/4ab goes to infinity, (II.9) reduces to (II.4). 

As is obvious from (11.10), in such a limit the operator 
11 becomes singular. For .an irreducible representation 
this singularity can be made explicit: 

Н - ' Н ' - 4 Л Г " У cn.ii) 

where H is already non-singular. The algebra (0.9) 
becomes identical with (II.4) at b=0,if the following 
correspondence is made (at Ь=0!): Kj ^.S;, у -./i . 
From (11.10) we obtain the following expression for H': 

-2 

H' = _ ± - +• J» (11.12) 
2/i 2/< 
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which is a non-relativistie Haralltonian, often cllcil as 
a characteristic quantity In the infinite momentum frame. 

In what follows we consider scalar field theory with 
Ф interaction. Standard field-theoretical machinery pro

vides us with a realization of the 3-Poincare generators, 
and we can investigate in explicit terms what was outlined 
in the above section, with special emphasis on the inter
action terms. 

Ш. The Poincart Generators in Scalar 
Field Theory 

In order to fix notations we cite some standard 
text-book material about scalar field theory l~l. In the 
0' reference frame we denote the field operator by <i'(T, X), 
which is quantized through the standard equal-time 
commutators: 

1Ф'{т,Ъ, ф'п.Ь] " [ * * J T ' X ) . дф)1'хп 1- о , 

[ДрГГ.Х) | ф ' ( тД- ) ]= -iS 3(X -X ' ) : ( Ш Л ) 

Our Lagrangian density will be as follows: 

This enables us to calculate the energy-momentum stress 
tensor: 

У ^ - - в Р " £ + - £ £ . ^ £ . (Ш.З) 

The subsequent investigations will be performed in the 
Dirac-picture , and for the field operators plane-wave 
expansion will be used: 
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(Ш.4) 
A- + (Q)e i 0 " X I. 

where Q ^ "(Q0, (5), Q0=[<J2+ni2] !;.It follows from (Ш.1) 
and (HI.4), that the creation and annihilation operators 
commute as 

[A'(Q), A'+(Q')J = 2Q0S3(<? - C) ,• ( r a - 5 ) 

Notice, that these operators are Lorentz scalars, that is, 
the creation and annihilation operators in the unprimed 
0 reference frame, 

A(fc) =U<f) A'(Q)U _ 1(f) , 
+ + - l (П1.6) 

A+(fc) =U(f)A' +(Q)U ' ( f ) , 

commute according to the same rules as in the 0' frame: 

[ A(k) , A+ (k')] .= 2к0й3(к - к') . (Ш.5) 

The four-momenta k̂  and Q^ are related as follows: 

k„= Q0chf + Q3shf , 

k3= q,shf + Q 3chf, ( Ш 7 ) 

Now the Poincare generators, what we are going to 
study, in the 0' frame look like: 

P'=y/-|^-Q[A'(Q)A' +(Q) +A'+(Q)A'(Q)], (Щ.8) 

12 



Po~TjT$~Q[л'(0) л ' + ( 0 ) + ; V 4 Q ) r i Q ) l ~ 
з, \<i) 

-f"j^/ 1 i j 1(^ r-) lA'(tf»).V«/->)A'(y<=», x 

e - i T ( o l » 0 + Q ° 2 > + o l o 3 > ,

5

3 ( o < n

 + 0 ( 2 )

+ Q < 3 , ) + 

. + ЗА' + ( Q ( 3 ) > A ' ( Q ( n ) A ' ( Q ( 2 > ) e- i T<Q (0 n + <5 (O 2 > -otf '> v ( Ш ' 9 ) 

X S 3 ( Q ( 1 ,

+ Q ( 2 ) _ Q < 3 > ) + h . c . l ; 

* z*Jo dQ dQ 

(Ш.10) 

-fl'-f/ 4 f f t A 1 Q ) ( Q о -^"> A ' + « » - A' +<Q) ( Q 0 - 4 ) A'(Q)]-

xlA'(Q ( n )A'(Q ( 2 , )A'(Q ( 3 ) ) e-'^o'+doVlJi?) т х 

x 7 i ^ ; j f e d X + ("LID 
+ 3 A ' + ( Q f 3 ) ) A ' ( Q ( 1 ) ) A ' ( d 2 ) ) e - U 0 0 + 0 ° - « 3 ) T x 

1 
( 2 я ) 3 / Х е - ' ^ ^ Ч ^ Ь . , , , . 

In the expressions (Ш.9) and (III.11) the interaction terms 
are written in normal ordered form. We mention the 
somewhat strange fact, that this form of the Lorentz 
generators Й , N, where they are expressed via creation 
and annihilation operators, does, not seem to be very 
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often in the standard literature ' l> although it is easy 
to obtain from (И.4) and the expression of P,', and Mf, „ 
by means of tlie tensor 'Jf"/7/: 

' ' (Ш.12) 
M-/u,= /d ШЛ^'гЛ) - х,,т 0 1дт,й] : 

The only important condition in the derivation of (Ш.8-11) 
is that these operators act on the normaiizable states 
4' of a Hilbert space: 

Ф = [ С 0 + 2 J ; Г К ^ ' А ' ^ О ' 0 ) ) c n ( g ( 1 ) , . . , d n > ) ] | o > , 

3 - ( i ) (Л 1- 1 3) 
i = (ч., Ф) = | C o i 2

+ J 1 ; , i j I ( - ^ r ) i c 1 1 ( t i » . „ . , d B ) ) i = . 

Finally, we shall need the г -boosted form of the орэ-
rators (111.8-11). Their calculation is straightforward by 
means of (Ш.6) and (Ш.7): 

U ( ^ P L ' i r , ( ^ = i / j l L i : i [ A ( k ) A + ( k ) + A + ( k ) A ( k ) ] ; 

u(f; P;V-\& = -1 f-^-'-^ (k 0 -k 3 )+ e _ f (k 0 + k 3 ) i * 
о 

x [ A ( k ) A + ( k ) + A + ( k ) A ( k ) ] ; (Ш.14) 

x [ A ( k ) A + ( k ) + A + (k)A(k)]-i-p L / . f l , ( i -£ ? 1 r )x 
2 ( 2 ^ ) ' V 2 , = 1 2k v

0 

x|A(k ( 1 ,)A(k ( 2')A(k ( 3 ))e"-^ ° ° ° s t ' W ) + 
_; Лп1»)+1с(2)_к(3), , (Ш.15) 
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Vi®U'irh$) - i-Z-rnA I Л(к) !K>:-4-) Л ' (к) 

•Л" ' (к) (Кх-4 г )Л(к)] ; (III.16) 
r>K 

-U( 
l ' ? , f )N;U-(f l = c h f ^ ; ^ t k 0 - k 3 - ^ ) i A ( k ) J 2 _ A (k) 

1 1 d 3 ! ? » 

. T (1) ( 2 1 . ( 3 ) , 

x | A ( k t " , A ( f t № B 1 ) ; ^ U ° " ' B ° '> (Ш.17) 

, . - 1 _ ( 1 Г ( 1 ,

+ к ( 2 ' + к < 3 ' , Г 

i т и<!' .ч<2) i (3! i 
+ 3A + <k l 3 1 )A(k 1 ] , )A<k < 2 ) ) e " ' ^ ? a ° + k ° " k ° ' x 

(2ri 3 

,{f(l> r»(2) r>(3). -, -(К +К -K ) x 
h . r . l , i = 1,2, 

- U ( a ^ l i - 4 a = 4/4r-k 0[A(k)-f-A+(k)-A+(k)-f-A(k)l-
' - k 0 " к 3 икз 

) ) . 3. , d 3 l T ( i ) , , . „ ( » , . , 12), ,,,(3), 
- T - g - г - / И ( rr^—)IA(k )AC; )A(k ) x 

2 ( 2 ^ / 2 i = l 2k (

0'> 
- i - X - f v d i + i r i a .1.(3), , , 

x e ' c h f ( k o + k o + k o ,

х Г т ^ | . 8 з ( к К , )

+ г , я

+ г , ! П ) + 

. , - _ 1 _ , й ( 4 ( а - * ( з 1 ) ^ , / т 1 в л 
+ — i Ц г / z e c h £ d 3 i ' + h . c . ] ] - (Ш.18) 

c h 2 £ ( 2 я ) 3 

l i l L d l J l ) vO) , 
x e ' c l l f ( k o + t o lo V4|^(i?" + K , 8 -K«', + 

ch f 
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+ J L _ / Z e

 c h f d3x - b . c t . 
d?£ (2л03 

In these formulas the notation tf stands for the three-
component quantity (k i , k 2 ,-k 0clif+ k3c!if ),A(k) and 
A+ (k) are annihilation and creation operators of quanta 

with four-momentum k„ = (ko, k i , k ?, k 3 ) in the reference 
irame 0. Notice the following properties of the operators 
(III. 14-18): First, that owing to the presence of interaction 
they are not simple combinations of the 3-Poincare gene
rators in the reference frame 0. (These latter operators 
would be of the same form as (Ш.8-11), but substituting 
A'(Q) to A(k) and the O'-frame time T to the 0-frame 

time t )• This is so only for the free parts of the gene
rators. Second, that the interaction terms are of lower 
order with respect to powers of ef , than those of the 
free-field theory. These properties are consequences of 
the fact, that in the definitions (Ш.12) T is fixed, and it 
is easy to see, that the substitution of T = fixed to any 
other fixed spacelike surface would not change these 
properties. 

IV. The Infinite Momentum Limit 

Similarly to our treatment of infinite momentum limit 
in Sect. II, we assume, that also the parameter spaces 
for the 3-Poincare transformations are different in the 
0 and 0' frames. We perform the corresponding trans
formations on the boosted operators (III.14-18) and take 
the £-> oo limit. 

a. The 2-Galilei Case 

Following (11.2) and (II.3) in this case one obtains 
the operators: 

Si = -f / - i ! ] l_(k 0 -k3)[A(k)- 5 | -A + (k)-A + (k)- 5 | r A(k)] , 
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|'^ ,. A/i.™k°j_U(k)A'CU .• Л+(Ь)Л(к)1, (IV.I) 

M 3 = ± , j | L i A ( k , ( l l _ ^ _ u _ 5 _ ) A + ( k , . 

- A + l ^ ' ^ w 2 ~ ^ i k ) M k ) l <IV'2) 

3 ** 
Ц = J - / - i -b - (k 0 -k 3 ) [A(k )A + (k ) + A +(k)A(k)l, 

2 2k о 

- A + ( k ) - , 3 , ,A(k)] . (IV.3) 
a ( k 0 - k 3 ) 

The first remarkable thing about these operators is that 
none of them contains the interaction. This is characte
ristic to non-relativistic theories, where none of the 
symmetry transformations alters time. So far we know 
neither that variable; which plays the role of " t ime" 
from the point of view of the IMF observer, nor the 
"Hamiltonian" governing the "time development" of the 

corresponding "non-relativistic" states. To find out the 
"Hamiltonian" we study the »ML of a dynamical equation, 
most conveniently that of the Lippmann-Schwinger equa
tion'' 9/ 

From the viewpoint of the 0' frame observer the 
Lippmann-Schwinger equation for systems given in the 
0 frame reads as: 

|4>>= |p >+—-г 1 P^ №, (IV.4) 
ofree 

where |p > is an eigenstate of the free operator P 0f r e e : 
(IV.5) 
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The state |p / ( > develops into | 4>>, which is an eigenstate 
of Pfi - X>\ -\ p€ with the same eigenvalue E* : 

« О1Г0С OlDt " 

pf | 4! > = E^ |« > . (IV.6) 

The operators p / , P0f t c e , P0fn t are to be calculated 
from eqs. (П.2), (Ш.14,15), taking T= 0in the interaction 
terms. We have already seen, that 

l imP 0 = Hm P o f t ( . e = -2" f -

Therefore, in the limit £-. ~ eqs. (IV.4,5) have non-tri
vial solution, (p > /|Ф>, only, if 

t (IV.7) 
limfp, V 4 = 0 , 

H^H 0 , V f ] ф 0 . ( W . 8 ) 

We introduced the following notations: 

T V ^= ^ P o i . < | H 0 - ^ L e - | С ) • dV-9) 

All these operators are explicitly known, and one may 
check, that the conditions (IV.7,8) fulfill. This enables 
us to write down the "Lippmann-Schwtnger equation" 
in the infinite momentum frame: 

" > - ' ' » > * b ( P ) - V u У | Ф > ' ( 1 У Л 0 ) 

where 

H„ = L fJ-£.h (k)[A(k) A + (k) + A + (k)A{k)],(IV.ll> 
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1 Я A3 f'U) 

х(л" ( к ( э > ь \ а п , > л(к ( 2 > ) s <k^V^ 2»-kjfis(,« t l ,+ #.« a- /Pw 

+ h.c.I. < I V - 1 2 ) 

The notations ^ ° = k' 0

n -кУ> , h = k0 +U3 are introduced 
here, and terms containing s((/"'+// "+|л(!>) are left out, 
being identically zero. Notice, that the S -matrix element 
<p'|4'>, when iterated by means of (IV.10), takes just 
the shape of Weinberg's infinite momemtum limit of the 
non-covariant perturbation series 

Going on with our programme, we may calculate the 
commutators of H 0 and V with the operators (IV.1.2). 
Since all the commutators give zero, H 0 can be consi
dered as free Hamiltonian, while V is the interaction 
Hamiltonian. Finally, calculating the commutator of Ho 
with Ф ( i . * ) which is the field operator in the 0 frame 
(and has analogous expansion to (HI.4)), one obtains: 

[»,.,0(t, x)i = - i 2 — 1 .<*((,?) . (IV.13) 

That is, from the point of view of the IMF observer the 
" t ime" coordinate is -i-(t + z) 2 

b. The 2-Poincare Case 

In this case, when calculating the infinite momentum 
limit, Af- «>, we must use eqs. (U.6-8). The operators 
Мз, N3 , I*j_ are the same as in (IV.1, 3). Moreover, we 
obtain: 

-A+ (k) (h ' - i -+ 2bk| - £ - ) A(k)! + 



, , 1 г и i d 3 k ( l ) . , я м - ( 1 ) .-(21 .->(3). 

xl A + (k t 3 > )A(k { 1 , )A(k U 1 )- —Ц-jVlc ^ 1 -i d х + 
(2л)2 

+ Ь. е.1; 0V.14) 

H = T \ - f / 4 r L b ' [ A ( k ) A + ( l i ) + A+(k)A(k)l-4аЬ 2 2k 0 

-г- в — т ' п (-il^_)S(k(i'+k<_2,-ki3') х 
4 а ( 2 ^ 3 / 2 2к(

0'' 
xi3A+<k (3>)A<k (11) A(k ( 2 )) S^k^'+kfik'f) + h.c.l , 

р ' = A ; J _ J L ^'0[A(k)A4(k) +А +(к)А(к)] + 
^ 2 2к„ и 

+ b g _ ^ _ ;. | ( - 4 ^ ) а (kiV_2'- к(_3') х 
<2*) 4 / 2 , = I 2k0

( l ) С™ 1 6) 
х f3rf-(k(s>) Ad!1') А(к ( 3 ) S 2 ^ + \ -kj_ ) + h.c. 1 . 

In the above formulas the following notations are used: 
К = (+К,,К 2), Ь'=а(ко-кз) + Ь(ка+к3) ,(i'o=a(ko-k3)-b(ko+k3), 
and 2-k_ = {ц'о + Ь') . In contrast with the 2-Galilean 
case, now some of the IMF generators contain the in- -
teraction. Lengthy, but straightforward calculation shows 
that the operators К , , K2 , M3 , Px , P2 , H , ц' , 
including the interaction terms as well, fulfill the algebra 
(П.9). 

It is natural to interpret these results in the following 
manner. The IMF observer describes the O-frame world 
by a field theory, the symmetry group of which is the 
2-Poincare group introduced in Sect. II. This 2-Poincare 
group transforms the transverse space coordinates, x=d,y), 
and the "time coordinate" 

3"=[(a + b) t + U - b b ] . (IV.17) 
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It is easy to verify, that the free part H 0 , of the 
operator 1! generates translations just in this variable 'S-. 

[\\'№ф(1,х)\ = -i-—</>(t,x) . (IV.18) 
at 

In possession of eqs. (IV.17,18) we may construct the 
"time-dependent interaction Hamiltonian". First we split 
the operator H to two parts, II =H'0 + V , H'0 and V 
being the free part and interaction term, respectively. 
Then, we define 

and easily obtain the explicit form of V'{,-) : 

_ V ( r ) =-£ L _ j | ( - i - 5 - ) 8 (k_+k_ - k _ ) x 
(2*) 3/2 i=l 2 f e ( » 

0 

xl3A+ 

+ k j 2 ) -\3)) + h.c. 1. 
(IV 20) 

For obtaining dymanical calculational schemes we 
have now two possibilities: 

1. Either proceeding similarly to the discussion in the 
2-Galilean case, or referring to formal resemblance with 
usual 3-dimensional field theory, we may describ:' an 
analogue of the Lippmann-Schwinger equation as follows: 

|4f> = | p >•+ V'|4»> . (W-2V 
P -i— h ' - H ' +if 

4ab ° 
(IV.22) 
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It is easy to see that eq. (IV.21) is exactly the same as 
the one (IV.10), the Lippmann-Schwinger equation in the 
2-Galilean case. Indeed, a simple comparison of the 
explicit form of the operators V, V'andHo.Ho shows, 
that V= + 4aV , 4аЬНЙ=а/л- bH0.Theserelations,combined 
with the commutator (IV.7), say that eq. (IV.21) does not 
offer more, than a reinterpreiation of Weinberg's infinite 
momentum limit of the non-covariant perturbation series 
in terms of our 2-Poincare group instead of the 2-Galilei 
group. Namely, it appears to be the "non-covariant per
turbation ser ies" in a field theory, the notion of covariance 
being related with the 2-Poincare group. It will be sug
gested in the next section, that this «interpretation may 
be of interest. 

2. Based upon the "time-dependent interaction Hamil-
tonian" V'(r) one may to try to work out "covariant 
perturbation theory". The starting point of such a theory 
should obviously be the " S -matrix": 

- S " = v _-_ii£M j " , J d p i v - o v-(r)l, (IV.23) 

where P. denotes the operator of .- -ordering. The in-
variance' properties of this operator from the point of 
view of the 2- and 3-Poincare groups, the relation between 
"S"and S -matrix of the initial scalar field theory, the 

elaboration of a "2-Poincare covariant" perturbation 
theory are problems, which we are going to discuss in 
a forthcoming paper. 

V. Summary and Outlooks 

In the previous sections we presented a systematic 
description of infinite momentum limit of scalar field 
theory with mass m and interaction ф 3 . We demonstrated 
how this 3-dimensional field theory reduces to a 2-dimen-
sional scalar field theory. However, in the new theory 
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of lower dimensionality a continuous mass spectrum 
appears. It is shov.n, that the 2-dimensional symmetry 
group m:.y be either a Galilean, or a Poincare subgroup 
of the original Poincare symmetry group of the 3-dimen-
sional theory. 

In that case, when 1Mb results in a Galilean theory, 
we rederived Weinberg's result concerning the limit of 
the non- covariant perturbation series ' 4 ' . Among the 
Poincare generators, which survive after the limiting 
procedure this case, one discovers just that six 
operators, v,.iich do not contain the interaction and appear 
also in the 3-dimensional theory, if it is quantized on 
a light-front / I 0 ^However, in our case the seventh sur
viving operator, N3 , the remainder of the generator 
of z -boosts, does not contain the interaction, either. 
Therefore it is obviously different from the N3 operator 
of light-front quantized field theory ^°Л This fact does 
not seem to be noticed in investigations of the connection 
between TMF field theory and light-front quantized field 
ihsory/V. 

In that case, when IML results in a 2-dimensional re 
lativistic theory, we proved, that the perturbation theory 
of the previous, Galilean case plays just the role of "non-
covariant perturbation theory" from the point of view of 
this relativistic field theory. We suggested the possibility 
for elaborating a "covariant perturbation theory", which 
may offer a new calculational scheme for high energy 
processes. 

Models bassd upon the relativistic 2-dimensional 
picture may be more advantageous than the Galilean 
framework for the description of processes, in which large 
transverse momenta appear, that is, when the 2-dimensic-
nal objects mcve "relativistically". It is tempting to 
believe, that, when also transverse momentum gets very 
large, the 2-dimensional relativistic dynamics somehow 
imitates the 3-dimensional one, and, for example, a new 
scaling region appears. (Such phenomenon has already 
been reported l x У. ). For the description of this region 
a second "infinite momentum limit" may be useful. This 
"infinite momentum limit" should, of course, be under-
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stood from the point of view of the 2-Poincare group, 
and should, in practice, be performed with the help of 
eq. (IV.21), which, in the case of the relativistic 2-dimen-
sional theory, plays the role of the "non-covariant 
perturbation series". Obviously, this argument can once 
more be repeated. Thus one obtains a sequence of three-, 
two-, one-dimensional theories embedded into each other, 
and this may perhaps be brought into correspondence with 
processes, in which one, two or three components of 
momenta are large. This picture is reminiscent to the 
ideas described recently by Fubini and Rebbi on different 
grounds /fl2/'. 
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