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Introduction

A reoent development in quantization of nonlinear theories
with the chiral dynamioai symmetry 1 1s of current interest 2-6
for further comstruction of quentum fleld theory of strong
interaotions. The physical results obtained in the chiral quantum
theory in one-loop approximation, by means of the analytic
(superpropagator) methods of regularization 7 s are in gond
agreement with the experimental data on F & scatterinpg 4 )

® and on the neutral-kaon mass

plon eleotromagnetic form faotor
differenoce,

According to paper 8 where it has been shown that a dynami-
cal symmetry of the ohiral type 1s oharaoteristic of the
Einstein gravity theory, the chiral quantum theory can also be
regarded as a simple model of the guantum theory of gravity.

One of the first steps towards oonstructing the chiral
quantum theory is to formulate the chiral-invariant perturbation
theory whioh does not depend on a cholce of the coordinate
system in the space of Goldstone fields 2,3 .

There are two distinct approaches to this problem.

In the first approach ( see papers by Faddeev and Slavnov 2 b]
perturbation theory is forwulated in temms of completely

invariant ourrents. In the second one ( work of Honerkamp et al.J).
the starting point for construction of S-matrix in an arbitra-

ry coordinate system is rearrangement of matrix elements due

to "transfer" of derivatives from vertices onto propagators and

subsequent reduction of the propagatorms to 5- funotions.



Such a rearrangemnent of matrix elements which changes the
structure of the Feynman diagrams is oalled "reduction“9 or
cantraction of limes 7 .

The reduced perturbation theory (1.6., the theary with all
possible reductions), in the tree-diagram approximation, has
been constructed by D.V.Vglkov g » In this paper 9 1t has heen
shown that taking into acoount of all poasible reductions of
pole diaprams to the effeotive ocontaot interaoctlon is equi..
valent, on the mass shell, to the explioitly covarlant
procedure of transition from an arbitrary to the normal ooordinate
systen.

Therefore, in the tree~dlagram approximation the reduced
S-atrix in arbitrary coordimates oclncides with the S-matrix in
the normal coardinates, and reduotion 1s a mechanism ensuring
the equivalence theorem to be fulfilled.

The oentral question raised in 739 1s: "What 1s & result of
reductions in an arbitrary coordinate system?",

. The eguivalence theorem admits of a somewhat different
appronch © the reduction problem, viz.: "In what way oan one
fornulate the perturbation theory without reduotions ?".

The present paper 1s devoted to solving just this problem
in quantum field theory with dynamical symmetry of the chiral
type.

A foundation for formulating such a perturbation theory
consists in a choice of coordinate system on the basia of the
most simple properties of an interaction Lagrangian itaelf with

respect to reduotionss



In Sectlon 2 a concilse description 1s given for the method
of phenomenological Lagranglans in terms of the Curtan forms
which we shall exfensively use 1n what follows.

In Section 3 the concept of reduotion 15 introduced and the

* oonditioen is formulated which allows one to select a coordinate
system with the simple properties of Lagranglan with respect
to reductions.

In Sectlon 4 within the frameowrk of functional integration
method, the generating functlonal is obtained for the perturbatien
theory without reductions. The central point 1s taking lato
nooount of geometry of the ourved space of Goldstome particles
when dividing integratlon varlables lnto "classlcal® and
quantized® fields.

In ooncluslon the Honerkamp oovarlant perturbation theory J
1s dlscussed.

The main results of this work are dessribed briefly in 1°.

The constructlon of nonlinear realizations and on the basls
of them of the lnvariants defining the struoture of phenmomeno-

logical Lagranglan for an arbltrary group of dynamical symmetry

9211 | 1p describing

this prooedure we shall follow the o¢lassical wovk by E.Cartan 12.

G can be parried ovut by a st'a.udatd procedure

Let G be (7 +n)~parameter semisimple syumetry group
whioh leads to degenerating vacuum and produoing the Gpldstone

partliocles, H be 1ts maximal sudbgroup leaving vaouum invariant.



All infinitesimal transformations of the group G are
linearly expressed through n+1¥ infinitesimal linear-in-

dependent transformations
. R 3 o«
G/ﬂ'a‘, (/7“‘):‘1- a/ﬂ Xx +JZ )-:] (1)

k=f,...n ;A= T

Here ﬂ‘) Z" are the group parameters, )a/t are the gene-
rators of transformations of the subgroup H 1 /\/,, - the
penerators of transformations of the coset G’/,f{

which complements H to the whole group s With the folluw

wing algebra of commutation relations
%, 51 = Ay X
X, %] =i BeuX. @
[X. X ]=cCh¥.

Consider the proup parameters (a,?) a3 coordinates of a
point in (Z +n) — dimensional space called the group space., To
each polnt of this space (d)?) there is made ocorrespond a
transformation of the group (4,2) and vice versaj; to the
identity transformation the point zero corresponds and to the
transformation (1) the infinitesimal vector (-0,05 da,;/?)
of space.

Definition of the equality of vectors in the group space

makes 1t possible to lntroduce the transformation corresponding



to an infinltesimal vector with origin in an arbitrary space
point (ﬂ, 7) « For instance, we suppose that a vector
(0,0;da’,dp’) equals a vector (@,p ; araw,p+op)
provided Gm;?) reduces to @(gu)s].' and G’(ﬂ‘ﬂ’ﬂ,?*‘/f)
to d(/a,’ dzy through the same transfromation by the rule

-1 -{
6’(4.,;4?') = G’@,,,) G(mda,z,,/?) = 5&,7; dg(ﬂ,gl

i )
G 46 ta0= ey, da, a)¥ + 6%ar,0,4%0)X |
Bquation (3) proceeding from the finite group transformations
defines the Cartan forms w‘; 6‘“ whkish are of primary importance
in the method of phenomenologloal Legranglans. This method consists
in that the paresmeters ﬂ“ are ldentified with the Goldstone

flelds and the group transformations

Glaly) = B(g)6tan) , ®

where G(g) 18 an arbitrary group element, define the non-
linsar realization of group on the ooordimates cof spaoce of the
Goldstone particles @

az-f= a"'{a,g). )

From definition {3) it follows that the Cartan forms «’, &

are iovariant relative to the group transformationa (4),(5).
‘The forus (4)': determine with raspsct to some basis

oomponents of an infinitesimal displacement da’ from a point

a toapoint a- da s the forms 9:‘ define & ohange

of the basis and are used to determine the covariant differen—

tiation of a various "geometriocal® quantities which are iden-



tified with fieclds of particles interaoting with the Goldstomne
particles.

The Lagrangian invariant under the group transformations
(5) 1s expressed via the Cartan forms in the following ways

£~ 4 wiada) wa,dg) + Lo (¥, d ¥ + ETa40)T, ¥).

(6)
o (a,da) = wi(a,0,da 0)
wefae,da) = w’ a,0,dq o
& (a,da) = & (a0 da)o) M
. 2 . 2.
afy~5‘; ; da =p§‘

x" (W;‘IV) is the Lagranglan of free fields ?’ whioh are
classified over the linear representations 7:( of subgroup H.
Let us find the Cartan form for the finite group transforma-

tlon in the exponential parametrization:

6,,:= E)o\/.a ; 6o ® Clao) s -

whioh correspords to tie normal coordinates in space of the Ggld-
stone field ( along geddesies) 12,13 | For the squatlan (3)
rewritten in the exponential form (8)

e"‘)(*“'de"X'“L;[L)"(a,da)/\f 6Tk ] o

one of the methods of solving this equation 1s to rsduce eg. (9)
to the so-called fundamental Cartan equatlons.
To this end, we introduce into (9) a parameter (4 by

means of the substitutlon

a* - a l



and we get

o Hta" piketa _ [ife ik, + 6Tl tae)X ] o)

Differsntiating both sidea 5f eq. (10) with respeot to z
we obtaln the fundamental Cartan equations

‘g_gé"‘ da‘ + 0'9‘5:/ Q1)
38" wfCe
S = at Wil

with the zeroth boundary conditions

w"(a’a).f_ '9-‘(0/0): 0, 2).

3 o
where 73 Cj( are the structure oconstants of group (2).

In general oase the solution to egs. {11) can be written as

the series f Y ’ ‘1),, f-!»*l
‘ a 77?., —_—
w /t‘a, fda) P ( )‘; da G sl

(13
“r

sl - h /(1) f
6‘-"/1‘a]l‘a’a)= d'C)'fé/m/, da (2n +2)/

where

(f/?) u)(?// 5‘,“(’,0/ (7/?), W}/ﬂ},,

For the SU(2)x8U(2) theory ( for dimensionlasss variables g °‘s /)

(772.) =-f51xf,,,aa-af51 H
(Wa}l = a*" (e - g‘_;‘_q,-) ;9T @tar




the series (13) are summed and we have
¢ 3 _ aaq. And I
w=g[da + (&, —;;’)/T -1)de /

€A= _ aJdd' EJE)" cu:z-!

as

Here Fr = 92 MNeV, 6})( is the antisymmctrio tensor &2:’1

3. _Neductions
A specific feature of the ohiral Lagranglan is the presence

of derivatives in it. The faot that the derivatives aTe
present in an interanction Lagrangian of the type

XI= da‘da ”g‘.l)j (a) +daB, (a,%)

mays generally spenking, lead to rearrangements of matrix

elements in perturbation theory due to integrating by parts

( "transfer® of derivatives) and reducing some propagators to
J- functions. Such a rearrangement which changes the structure

of the Feynman diagrams, in terminology of ref. g. is called

reduction { or contraction of lines ).

The main purpose of our paper is to formulate the perturbda-
tion theory without reductions.

As a starting point of such formulation we suggest the ohoice
of & Lagranginn ( l.e. a coordinate system) proceeding from
the most simple properties of this Lagrangian itself with
respect to reduotions.

Consider, for instance, a matrilx element of the type

<ol 7= (fa: 2 707) oS



It 1s obvious that reductions will Le absent if after
integrating by parts the integrand will not change, 1l.c.,f the
interaction Lagranglan obeys the condition

t'/nz"[g‘.; dat + B, /0,7/] = - tz"d/_y‘; da’ B ta, yj] . (26

It 1s easy to prove that the coordinate system satisfying condi-
tion (16) does exist and 1t is unique, It 1s just the normal
coordinate system (13). .

Indeed, in these coordinates the derivatives of the Gald-
stone flelds enter into the interaotion Lagranglan in the foym of
a oombination with the group struoture constants

Ja’(;’;aiﬁ(ﬂ,ﬁ“’) an
[¢ %J) stands for all the remaining factors).

The expression (17) satisfies the conditlon (16) due to
antlsymmetry of the group structure constants C:/ in lower
indioes,

To pass over to some other coordinate system is made via the

transformations
' a=a'fa) ; Fl)=1. (18)
The interaction Lagrangian in the normal coordimates (13)
after the transformations (18) agein abeys the condition (16).
{ In this sense, the Lagrangian in nomal cocrdinates, before
and after the transformations (1B8), resembles the Lagrangian
without derivatives 1n nonohiral theories of the A‘P‘ type,
where there are no reductions as derlvatives are absent).

However, the new interaction Lagrangian contalns, in addi-
tion to the transformed expression (17), also the "kinetie" part

which arises due to the transformations (18) in the "free"

Lagranglan



Lo de = f 'y » 2 fdfsn] @ de] el a9

It 1s just the latter term in (19) whilch vilolates the conditlon
(16) andy a5 1n tne A S" theory, 1s responsidble for reductlons.

4. Quantum Theory

As the generating funotional for S-matrix 1t 1s oconvanient

to use expresslons in the form of the ooutinual integral with

souroces
S f/u(a}ﬂda wﬁ [t [t (o), B 46} ¥) - da’ ] ;7 (20
Here /V 18 the normaligation ) fh}— the asymptotic field
(8source), /-/a)ﬂa’a the invariant measurs gver the group,
l.80,

(@) Tda = _u(a) T da’ (a1
1f

Go ~— 646a, (22)

where ﬂ( is a group transformatlon.
In integral (20) one can take any integration variables.
In our ocase, followlng Seot,l, we take the normal ocordinates

[¢®)H W
a{"g{” ;//a)_’/#(a) /6’—-6!.

Consider the quasi-olassical expaneion of funotiomal (20}
For this expansion the change is made for integration variables

separating the Yolassloal® fields ¥  obeying the oqhﬁon
S _ i fn)
LA
and "gquantized® fields /’ over whioh intsgration is carried out,
The usual change of variables

[P —,

X The fields ¥ 1in (6) wiil ve oonsidered to be olassioal.
12



& T+ (*3)
breaks the oondition (16). We should make o change of variables
such that:

1. the condition of absence of reductions with respect to
the fields /" be fulfilled;
2, the Lagranglan in (20) at /=€ be the Lagranglan
of the "classical! fields ¥ in the normal coordinates. In this
case the generating functional for S-matrix in the tree~diagram
approximation

T s a3, 8-
e

9 y 8ives the matrix elements without

aocoarding to results of
reductlons.

A natural way for separating the classical fields, without
violating the condition (16), is to use the geometric properties
of the ourved Riemann space of the Goldstone particles, namely
o underetand the sum of vectors (23) as the addition of vectors
in the curvea isospace & the Gyldstone particles ( addition of

vectors in the quotient space % )l.e.,
» N AN
G/a - 6;, 6:, (25)

where ﬂaﬂ 1s defined Yy (8).

Transformation {25) has simple geometrical inmterpretation.
It gives the normal ooordinate system with the origin at the
point ¥ , coordinates of the point ¥ themselves being
also the normal coordimates.

The Cartan forms are obtaimed in the new soordinates r
subatituting (25) into (9)



[6;//6,."#] fd;[g;’é;/'»’] - .(f,'n’f'/ﬂ ‘/y/\{ "'19%"”'/‘/"/"/)4'/-(26)
Using the subatitution withparsmeter L‘

e
and differentiating both sides of (26) wit! reaspeot to z we
£ind the fundamental Cartan eguations, the same as in the

classioal ocase, eq. (11),

2¢ . —Apc

2E° L dre v G By n
26" et

2t rtw V¥

but with the nonzerc boundary oomditions in the normel
acordinates

— . —, ol
Wiloolpup)= Wlhdy) ; Gloolyde)=t%42). ()
Solution to these esguaticns has the form

@y, Zw(?/?”}, wt | o)

@ @rneth
— 2= /7
19'2'; rict g;w (m;), [(zuo' (ff +2 ]

where
@F) A8, 6’7%9 (7;2,,.-5 r'c’/-l

For the SU(Z))(SU(Z) chiral theary in the dimensionless variab-

(29)

les .( see (14) ) we get
D= wi g @) +(4,- N’/[WF/""'F!) u/a/’{}]
& =f’£f}'[ﬂ'% +(2)/7‘ q- “ho] G0

@r) = driv b, T8N H);  refr



where LU‘/t/‘d.i/)) Qﬁ/f"di) are defined by (14).

Just as the Cartan fowms (13}, the forms (29)
satisfy the condition (16) im virtue of the cnastruction of thene
forms with the help of the structure constants antisymmetrlc in
lower indices { seeeq. (17) ).

Thus, allowing for the invariance of the measure /‘(“”_“"
under the transformatigns (25) ( see (21), (22) the gencratine
funotional for S-matrix without reductions in the variables (25)

F S

So the generating functional for S_matri: without reductinns
is the generating functional 1n the normal coordinates for the
"quantized" fields r with the origin at the point, the
normal coordlnates of which are the "classical fields™ £

In principle, a coordinate system may be tekenarbitrary
for the fields Y sy l.e. an arbitrary parametrization may be
used for the transformation G;f when dividing the variables
€ into ¥ ana /7 1n (25). This will result in forms 5,5
satisfylng the same fupdamental equaticns but with the boundary
conditions (28) in an arbitrary coordinste system.

The quasiclassical expansion of the generating fumctional
(31) with the covariant dependencs onthe tislds ¥  1is just
a generalization to arbitrary chiral dynamics groups and to
lanteractions with arbitrary particles ot the so-called oovariant
perturbvation theory by Honerkamp 3 which oorresponds to the cholce
of the normel ocoordinates for the fields /°  at the point ¥
in arbiirary ccordinates.

The method we have presented for formulating such a pertur-
bation theory is essentially simpler than the apparatus of olas-

sical differential geometry used in 3.
5



However, thelatter is indispensable for the case when a
chiral Lagranglan contains noninvariant the pion-mass type terms
{ sece paver by M.K.Volkov and the author 4 R

In this paper we have found the generating functional for
S_metrix (31) in the perturbation serles expansion of whioh there
are no reductlons resulting in ohange of the struoture of the
Feynman diagrams ( contrmotions of lines).

To formulate suoh a theory 1t suffiloee to take the normal
coordinate system and to allow for the geometriloal properties
of the curved space of the Goldstone particles, when dividing
integration variables into the "classiocal® and "quantized ®fiolds.
By the equivalence theorem, the reduced perturbation theory in an
arbltrary oocordinate system ooincldes with the perturbation
theory without reductions (31) 3.9 . In this sense the perturba-

tion theory without reductions (31) is the invariant perturbation

theory and 1t 1s rather useful 1r applying of the regularization
. methods based on the selectlan of a definite olass of diagrams,

elther with a fixed number of vertices 4=7 or with a fixed number

of loops 14 « One can say that the perturbation theory without

reduction in the coordinates (25),(29) is as simpler and more

oonvenient than a perturbatlion theory in other coordinates,

as the AW4 theory 1s simrler and more oonvenient than any

other equivalent theory derived from the A?' theory by the

transformation v=of(e) s fo)=1.

" In conclusion the autnor sxprassashissratitudeto B.M.Barbashov,

D.I.Blokhintsev, M.K.Volkov for regular interest in the work,

to V.I.O0glevetsky, V.I.Tkach fpr useful disoussions and espeoial-

ly to D.V.Yolkov for valuable advioes and remarks. The author



also expresses his deep gratitude to D.V.Volkov for lovitation to
the Kharkov Physical Teghnilcal Institute where thils work has
been completed.
APPENDIX
In the Appendix we write down the minimal Lagrangian for
-/ interaction allowing for the Gursey transformation 15Y=”P/Ii;:_y7fl
The Lagrangian for olassical flelds ¥ ( 1n dimensionless

v‘azia}z.efs‘w ;;Wa‘i/u)‘(fa/'/) + 7!’[0’ + o5 e WWW’) +‘719/$”W’)]Y MV =

= KT wipde) wede) + Fav H”"F o hin, a.1)
where w6 are defined W (1), ﬁ% [ACEE IR

The Lagrangian for olassiocal and quantized fields 1s
L70) =L £ drig )@ (5,414, 5) + v~

(4.2)
- M chr{l’; t.__}Ex,o/l;f}'/“-’fu;’/’?m’i%j/‘/,

where L-;i('f,“’f'/i’,ﬂ/y are given by (30).

If one applies the superpropagator method of regu}xarization7,
which leads to the normal ordering of fieldas I~ ( see paper by
the author 3 ) to oalculate matrix elements, it 1s convenlent

to employ the following expression for the generating functlonal

Sl 1) = G T empf Jtd [ :2 g )7 - 4 il >
L orn) = L% o) - Zo(n#,

where

A (Cﬁyis the "free" Lagranglan
<°ﬁ'/ /lr> ~ the vacuum average over fields F

Colr* eI 2 Ile> = g 4" el dix s s
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