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Introduction 

A reoent development in quantization of nonlinear theories 
with the chiral dynamical symmetry is of current interest 
for further construction of quantum field theory of strong 
interactions. The physical results obtained in the chiral quantum 
theory in one-loop approximation, by means of the analytic 
(superpropagator) methods of гegularlzation , are in cood 
agreement with the experimental data on ЗГ JT scatter! nn , 

5 plon electromagnetic form factor and on the neutral-kaon mass 
dlfferenoe. 

According to paper where it has been shown that a dynami
cal symmetry of the ohiral type is characteristic of the 
Einstein gravity theory, the chiral quantum theory can also be 
regarded as a simple model of the quantum theory of gravity. 

One of the first steps towards constructing the chiral 
quantum theory is to formulate the chlral-invariant perturbation 
theory which does not depend on a choice of the coordinate 

2 3 
system in the space of Gold stone fields ' . 

There are two distinct approaches to this problem. 
In the first approach ( see papers by Faddeev and Slnvnov ) 
perturbation theory is formulated In terms of completely 
inrarlant currents. In the seoond one ( work of Honerkamp et al. ). 
the starting point for construction of S-matrix in an arbitra
ry coordinate system Is rearrangement of matrix elements due 
to "transfer" of derivatives from vertloes onto propagators and 
subsequent reduction of the propagatozs to o- functions. 
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Such a rearrangement of matrix elements which changes the 
structure of the Feynman diagrams is oalled "reduction" or 
contraction of lines ̂  . 

№ e reduced perturbation theory (I.e., the theory with all 
possible reductions), in the tree-diagram approximation, has 

9 9 
been constructed by D.V.Volkov . In this paper it has been 
shown that taking into acoount of all possible reductions of 
pole diar.rams to the effective oontaot interaction Is equi
valent, on the mass shell, to the explioitly covariant 
procedure of transition from an arbitrary to the normal coordinate 
systen. 

Therefore, in the tree-diagram approximation the reduced 
S-matrlx in arbitrary coordinates oolncidea with the S-raatrix in 
the normal coordinates, and reduction is a meohanism ensuring 
the equivalence theorem to be fulfilled. 

The central question raised in , 9 is: "What is a result of 
reductions in an arbitrary coordinate system?". 

lie equivalence theorem admits of a somewhat different 
approach to the reduction problem, viz.: "In what way oan one 
formulate the perturbation theory without reduotions 7". 

The present paper is deroted to solving Just this problem 
in quantum field theory with dynamioal symmetry of the ohiral 
type. 

A foundation for formulating suoh a perturbation theory 
consists in a choice of coordinate system on th* basis of the 
moat simple properties of an interaction Lagrangian itself with 
respect to reduotions. 
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In Section 2 a concise description is given for ths mei-hcl 
of phenomenological Lagrangians in terns of the Car tan forms 
which we shall extensively use in what follov/s. 

In Section 3 the concept of reduction is introduce; nrA the 
• oondltion is formulated which allows one to select a coordinate 
system with the simple properties of Lagranglan with respect 
to reductions. 

In Section 4 within the frameowrk of functional integration 
method, the generating functional is obtained for the perturbation 
theory without reductionsr The central point Is taking Into 
aooount of geometry of the ourved space of Goldstone particles 
when dividing integration variables into "classicalr' and 
"quantized" fields. 

I n conclusion the Honerkamp oovariant perturbation theory 
is discussed. 

The main results of this work are described briefly in °. 

2. Classical JPheqry 

The construction of nonlinear realizations antf on the basin 
of thera of the Invariants defining the structure of phenomeno
logical Lagrangian for an arbitrary group of dynamical symmetry 

9 11 Q can he carried out by a standard procedure * . In describing 
12 this prooedure we shall follow the classical wô Jr by E.Cartan 

Let & be (7 +/b)->parametor semlsiiaple eywmetry group 
whloh leads to degenerating vaouum and produoing the GDluetone 
particles, H be its maximal subgroup leaving vaouum Invariant. 
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ЛИ infinitesimal transformations of the group G are 

l inearly expressed through / i+г infinitesimal l inea r - in 

dependent transformations 

^ ' ' . ' f f f " ' ^ +Ji'%] CD 

Here Л £ are the group parameters, A* are the gene
rators of transformations of the subgroup H , X% -the 
generators of transformations of the ooset @/И 

which complements Л to the whole group Cr , with the follo
wing algebra of commutation relations 

Consider the group parameters №}p) a s coordinates of a 
point in [Z +• У}) —dimensional space called the group spaoe. To 
each point of this space (&}?} there is made correspond a 
transformation of the group &(#.,$) and vice versa; to the 
identity transformation the point aero corresponds and to the 
transformation (1) the infinitesimal vector (0,0) <iafef^) 

of space. 
Definition of tho equality of vectors in the group space 

makes it possible to introduce the transformation corresponding 
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О) 

to an lnfinltesjjnal vector with origin in an arbitrary space 
point (Я, {V * For Instance) we suppose that a vector 
(ЪО^с/а^с/р') equals a vector (ч>% ; <X+<*aj % + fy) 

provided tya.f) reduces to (T{OQ)*1. and Gfet + e/a}g + Jg) 

to G"(da' do') through the same transf romation by the rule 

Bauatlon (3) proceeding from the finite group transformations 
defines the Cartan forms 6J ; v wbloh ape oi primary importance 
In the method of phenomenologloal Lagrangians. This method consists 
in that the parameters ff.c are Identified with the Goldstone 
fields and the group transformations 

where (?(%) is an arbitrary group element, define the non
linear realization of group on the ooordiaates of spaoe of the 
Goldstone particles в' 

a''= a''(a,g). (« 
From definition (3) i t follows that the Cartan forms л» f •&• 

are Invariant relative to the group trans format lone (4-)»(5). 

The forms uiL determine with raapeot to «one basis 

components of «a infinitesimal displaoiment « ' from a point 

a to a point a » da , the forms &• define a ohange 

of the basis and are used to determine the oovariant differen

tiation of a various "geometrloal" quantities which are iden-
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(6) 

(7) 

tified with fields of partioles interaoting with the Goldstone 
particles. 

The bagrangian invariant under the group transformations 
(5) Is expressed via the Cartan forms in the following way: 
t . fi ы%лв) и % Л) + £.(Г,<1Г + *Ъ ОД Г) 

Here 
to ' (оj da) - со' (at о d<t o) 

^o\r}dYJ l s tjj e Lasrangian of" free fields r which are 
classified over the linear representations 7* of subgroup H, 

Let ua find the Cartan form for the finite group transforma
tion in the exponential parametrieatlon: 

whloh corresponds to the normal coordinates in spaoe of the & 0la-
stone field ( along geodesios) 1 2 » 1 - 3 , р о Г the equation (3) 
rewritten in the exponential form (8) 

one of the methods of solving this equation is to reduce eq. (9) 
to the so-called fundamental Cartan equations. 

To thla end, we introduoe into (9) a parameter ^ by 
means of the substitution 

ft* -> « " ^ 
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and we get 
e-Xia'j eXta' = .ус(и> U.tft + *%tU.)X 1. (10) 

Differentiating "both sides of eq. (10) with respeot to £ 
we obtain the fundamental Cartan equations 

|f^ = da' * a'&'Btj (11) 

with the aeroth boundary conditions 
Ы'(о,о)= &*(o,o)=. О,, (12). 

where Ок* t CL/ are the structure oonstants of group (2). 
In general case the solution to eqs. (11) oan he written as 

the series t> ,*»*4 

u<&,t4-Z(rtU'-££^ 
C i * * i ) ! (13) 

n ,t»'/ 

where 

t-Lifaji-ti'W > № * • • • 
lor the SV(2)XSU(2) theory ( for dlmnsloBless variables Q'= */) 
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the series (13) are summed and we have 

Here /£ - 92 MeV, fyjt i s t n e antisymmetrio tensor } £t2r' 1 

^.^neductipnr. 

A specific foature of the ohiral Lagrangian is the presence 

of derivatives in i t . The fact that the deriratiTea are 

present ID an Interaction Lagrangian of the type 

X - <*<* 'V<? *g:. (a) + а и 'J?t (Q} rj 

may, generally speaking, lead to rearrangements of matrix 
elements in perturbation theory due to integrating by partB 
( "transfer" of derivatives) and reducing some propagators to 
d- functions. Such a rearrangement which changes the structure 

of the Feynman diagrams, in terminology of ref. , is called 
reduction ( or contraction of lines ) . 

The main purpose of our paper Is to formulate the perturba
tion theory without reductions. 

As a starting point of such formulation we suggest the choice 
of a Lagrangian ( i.e. a coordinate system) proceeding from 
the most simple properties of this LagrangJan itself with 
respect to reductions. 

Considert for instance, a matrix element of the type 

<oiT'(J*,"*,<!')J'h> 
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It is obvious that reductions villi be absent if after 
integrating by parts the integrand will not change, i.e.,:f the 
interaction Lagrangian obeys the condition 

It is easy to prove that the coordinate system satisfying condi
tion (16) does exist and it i3 unique. It is just the normal 
coordinate system (13). 

Indeed, in these coordinates the derivatives of the Gold-
stone fields enter into the interaction Lagrangian in the form of 
a combination with the group .structure constants 

Ja'C&aifyf*,*.*) (17) 
( W stands for all the remaining factors). 

The expression (17) satisfies the condition (16) due to 
antisymmetry of the group structure constants L,j in lower 
indioes. 

To pass over to some other coordinate system is made via the 
transformations 

a =a'f(a') • $(°) * i • (iB) 
The interaction Lagrangian in the normal coordinates (13) 
after the transformations (18) again obeys the condition (16). 
( In this sense, the Lagrangian in normal coordinates, before 
and after the transformations (18), resembles the Lagrangian 

if 
without derivatives in nonchiral theories of the лУ type, 
where there are no reduotions as derivatives are absent). 

However, the new interaction Lagrangian contains, In addi
tion to the transformed expression (17), also the "klnetio" part 
whloh arises due to the transformations (18) in the "free" 
Lagrangian 
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It is just the latter term in (19) which violates the condition 
(16) and| as in tne -* *f theory, is responsible for reductions. 
4. Quantum Theory 

As the generating functional for S-matrlx it is convenient 
to use expressions in the form of the continual integral with 
souroes x -, -) 

^ | | / . # . 9xpfJji[/f^>M^4 ^A ̂ «'V'V-//.. <го) 

Here /V ia the normalization $" - the asymptotlo f ield 
(souroe)» jbfajndci the invariant measure over the group» 
i . e . , 

if 
£«' ~* U4 6a , (22) 

/* where «*/ is a group transformation. 
In integral (20) one оan take any integration varlahles. 

In our oase, following Seot,3, we take the normal ооordinate8 
СИ): 

/ - / ; Уf») S M > 

Consider the auasi-olassloal expansion of functional (20% 
For this expansion the change Is made for integration rariahles 

separating the •olutloal* fields V obeyiag the equation 

and "luaatiied" fielde Г отег whioh lnUjratlon is oarried out. 
The usual change of varlahlee 

The fields У in (6) will be considered to he olassloal. 
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<f - * <f f Г (?3) 

breaks the condition (16). We should make a change of variables 

such that: 

1. the condition of absence of reductions with respect to 

the fields Г be fulfilled; 

2. the Lagranglan in (20) at Г- ° be the lagrangian 

of the "classical" fields ¥ in the normal coordinates. In this 

case the generating functional for S-raatrix in the tree-diagram 

approximation _. ~) 

f&'i^ = ̂ /^r^M^^- ***** '"if (24) 

reductions. 
A natural way for separating the classical fields, v/tthout 

violating the condition (16), is to use the geometric properties 
of the curved Riemann space of the Goldstone particles, namely 
to understand the sum of vectors (23) as the addition of vectors 
in the ourved is о space of the Q-oldstone particles ( addition of 
vectors In the quotient space /tf ),i.e., 

H"-^ r*# /*# (25) 
h-a —* (>y by, 

where <тв is defined by (8). 
Transformation (25) has simple geometrical interpretation. 

It gives the normal coordinate system with the origin at the 
point f г coordinates of the point У themselves being 
also the normal coordinates* 

The Cartan forms are obtained In the new coordinates I 
substituting (25) into (9) 

13 



Using the substitution withpararaeter ^ 
r' -+ tr* 

and differentiating both aides of (26) wit; respeot to ^ we 
find the fundamental Cartan equatlonet the same as In the 
classical oase, eq. (11) , 

2&i , <//•»' *• Г'&'В*. (27) 

but with the nonzero boundary conditions in the normal 
coordinates 

Solution to these equations has the form 

where 

For the SU(2)/SU(2) ohiral theory in the dimensionltas Toriab-
les ( see (14) ) we get 

(fir) '= jг •' * e.-.j r'e f*> <А>); r* /PF^ 

(29) 
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where Ш1($г<1$) -&• (ftd<f) are defined by (11). 
Just as th e Cartan forms (13), the forms (29) 

satisfy the condition (16) in virtue of the construction of iher.i? 
forms with the help of the structure constants antisymmetric in 
lower indices ( seeeq. ( l?) ) , 

Thus, allowing for the invariance of the measure / ' 
under the transformations (25) ( see (21), (22) the fiencratlnr 
funotional for 3-matrlx without reductions in the variables (?5) 
takes the form _ > 

So the Generating functional for S-matri:: without reductions 
i s the Generating functional in the normal coordinates for the 
"quantized" fields ' with the origin at the poJnt, the 
normal coordinates of which are the "classical fields'* ^ • 

In principle, a coordinate system nay be taken arbitrary 
for the fields *f t i»e. an arbitrary parametrlzation may be 
used for the transformation Oy when dividing the variables 

<L into f and F in (25). This will resul t in forms cd", & 
satisfying tho зшпе fundamental equations but with the boundary 
conditions (28) in an arbi t rary coordinate system. 

The quasiclassical expansion of the generating functional 
(31) with the со variant dependence on the f ie lds 1 / 1 Is Just 
a generalization, to arbitrary ohixal dynuics groups and to 
interactions with arbitrary particles of the so-called oovarlant 
perturbation theory by Honerkamp which corresponds to the choice 
of the normal ooordlnates for the fields / at the point f 

in arbitrary coordinates. 
The method we hare presented for formulating such a pertur

bation theory Is essentially simpler than the apparatus of c las
sical differential geometry used In 

15 
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However, t he l a t t e r i s i n d i s p e n s a b l e fo r the case when a 

c h i r a l Lagranglan c o n t a i n s n o n l n v a r i a n t t he plon-masa type terms 

( зее paper 

Conclusion 

In t h i s paper we have found the g e n e r a t i n g f u n c t i o n a l f o r 

S_matrix (31) i n t he p e r t u r b a t i o n s e r i e s expansion of whioh t h e r e 

a re no r e d u c t i o n s r e s u l t i n g I n ohange of t h e s t r u c t u r e of the 

Feynman diagrams ( c o n t r a c t i o n s of l i n e s ) . 

To formula te suoh a t heo ry i t s u f f i oos to take the normal 

coo rd ina t e system and t o al low fo r t he geomet r ioa l p r o p e r t i e s 

of the curved space of t he Goldstone p a r t i c l e s , when d i v i d i n g 

i n t e g r a t i o n v a r i a b l e s i n t o t h e " c l a s s i c a l ' 1 a n d n q u a n t l R e d » f i o l d 3 . 

By the equivalence theorem, t he reduoed p e r t u r b a t i o n theo ry i n an 

a r b i t r a r y coord ina t e system oo lnc ide s wi th t he p e r t u r b a t i o n 

theory wi thout r e d u c t i o n s (31) ' . In t h i s sense t h e p e r t u r b a 

t i o n t h e o r y wi thout r e d u c t i o n s (31) i s t h e i n v a r i a n t p e r t u r b a t i o n 

theo ry and i t i s r a t h e r u s e f u l i n app ly ing of t he r e g u l a r i B a t i o n 

methods based on the s e l e c t i o n of a d e f i n i t e c l a s s of d iagrams , 
4—7 e i t h e r wi th a f ixed number of v e r t l o e s or wi th a f i x e d number 

o f loops , One can say t h a t t he p e r t u r b a t i o n theory wi thout 

r e d u c t i o n i n t h e c o o r d i n a t e s (25)>(29) i s as s impler and more 

convenient t han a p e r t u r b a t i o n theo ry i n o ther c o o r d i n a t e s , 

a s t he A1^ theory i s s imple r and more convenient than any 

other equiva len t t heo ry de r ived from the Xf t h e o r y by t h e 

t r a n s f o r m a t i o n f=f,£M , $(*)=* • 

In conc lus ion the a u t h o r t x p r e e i « * h i i grat i tude to B.M.Barbaahov, 

D . I . B l o k h i n t s e v , M.K.Volkov for r e g u l a r I n t e r e s t i n t h e work, 

to V . I .Og ieve t sky , V.I .Tkach firr u s e f u l d i s c u s s i o n s and e s p e c i a l 

l y to D.V.Volkov for v a l u a b l e advloes and remarks . The a u t h o r 
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a l s o expresses h i s deep grat i tude t o D.V.Volkov for i n v i t a t i o n t o 

t he Kharkov Phys i ca l Technica l I n s t i t u t e where t h i s work has 

been completed. 

APPEMDEC 

In the Appendix we w r i t e down the minimal LagranRian fo r 

ЗГ-л i n t e r a c t i o n a l lowing fo r t he Gursey t r a n s f o r m a t i o n • 

The Lagrangian fo r o l a s s i c a l f i e l d s *P ( i n d imens lon lesa 

= УиЪ* ь>4*№ w4%W +мЗ~Ы 'Н»**р{&Ъ%№> (A.i) 
where w ' ^ ' a r e def ined "by (14) ," d=L$- t**-i . 

The Lagrangian f o r o l a s s l o a l and quant ized f ie Ida i s 

" " (A.2) 
-мы **г{ъ ?;&]vr{ke.-f!Jvfir<.-M/4]A't 

where t*? are given by (30). 
If one applies the superpropagator method of reguiarisation , 

which leads to tbe normal ordering of fields /"* ( see paper by 
the author ) to oalculate matrix elements, it is convenient 
to employ the following expression for the generating functional 

(А.Э) 

„bare Л ' ^ ) - * ^ - W J -

oto (V*/^s ^ e "free" La/ir&ngian 
^°i*l / * л / — th* vacuum average over fields Г 

<»1т*[1;&-пШ1'> 'jgi л'Г'-зМ* • (A. 4 ) 
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