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1. Introduction

In present theoretical physics appropriate approxima-
tion schemes are of enormous importance both to sys-
tematize data coming out from the larger and larger
accelerators and to search the laws, which govern the
paenomena being behind the data. No doubt, one of the
best guides to find successful approximations has been
infinite momentum limit/! . Most popular applications
attribute to infinite momentum frame (IMF) description
the following two, interrelated, implications:

1. In field theory the P - o« limit is equivalent to
gquantizing the fields on a 1ight-fron(r2n

2. There is a correspondence between IMF physics and
two-dimensional Galilean physics/1:3/,

Both of these points crystallized out from direct or
indirect attempts made at interpretins the results of
Weinberg’s classical paper from 1966 1af Though the use
of IMF was initiated in current algebra/5/, ). The inves-
tigations of the present paper will be focusedon the second
point, which became a first principle in some formulation
of pirton model /17,

First of all we remark, that as far as kinematics is
concerned IMF does not favour any subgroup of the Poin~
care group to the others, therefore on the kinematical
level point 2 is a completely arbitrary statement. The
argument for this is shortly as follows. Relativistic
particle kinematics is not more, than representation theory
of the Poincare group. From a group theoretical point
- of view_ 'infinite momentum limit is nothing else, but
contraction of the Poincare group/6/. Group contraction

H
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is, however, 2 far not unique procedure. In the present
case it turns out, that the arbitrariness manifests itself
just in destroying the distinguished role of the Galilean
subgroup in the infinite momentum limit. The *’favoured”
subgroup may equally be a two-dimensional Poincare
group. This will be demonstrated in Sect. II.

Any distinction between the different kinematical
possibilities may be of dynamical origin only. Therefore
we investigate a simple interacting scalar field theory.
Lagrange formalism gives us a realization cf the gene-
rators of the Poincare group in terms of field operators,
and we ask, how they are acting on the states of a moving
Lorentz frame, especially, when the relative velocity of
the frames in which the generators and states are specifi-
ed tends to the velocity of light. We show, that the two
kinematical cases, presented in Sect. II, can be enlarged
to consistent dynamical pictures. One of them exhibits
the two-dimensional Galilean structure, which is usually
discussed in counection with Weinberg’s infinite momen-
tum limit of the non-covariant perturbation series. The
second case shows the characteristics of a (two-dimen-
sional)relativistic = theory. This offers an altermative
group-theoretical interpretation of Weinberg’s result,

and possibly useful new approximation schemes. After
recapitulating the needed field theoretical formulas in
Sect. II., these ideas will be developed in Sect. 1V.
Section V contains concluding remarks and ideas about
applications.

Throughout the paper we will use the following termi-
nology: The usual Poincare group in three space + ore
time dimensions will be called 3-Poircare group. We will
deal with Galilei and Poincare groups. in two space +
one time dimensions, they will be called 2-Galilei group,
2-Poincare group, respectively.

II. Contraction Schemes for the 3-Poincare Group’

In order to specify what in our view infinite momen-
tum limit (IML) means on a kinematical level, we start
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with some elementary questions about Lorentz transior-
mations. Consider a spin-zero, mass-m, positive time-
like representation of the 3-Poincare grcup. Denote the
basis functlons of the corresponding representation space
bylp,>, p2= p(, p2 = m2, where the four-momenta Py
are meacured in a coordinate system 0. In this coordinate
system finite Poincare transformations of the basis
functions can be given with the help of the infinitesimal
genetarors P, , M, (mostly the notation M, :
N =M will He use , and an appropriate ten- dlmensmnal
parameter space. The generators satisfy the familiar
commutation relations

M, M) = —IN, N D= iy, My,

(M, N1 = e Ny, (.1

[MMY, PPl = i(g"P PHE_gFPPY) .

Now let us imagine an observer who is sitting in an ¢’
coordinate system. In this system we also may specify
the functions of the previous representation space, on
which now the Poincare transformations are generated
by the operators sz , M ’#,,.satislying the same algebra
as (II. 1). We ask, how the observer of the 0’ system
will describe the functions |P x>+ given in the 0 system,
if

1. the two coordinate systems, 0 and 0’, are moving
with a relative velocity tanh &, £ being the cor-
responding boost angle;

2. some parameters of the ten-dimensional parameter
spaces are measured on different scales in the 0
and 0’ systems.. -

In explicit terms, from the pointof viewof the 0’ observer
the following operators are appropriate as generators of
Poincare transformations on the basis functions |p p>

sy 1t
mé - né- Naua Mm-S,



ME+ NS A8 DO M+ N U,
£ ¢ ey
N$ - ME= U (N[ -MpHU™ (&),

& ME v (N + M) U
N2+M1_U(¢)(N2+M1)U'(£).

Mé- v MU, (.2)
£ _ sl
3 = U(&) N3U 8,

pé - Pl - MO BB -PH U,

P . PE- e (Pg+P5IU (D),
ré-upiul e, i=1,2.

We denoted by U(&) =e NS z-boost with parameter £.
These operators are to be used by the 0’ observer, if for
constructing finite Poincare transformations on the states
|p n> the parameter space of the O system is applied. As
is clear from (II.2), a relative )(¢) scale factoris
assumed between certain parameters of the 0 and o’

systems. When ¢ goes to infinity, ? operators (1I.2)
either become zero (like the ones NS - M N2 + M7,
Py5+ BS), or can simply be related with the operators
Pﬂ s M,l,, of the 0 system, if for the function A (¢) the
behaviour A(¢) _,=me‘f is assumed. The surviving
operators give, what we call the description of the space
spacned by the basis {p > from the point of view of the
infinite momentum frame observer. These operators read
as: . .

S‘agl"m(w‘;mé =My+ N, M3=}§L",°M3§' @.3)



Soc lim (~M&t N§)e =M 4N, N = lim N
B9z lim l+12—- 'l+'2’ lﬂ-—Elm 3

f-» £l

= lim (PE- P = Py =Py, P, = lim PE -1,z

(Later on it turns out, that in the field theoretical frame-
work such a simple connection between the IMF operators
and the 0 frame ones appears only in the free field case,
see sect. IV). ’

It is easy to verify, that the operators S| , Sy , M3,
Py,P2 ,pu form a two-dimensional Galilei algebra, in
which p plays the role of non-relativistic mass, M 3 ge-
nerates two-dimensional rotations, P ,, P, translations,
and S; , Ssarethegenerators of velocity transformations:

ij

[51,8.0=0, [Mj3, 51=i5,, [Mj4,S,]=-1%,,
(P, Pyl-o0, [ Mg, Pyi=iP,y, [M, Pol=-iP,
[P, ul=0, I Mg, pl=0, IS, pl=0,
LS, Pil=is, n . (11.4)

We may conclude, that for tha IMF observer the irredu-
cible 3-Poincare space of mass ,; splits up with respect
to irreducible 2-Galilei representation spaces of all
positive masses i = py-p 3. (In what foilows the same
notation will be used both for the operator ; and for
its eigenvalues).

There is stil} one more surviving operator N;,which
may be joined with the previous ones to form a closed
algebra: B ’

Ny M,l=0, [Ny, pl=ig,
. (11.5)
(N, P, l=0, [N, S1=iS.



The signlficance of the presence of N, among the IMF
operators has so far not been cleared upin the literature.
In our opinion it is very intimately related with the con-
traction procedure described above. Let us notice,that
wher we scaled out an infinite factor from the operators
Mé- Nf, MEs N‘if and Ps-Pro,we neglected 2 one-parameter
freedom. 'ﬁamely, the operators S{=aS;, fi=au, P; ,
M3z would give exactly the same algebra as (II.4). On
the other hand, we see from (II.5) that transformations
generated by N3 correspond just to a similar rescaling
of the operators S, ,S 5,p .This means, that from the
point of view of the IMF observer the relative scale of
the quantities p; , p 2 and ., respectively, is undeter-
mined by construction. If, however, some fundamental)
reason, like dynamics, determines this relative scale,’
then similarity tfransformation by exp(-iaN 3) always
enables us to redefine kinematics in order to be compa-
tible with this natural scale.

So far we discussed IML more or less along the same
lines as was done in refs. 3 and 1. Now we describe
another possibility, which might also be relevant in high
energy physics. Instead of (II.2) let us define the IMF
generators via the following formulas:

ME-NE =ad¥U(H) (W, N U™ (0 +be ST (N -1 U (),

MENE=mas  HOM-NUT (8 +bef WO (NGMD U (D

Pe-pf-t tatUa (Ps-pp U (0 +
+be VO (PI+PP UM (2, (1L.6)

where 5 "and b are arbitrary positive numbers. For
the remaining seven cperators we keep the definitions
in (I1.2). We introduce one further operator, which is not,
of course, independent of the previous ter while ¢ is
finite, but h-s important role when &£ - = )



K’ t=ae =60 (P - P U~ NG -

be $U( (PGP UL (D) D

Now in the limit £ > ~ the follewing onerators survive:

K =linME-N§, Kp=limME+ND, wy=tim3, s
H = limPf - P9, P = i PE, R

and, as previously, t.e operator limN§= N 4. It is easy
to verify, that the operators enumerated in (I.8) form
the Lie algebra ¢f =2 Poincare group (2-Poincare group)
operating in a Minkowski space of two space+ one time
dimensions: ’

[K,, Kpy)= -i4abM,, Mg, K; 1= ie 45 K,
My, Hl=0, . WMy Bl=ie Prs g
K i }l]_+1P [Ki,Pj]=+i4abBin.

‘All the other commutators between K; , P; , H , M,
p° are zero. It is intevesting, that the two parameters
a and b, introduced in the contraction procedure, appear
in the algebra (II.9) only in the combination 4ab and the

quantiy, Z;LL: is direc: analogue to the light velocity.
v 4ab

Since ,‘ commutes with all the operators K; , M j,
P;, H , it can be considered as number from tie.
point: of view of the algebra (II.9),  anrd, for the IMF
abserver, -it plays analogous role ta. the rest mass.
(Again, the nutation .’ will be used beth for the operator
and its eigenvalueS). As a; matter of fact, the Casimir
cperator of this algebra is 4ahH2 "Hts eigenvalu s may
be prescribed as:



4 n
sabll® - Blo n®e Lot (IL.10)
(The notation PZ+P? is introduced here).
In this case o‘k contractlon, for the IMF observer, the
irreducible 3-Poincare representation space splits up to
subspaces, which are irreducible with respect to a rela-
tivistic type subgroup of the 3-Poincare group, the above
2-Poincare group.

We must again discuss the role of the N3 operator.
In contrast with the previous case, now it does not form
a closed algebra with the operators (11.8). 1t turns out,
howeve., tat its presence may again be related with an
arbitrariness in the contraction prescription. Namely,
the use of the numbers ca, —-b in (I1.6,7) instead of the
ones a and b leaves the® algebra (II. 9) unchanged But
similarity transformatiors of the type ¢ 31K H, 3 2N3
induce just the changefa,bl- {e” a,e™® bl. Therefore we
argue, ' that from the point of view of the IMF observer

the only use of N3 1s to restrict the valuesof a and b .

To conclude this section we show, that the non-
relativistic contraction of the algebra (II.9) is just the
one (I1.4). Namely, when b -~ 0 , that is, when the *’light
velocity 1/y4ab  goes to infinity, (I1.9) reduces to (I1.4).

As is obvious from (1I.10), in such a limit the operator
H becomes singular. For an irreducible represenia'uon
this singularity can be made explicit:

H=H - (m.1)

1,
Zab :
" wheré H- is already nonl singmar The algebya - (11.9)
becomies ~ identical  with (II. 4) at b=0,if the following

correspondence is made @t b=01!) K; =S;, p° g
rrom (II 10) we ‘obtain the followmg expression for H’:

Cm? R ;(‘ll,lz).‘:



which is a non-relativistic Hamiltonian, oiten cited as
a characteristic quantity in the infinite momentum frame.

In what follows we consider scalar ficld theory with
¢° interaction. Standard field-theoretical machinery pro-
vides us with a realization of the 3-Poincare gencraters,
and we can investigate in explicit terms what was outlined
in the above section, with special emphasis on the inter-
action terms.

II. The Poincare Generators in Scalar
Fieid Theory

In order to fix notations we cite some standard
text-becok material about scalar field theory/ /. In the
0’ reference frame we denote the field operator by &'(T, %,
which is quantized through the standard equal-time
commutators:

T X g gy 88T, XY 9H(T,X)
[$7(T,X), ¢(T,X)]=[ ~aT , 3T }=0
h | .03 .
[a a(’IT,X) ’ ¢'(T,5f')]= —i8 (X=X : (uL.1)

Our Lagrangian density will be as follows:

d¢’ d¢’ 242y 4 1 3
¥ = —_— - ‘ —g 1.2
T-3(=x 5, - " rged? (u.2)
This enables us to calculate the energy-momentum stress
fensor:

Tuva —ghv € + a4’ 645" . ) (il1.3)

The subsequent investigations will be performed in the
- Dirac-picture, and for the field operators plane -wave
expanslon will be used: .



PO 1 d% ... -i‘)L'\’N

¢.'(|,‘\):—7—f-——‘—[/\ (Q) e L
(2m)37/2 2Qo
‘ (l8.4)
At 8N,

where Q=Q, ~(Qq §), Co= [G%m? 21t follows from (IILI)
and (INI. 4), that the creation and annihilation operatoers
commute as

[A(QY, A0 = 20483 ¢ - {0 .. (I1L.5)

Notice, that these operators are Lorentz scalars, that is,
the creation and annihilation operators in the unprimed
0 reference frame,

Al =T AU (&),
_ 1116
A = At Ui, (-6

commute according to the same rules as in the 0’ frame:

[AGk), AT (0] = 2k 83 (K - K7 . (111.5)

The four-momenta kp and Q. are related as follows:
= Qgeché + Qgshe,

ky= Qshé + Qgehé, 4 .7

ki=1Q] .

Now the Poincare generators, what we are going to
- study, in the ¢° frame look like:

~—f d Q[A'(Q,A’*(Q) +AQ A, (I11.8)

i2



Pred B0 o fado) A7) + AHO) A1)
P TN ' CATROY AN -

] 1 B 208 e 2h e D
R v N TR Ha @ M a@' D and ™ «

(1 (2} {3}
~iT( + }oL3 () (D) {3
e Qg +Qp +Qp 5%6'" 4+ 0 +Q())+

4 3A- Q) Ar(Q My ar(Qf2h TRl AP ~oldh (H11.9)

A3

X53(6(l)+6(2)—Q Y+ hoed;

3
Moo L d°Q 4 G x93 ANO) ~A" 2.0 , .
b) f 2QD[A (Q)(QXE)A (Q) A (Q)(QX'ﬁ)A(Q)],

(111.10)

. 3=z .
_N’=-2‘-f -‘;JQ)—[A‘[Q) Q, -_-%-)A"‘ @ -A"1(Q (Qoa—%) A%Q)-
a
1 1 3 335(3
prmyr iEl(ZQ((;] '
L AD (2 ()
<A1 A1t A7) it +0(0 +(§o )T

~i (TP PN 4 :
JXe d°X+ - (L)

x—Ll_

(2nP
+3at (Q(s))A,(Q(I)) A’(dm) e—l(Qo+ Qo -09) T «
LA A2 s
HOTH -0 Bxda)h h.oe. d.

1
X—(—Eﬂ—)éf Xe

In the expressions (III.9) and (ill.il) the interaction terms
are written in normal ordered form. We mention the
somewhat strange fact, that this form of the Lorentz
generators , N, where they are expressed via creation
and anpihilation operators, does not seem to be very
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often in the standard llterature/ / although it is easy
to obtain from (11.4) and : F /expressmn of Py and My,
by means of the tensor §H
3 oy
= fd°RG, ( W 5,
(1.12)
M',,,,Jd Xlx,,frop('r, X - X, ToulT, 0] -
‘The only important condition in the derivation of (III.8-11)
is that these operators act on the normaiizable states
Y of a Hilbert space:

sg
Wefes § L 08309 Lo g
(eor 3 Lor B v W) e (0 g0,

- (1.13)
1= (BW) = ool % £ s i (-—%Tnc @M, d™y 2

Finally, we shall need the =z-boosted form of the gope-
rators (111.8-11). Their calculation is straightforward by
means of (111.€) and (111.7):

4 ap
wapy U= L dk§am At + Atk AGOL
i 3 Zfzggl[ )+ A (K)AK)]
U@ P U - L pd o mk e 8 (kg k gl x
0

LAY AT (k) + AHK) A ] 5 (111.14)

-
v Pu g = —‘-f—"—"[ef(ko-k )+ e‘f(kouq)] x

2
<[AK)AY (k) +A* (k)A(k)]-——-g-——-.,—]z—fl , —d—'-r>
(Dy 4 1 (Dy 40 (D B m k] B 33(1) 2(2) 3(3)
AR AG D) A @) o o f SERER)
(1IL.15)
—x-——(k%”»rk{,” e .
<38 M Al ae®y e SN2 b o b5
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N Lo L
U(@M‘IF'(&):%—f%(A(lg)([&v-—'iiﬁ);"a‘ ) -

AT (K l\ L (1i1.16)

7]

= Hht FIRS
~UAONUTHE = ché S fm i kn»\(k)__’\‘ ) -
d k” )
—At — Alk L x
A(k)aL Al v T‘.-ITI“T‘
X (,(n‘ @49,
< EAGD) AP A e g (1L.17)

i) (D (3 L
1 o R RO 5
f X e ché -

(N, (2 (3)
i— (k) 4k —k
+3A+(k(3’)/\(k“))r\(k(2))e .f( 0 o)

“'\’(l) 2{2) —'(3)) -

fx ;..5 ] + hoed, i=1,2

1
><(2”)3
AN =—21f k [A(l\)———/\ () - A (k) 2 AR)] -

okg

s 30%0)
1,1 Ak ac™ ac?
27 (200%2 Ti=t k(D

= (D (D (3D
———(k 4kt S 1k
ThE o e o shg SERDL D LRy,
i g2z
h12 o )afve ch«f 54 hel - (111.18)
cheg

) AGPY &

xe

+

3 i)
1 1 d” k +0143) (1) (2

kT sziﬁl( D A AKD)
AT )

xe ch 1 2hE

shg s3RD, g ;((3)) .



RO )

L1 1 ze Yy 3 whoeat.

* ch'zf (27) I

In these formulas the notation K stands for the three-
component quantity (k;, kg ,~kgch&+kzehé ), AlLK) and
A* (k) are annihilation and creation operators of quanta
with Jour-momentum k, = (kog,k j ,k o,k 3 ) in thereference
irame 0. Notice the foﬁowing properties of the operators
(111.14-18): First, that owing to the presence of interaction
they are not simple combinations of the 3-Poincare gene-
rators in the reference frame 0. (These latter operators
would be of the same form as {(II[.8-11), but substituting
A’(Q) to A(k) and the O°-frame time T to the O-frame
time t ). This is so only for the free parts of the gene-
rators. Second, that the interaction terms are of lower
order with respect to powers of ef , than those of the
free-field theory. These properties are consequences of
the fact, that in the definitions (111.12) T is fized, and it
is easy to see, that the substitution of T=fixed to any
other fixed spacelike surface would not change these
properties.

IV. The Infinite Momentum Limit

Similarly to our treatment of infinite momentum limit
in Sect. II, we assume, that also the parameter spaces
for the 3-Poincare transformations are different in the
0 and 0’ frames. We perform the correspconding trans-
formations on the bocsted operators (I111.14-18) and take
the g—» « limit.

a. The 2-Galilei Case

Following (11.2) and (I1.3) in this case one obtains
the operators:

3>
o irdikx _ _a_ _at a
8i =~/ S (ko- k) AU — A" (0-A" () AW,

16



¥k ‘—‘—» Lll\(l«) AT AT AGD], av.n

d !;

My~ 4 -kg—m:—]l—) At -

- A+(k)(k|—a-‘|i— —ky 2 a:\ YA, (av.2)
= %f%(ko—kmmm AT+ ATW0AMY,

Ny=- 47 -%%(k 0=k5) (400 et -
—AT( a(k" = AU . (Iv.3)

The first remarkable thing about these operators is that
none of them contains the interaction. This is characte-
ristic to non-relativistic theories, where none of the
symmetry transformations alters time. So far we know
neither that variable; which plays the role of ’’time’’
from the point of view of the IMF observer, nor the
""Hlamiltonian’’ governing the ’’time development’’ of the
corresponding ’’non-relativistic’’ states. To find out the
Hamiltonian”’ we study the iML of a dynamical equation,
mos/tg conveniently that of the Lippmann-Schwinger equa-
tion

From the viewpoint of the 9’ frame observer the
Lippmann-Schwinger equation for systems given in the
0 frame reads as:

3
[¥>=1lp,>+ ”“E__;)T—“—Pom 9>, (IV.4)
ofrce
where Ip#> is an eigenstate of the free operator Po‘%:ree :
(IV.5)

ofree

Pf }pF>= EflpF>E[-—é—(po—pa)+%e—f(p0+p3)]| lpF>.



The stat ? g > develops into| Y , which is an eigenslate

of Pf = ps Siree ? P o, With the same eigenvalue E
P5|W>= ES]‘P>. (Iv.6)
The operators P(,‘f , P‘f , P §m are to be calculated

from eqs. (I1I.2), (. 14 15), takmg T = 0in the interaction
terms. We have already seen, that

lim Pg 1§1m Pf = %y.

olree
f—:cv

Therefore, in the limit &5~ eqs. (IV.4,5) bave non-tri-
vial solution, [p# > #{¥>, only, if

.1
limlg, V61 =0, av.7
f—aw
limiHy, V&1 #0.
fae 0 (Iv.8)

We introduced the following notations:
1 € ¢ 1 £ né 1 :
—2~V = fpou:u : TH0=3 (Pofree "'2—“)' (Iv.9)

All these operators are explicitly known, and one may
check, that the conditions (1V.7,8) fulfill. This enables
us to write down the’’Lippmann-Schwinger equation’
in the infinite momentum frame:

- —d Iv.10
|¥>=lp,>+ Trypa vy VIivs>, { )}

where

Hy =

™3



3 i)
1 A AUk
Bamar L 2t

(A YAy Aty B AP s

V=-3

2 (3)) +

+hoel. (Iv.12)

The notations k{14, h -k +k,; are introduced
here, and terms contamlng o(,")+,l( ”+u‘ ))are left out,
bemg identically zero. Notice, that the S -matrix element
<p’|¥>, when iterated by means of (IV.10), takes just
the shape of Weinberg’s infinite momemtum limit of the
non-covariant perturbation series

Going on with our programme, we may calculate the
commutators of 1, and V with the operators (IV.1.2).
Since all the commutators give zero, H, can be consi-
dered as free Hamiltonian, while V is the interaction
Hamiltonian. Finally, calculating the commutator of !y

with ¢#{(t, ¥} which is the field operator in the 0 frame
(and bhas analogous expansion to (l11.4)), one obtains:

[, (1, ) = ‘7+ A LACEE (v.13)

d(

That is, from the point of view of the IMF observer the
’time’’ coordinate is --(z + z)

b. The 2-Poincare Case

in this case, when calculating the infinite momentum
limit, £+ =, we must use egqs. (I11.6-8). The operators
M3, Na s ﬁJ_ are the same as in (IV.l, 3). Moreover, we
obtain:

2

9 vabig =2y AT () -
kL EM -

—AF (0 (=L 4 2bk =€) AGO +
Bkl dk_.



3 PG e o
Sk s RS O .

1
3b = 1 ,
M P ILe 2k _—
nee2 ”3 nd
o ~i (R0 LI
PP AT YA ADY e o cf d 2+
(2n)
+hoels (Iv.14)
1 1 . + 3T _
- -2 () + AT (KA}
1 1 3 ddE o
—-—g ( =) ok +k' 2 -k 1V) x
4a (n~)3/2 2k(ol)
<38 % (KO A6 Ay 82 (P2 + heet s
3
pi= Lk A AT O+ AT AU+
27 2%,
1 3, SR (2 @
+b ( ) & (ke +k_ ) x (IV.16)

& R R
4/2 =1 (i}
(2m¥? H L.
« (38083 ACD) aCd® ) 8% (g +lg —kp ) +hee T

In the above formulas the following notations are used:
K={(+K},Kg), h’'= alk g~ks)+blkg+ks ) , 5= alkg —k3) - blko+k3),
and 2-k_ = (pgp+h’). In contrast with the 2-Galilean
case, now some of the IMF generators contain the in- .
teraction. Lengthy, but straightforward calculation shows
that the operators K,, K, , My, Py, Py, H ,p
including the interactmn terms as well, fulfill the algebra
(r.9).

it is natural to interpret these results in the following
manner. The IMF observer describes the 0-frame world
by a field theory, the symmetry group of which is the
2-Poincare group introduced in Sect. II. This 2-Poincare
group transforms the transverse space coordinates, x={,y),
‘and the ’time coordinate’’

T=[Ca+b)t+(a=b)z]. v.17

20



It is easy to verify, that the free part Hy , of the
operator I generates translations just in ulisvariableff

(156, D] = i B‘qu(:.;z). (Iv.18)
ke

In possession of egs. (IV.17,18) we may construct the
’’time-dependent interaction Hamiltonian’’. First we split
the operator H to two parts, H=Hj+ V', I; and V-
being thie free part and interactmn term respecnvely
Then. we define

Vifr) = eirﬂu’ v’ e‘irHu{ s av.19)

and easily obtain the explicit form of V(+) :

3309 m 2 (@

Vi) =& —r d(T‘) 5k +k. k. )x
ta (2:)3/2 =l gkt )
4 (3

(9 _-(h'(”+h (20, (8) 2(1((1)

xl3A (k )A(k )A(k ) e
+ki2)-kﬂ_3)) + hee 1o
(IV 20)

For obtaining dymanical calculational schemes we
have now two possibilities:

1. Either proceeding similarly to the discussion in the
2-Galilean case, or referring to formal resemblance with
usual 3-dimensional field theory, we may describ> an
analogue of the Lippmann-Schwinger equation as follows:

1
[ ¥> =lp > 4+ ————— V’|¥> , (Iv.2n
E RN | L B
4ab 0
(Iv.22)

1 . 1 - .
’ > ==—h’fp > =-=10 alp-p ) +b(p +p, dip >.
HO ! P;x 4ab ‘pu 4ab : po.-p3 Fo*Py l [
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It is easy to see that eq. (IV.2l) is exactly the same as
the one (1V.10), the Lippmann-Schwinger equation in the
2-Galilean case. Indeed, a simple comparison of the
explicit form of the operators V, V-.and Hg, I shows,
that V=+4aV’, 4abl{=ap+ bly.Theserelations, combined
with the commutator (IV.7), say that eq. (IV.21) does not
offer more, than a reinterpretation of Weinberg’s infinite
momentum limit of the non-covariant perturbaticn series
in terms of our 2-Poincare group instead of the 2-Galilei
group. Namely, it appears to be the ’non-covariant per-
turbation series’’ in afield theory, the notion of covariance
being related with the 2-Poincare group. It will be sug-
gested in the next section, that this reinterpretation may
be of interest.

2. Based upon the ’time-dependent interaction Hamil -~
tonian’”’ V’(r) one may to try to work out ’’covariant
perturbation theory’’. The starting point of such a theory
should obviously be the ’’ S -matrix’’:

v S __'n\_"d_b [ drye [ dry PV () VTr ), (IV.23)

n=40

where P, denotes the operator of - -ordering. The in-
variance properties of this operator from the point of
view of the 2- and 3-Poincare groups, the relation between
~S~and S -matrix of the initial scalar field theory, the
elaboration of a ’’2-Poincare covariant’’ .perturbation
theory are problems, which we are going to dlst.uss in
a forthcoming paper.

V. Summary and Outlooks

In the previous sections we presented a systematic
description : of infinite momentum 1limit of scalar field
theory with mass m ‘and interaction ¢ 3. We demonstrated
how this 3-dimensional field thecry reduces to 2 2-dimen-
sional scalar field théory. However, in the new theory
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of lower dimensionality a continucus mass spectrum
appears. It is shovn, that the 2-dimensional symmetry
group m.y be either a Galilean, or a Poincare subgroup
of the original Poincare symmetry group of the 3-dimen-
sional theory.

In that case, when IML results in a Galilean theory,
we rederived Weinberg’s result concern}nﬁ the limit of
the non-covariant perturbation series 8/, Among the
Poincare generators, which survive after the limiting
procedure this case, one discovers just that six
operators, wuich do not contain the interaction and appear

also in the 3-dimensional theory, if it is guantized on
a light-front /1/However, in our case the seventh sur-
vivinz operator, N3, the remainder of the generator
of z -bousts, does not contain the interaction, either.
Therefore it is obviously different from the N3 operater
of light-front quantized field theory/!%/. This fact does
not seem to be noticed in investigations of the connection
between ™™F field theory and light-front quantized field
theory 71/, )

In that case, when IML results in a 2-dimensional re-
lativistic theory, we proved, that the perturbation theory
of the previous, Galilean case plays just therole of ’non-
covariant perturbation theory’ from the point of view of
this relativistic field theory. We suggested the possibility
for elaborating a ’’covariaut perturbation theory’’, which
may offer a new calculational scheme for high energy
processes. . }

Models‘ based upon the relativistic 2-dimensional
picture may be more advantageous than the Galilean
framework for the description of processes, in which large
transverse momenta appear, that is, when the 2-dimensic-
nal objects mcve  ’relativistically’”’. ‘It is tempting to
believe, that, when also transverse momentum gets very
large, the 2-dimensional relativistic dynamics somehow
imitates the 3-dimensional one, and, for example, a new
scaling region a})pears. (Such phenomenon has aiready
been reported/ll/. ). For-the description of this region
a second ”infinite momentum limit’’ may be useful. This
"ln_ﬂnite? momentum limit” should, of course, be under-
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stood from the pofnt of view of the 2-Poincare group,
and should, in practice, be performed with the help of
eq. (IV.21), which, in the case of the relativistic 2-dimen-
sional theory, plays the role of the ’’non-covariant
perturbation series”. Obviously, this argument can once
more be repeated. Thus one obtains a sequence of three-,
two-, one-dimensional theories embedded into each other,
and this may perhaps be brought into correspondence with
processes, in which one, two or three components of
momenta are large. This picture is reminiscent to the
ideas described recently by Fubini and Rebbi on different
grounds /12
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