ОБЪЕАИНЕННЫЙ
 ИНСТИТУт
 ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

$$
19 / 8-74
$$

E2 - 8009

ON QUANTLZATION OF CHIRAL THEORIES

1974
ЛАБOPATOPИA
TEOPETИYECHO
Физини

E2 - 8009

V.N. Pervushin

ON QUANTLZATION OF CHIRAL THEORIES

Submitted to T.MI

A reoent development in quantization of nonlinear thearies with the chiral dynamioai symmetry ${ }^{1}$ is of current interest ${ }^{2-6}$ for further construction of quentum fleld theory of strong interaotions. The physical results obtained in the ohiral quantum theory in one-loop approximation, by means of the analytic (superpropagator) methods of regularization 7 , are in cond agreement with the experimental data on $\pi \pi$ soattering ${ }^{4}$, pion eleotromagnetic fomm faotor ${ }^{5}$ and on the neutral-kion mass differenoe.

According to paper ${ }^{8}$ where it has been shown that a dynamical symmetry of the ohiral type is oharaoteristic of the Einstein gravity theory, the chiral quantum theory can also be regarded as a simple model of the quantum theory of gravity.

One of the first steps towards oonstructing the chiral quantum theory is to formulate the chiral-invariant perturbation theory whioh does not depend on a choice of the coordinate systell in the space of Goldstone fields ${ }^{2,3}$.

There are two distinct approaches to this problem. In the first ap proach (see papers by Faddeev and slnynor ${ }^{2}$) perturbation theory is formulated in tems of oompletely invariant ourrents. In the seoond one (work of Honerkamp et al.'), the starting point for construction of Samatrix in an arbitrary ooordinate system is rearrangement of matrix elements due to "transfer" of derivatives from vertioes onto propagators and subsequent reduction of the propagatorsto δ-finotions,

Such a rearrangement of matrix elements which changes the structure of the Feynnan diagrams is oalled "reduction" or contraction of lines ${ }^{3}$.

The roduced perturbation theory (i.e., the theory with all possiole reductions), in the tree-diagram approximation, has been constructed by D.V.Volkov ${ }^{9}$. In this paper ${ }^{9}$ it has been shown that taking into acoount of all poasible reduotions of pole diarrems to the effeotive oontaot interaotion is equi.. valent, on the mass shell, to the expliaitly covariant pracedure of transition from an arbitrary to the normal ocordinate systerm.

Thereforc, in the tree-diagram approximation the reduced S-inatrix in arbitrary ooordinates ooincides with the S-matrix in the nomal coordinates, and reduotion is a meohanigm ensuring the equivaleace theorem to be fulfilled.

The oentral question raised in 3,9 1s: what is a result of reductions in an arbitrary coordinate system?".

The equivalezce theorem admits of a somewhat different appronch the reduction problem, viz.: "In what way oan one formulate the perturbation theory without reduotions ${ }^{\circ}$ ".

The prosent paper is devoted to solving just this problem in quantum field theory ofth dynamioal symmetry of the ohiral type.

A foundation for formulating suoh a perturbation theory consists in a choice of coorainate system on the basis of the nost simple proparties of an interaction Lagrangian itaelf with reapect to reduotions.

In Seotion 2 a concise description is Eiveri for the methoil of phenomenological Lagranglans in texms of the Certan forss which we shall extensively use in what follows．

In Section 3 the concept of roduotion is introduces and the ＊oondition is formulated which allows one to select a coordinate syatem with the simple properties of Lagrangian with respect． to reductions．

In Soction 4 within the frameork of functional intecration method，the generating functional is obtained for the perturbation theory without reductions．The central point is taking jiito Qooount of geometry of the ourver space of Goldstone particles when dividing integration variables into＂clessical＂and ＂quentized＂flelds．

In oonclusion the Honerkamp oovariant perturbation thenry 3 1s discussed．

The main results of this wors are desoribed briefly in ${ }^{10}$ ． 2．Classical Theory

The construction of nonlinear realizations and on the oasis of them of the invariants defining the struoture of phenomeno－ logical Lagrangian for an arbitrary group of dynamical symmetry G can be carried out by a standerd procedure 9,11 ．In desoribing this prooedure we shall follor the olassical worls by E．Cartan ${ }^{12}$ ．

Let \vec{G} be $(\tau+n)$－parametor gemisimple symetry group whioh leads to degenerating vacum and produoing the Goldstone partioles，$⿴ 囗 ⿱ 一 一$ be its maximal subgroup leaving vaoumm invariant．

All infinitesimal transformations of the group G are linearly expressed through $n+r$ infinitesimal linear-independent transformations

$$
\begin{align*}
& G\left(d a^{i}, d \eta^{\alpha}\right)=i\left[d \alpha^{*} X_{k}+d \eta^{\alpha} Y_{\alpha}\right] \tag{1}\\
& k=1, \ldots, n \quad ; \quad \alpha=1, \ldots, \tau
\end{align*}
$$

Here a^{*}, η^{α} are the group parameters, Y_{α} are the generators of transformations of the subgroup $H, X_{n}-$ the renerators of transformations of the ooset G / H which complements H to the whole group G, with the follawing algebra of commatation relations

$$
\begin{align*}
& {\left[Y_{\alpha}, Y_{\beta}\right]=i A_{\alpha \beta}^{\gamma} Y_{i}} \\
& {\left[X_{N}, Y_{\alpha}\right]=i B_{K \alpha}^{i} X_{i}} \tag{2}\\
& {\left[X_{\kappa}, X_{N}\right]=i C_{i \kappa}^{\alpha} Y_{\alpha}}
\end{align*}
$$

Consider the group merameters (a, η) as coordinates of a point in $(z+n)$-dimensional space called the group space. To each point of this space (α, η) therc is made correspond a transformation of the broup $G(a, \eta)$ and vtea versa; to the dentity transformation the point zero corresponds and to the transformation (1) the infiniteaimal veotor (0,$0 ; d a, d y$) of space.

Definition of the equality of vectors in the froup space makes it possible to introduce the transformation corresponding
to an infinitesimal vector with orign in an arbitrary space point (α, η). For instance, we suppose that a vector $\left(0,0 ; d \alpha^{\prime}, d^{\prime} \eta^{\prime}\right)$ equals a vector $\left(\alpha, \eta ; \alpha+d^{\prime} \alpha, \eta+d \eta\right)$ provided $G(a, \eta)$ reduces to $G(\rho, \rho)=I$ and $G(a+d a, \eta+d q)$ to $G\left(d a^{\prime}, d_{q^{\prime}}\right)$ through the same transf romation by the rule

$$
\begin{align*}
& G\left(d q^{\prime}, \sigma^{\prime}\right)=G_{(a, \eta)}^{-1} G_{(a+d a, \ell+d \eta)}=G_{(q, \eta)}^{-s} d G(a, q) \\
& G_{(\alpha, \eta)}^{-1} d G_{(a, \eta)}=i\left[\omega i(a, \eta, d a, d \eta) X_{i}+\theta^{\alpha}(\alpha, \eta, d a, d \eta) Y_{\alpha}\right] \tag{3}
\end{align*}
$$

Equetion (3) proceeding from the fizite group transfornations defines the Cartan fomin $\omega^{i}, 6^{\alpha}$ phioh are of primary importance In the method of phenomenologioal Legrangians. This method consists In that the parametere a^{i} are identified with the Goldstone flelds and the grouy transformations

$$
\begin{equation*}
G\left(a^{\prime}, \eta^{\prime}\right)=G(g) G(a, \eta) \tag{4}
\end{equation*}
$$

Where $G(g)$ is an arbitrary group element, define the nonlinear realization of group on the ooordinates of spaoe of the Goldstone particles $a^{\text {: }}$

$$
\begin{equation*}
a^{i^{\prime}}=a^{i^{\prime}}(a, g) \tag{5}
\end{equation*}
$$

From dafinition (3) it follows that the Cartan forats ω, θ are invariant relative to the group transformations (4), (5). The forms W^{i} datormine with raspoot to some basis nomponenta of an infinitesimal displacenent $d a^{*}$ from a point a to epoint $a=d a$, the forms θ^{*} define a ohange of the basis and are used to dotermine the covariant difierentiation of a various "geometrical" quantities which are iten-
tified with ficlds of particles interaoting with the Goldstone particles.

The Lagranginn invariant under the group transformations (5) is expreased via the Cartan forms in the following way:

$$
\begin{equation*}
\mathcal{L}=1 / 2 \omega^{i}(a, d a) \omega^{i}(a, d a)+\mathcal{L}_{0}\left(\psi, d \psi+\theta^{\alpha}(a, \alpha a) T_{\alpha} \psi\right) \tag{6}
\end{equation*}
$$

Here

$$
\begin{aligned}
& \omega i(a, d a)=\omega^{i}(a, 0, d a, 0) \\
& \theta^{\alpha}(a, d a)=\theta^{\alpha}(a, 0, d a, o) \\
& d \psi=\frac{\partial}{\partial x_{\mu}} \psi \quad ; \quad d a=\frac{\partial}{\partial x_{\mu}} a
\end{aligned}
$$

$\mathcal{L}_{o}(\psi, d \psi)$ is the Lagrangian of free fields ψ whioh are classifled over the linear representations T_{α} of subgroup H^{\prime}

Let us find the Cartan form for the finite group transformam tion in the exponential parametrization:

$$
\begin{equation*}
G_{a}^{N}=e^{i X_{n} a^{*}} ; \quad G_{a} \equiv G(a, 0) \tag{8}
\end{equation*}
$$

Whioh correspords to the normal coordinates in spaoe of the Goldstone fiela (along geodesios) 12,13 . For the equation (3) revritten in the exponential form (8)

$$
\begin{equation*}
e^{-i X_{a} a^{k}} d e^{i X_{a} a^{*}}=i\left[\omega^{i}(a, d a) X_{i}+\theta^{*}(a, d a) K_{\alpha}\right] \tag{9}
\end{equation*}
$$

one of the methods of solving this equation is to roduoe eq. (9) to the so-called fundement al Cartan equations.

To this end, we introduce into (9) a paranetor t by means of the substitution

$$
a^{k} \rightarrow \alpha^{\kappa} t
$$

and we get

$$
\begin{equation*}
e^{-i X_{r} t a^{*}} d e^{i X_{x} t a^{*}}=i\left[\omega^{i} / t a, t d a\right) X_{i}+\theta^{\left.\alpha /(a, t d a) Y_{\alpha}\right]} \tag{10}
\end{equation*}
$$

Differentiating both sides of eq. (10) with respect to t we obtain the fundamental Carton equations

$$
\begin{align*}
& \frac{\partial \omega^{i}}{\partial t}=d a^{i}+a^{x} \theta^{\alpha} B_{x \beta}^{i} \tag{11}\\
& \frac{\partial \theta^{\alpha}}{\partial t}=\alpha^{j} \omega^{p} C_{j \beta}^{\alpha}
\end{align*}
$$

with the zeroth boundary conditions

$$
\begin{equation*}
\omega^{i}(0,0)=\theta^{\alpha}(0,0)=0 \tag{12}
\end{equation*}
$$

where $B_{k j}^{i}, C_{j \ell}^{\alpha}$ are the structure constants of group (2). In general ouse the solution to eds. (21) an be written as

$$
\begin{align*}
& \text { the series } \\
& \omega^{i}(t a, t d a)=\sum_{n=0}^{\infty}\left(M_{a}^{n}\right)^{i} d a^{r} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1)!} \tag{13}\\
& \theta^{-3}\left(t_{a}, t d a\right)=a^{j} C_{j k}^{\beta} \sum_{n=0}^{\infty}\left(m_{a}^{n}\right)^{x} d a^{\prime} \frac{(-1)^{n} t^{2 n+1}}{(2 n+2)!}
\end{align*}
$$

where

$$
\left(m_{a}^{a}\right)_{a}^{i}=\delta_{i x} ;\left(m_{a}\right)_{e}^{i}=-B_{k \beta}^{i} a^{x} C_{j l}^{\beta} a^{j} ;\left(m_{a}^{2}\right)_{e}^{i}=\left(m_{a}\right)_{x}^{i}(m)_{e}^{x} ; \ldots
$$

For the $\operatorname{SU}(2) \times s U(2)$ theory (for dimensionless variables $\left.a^{i}=\frac{\pi}{\pi}\right)^{i}$)

$$
\begin{aligned}
& \left(\prod_{k}\right)_{p}^{i}=-\varepsilon_{i \times \beta} \varepsilon_{\beta j} a^{*} a^{j}=a^{2}\left(\delta_{i l}-\frac{a_{Q} a_{i}}{a^{2}}\right) \\
& \left(\prod_{a}^{n}\right)_{k}^{i}=a^{n}\left(\delta_{i j}-\frac{a_{i} a_{i}}{a^{2}}\right) ; \quad a=\sqrt{a^{i} a^{i}}
\end{aligned}
$$

the serles (13) are summed and we have

$$
\begin{align*}
& \omega^{i}=F_{x}\left[d a^{i}+\left(\delta_{i j}-\frac{\alpha_{i} a_{l}}{a^{2}}\right)\left(\frac{\sin a}{a}-1\right) d a\right] \tag{14}\\
& \theta^{\beta}=-a^{j} d a^{x} \varepsilon_{\beta j \times} \frac{\cos a-1}{a^{2}} .
\end{align*}
$$

Here $F_{\Sigma}=92 \mathrm{MeV}, \mathcal{E}_{\beta j k}$ is the antisymmetrio tensor, $\varepsilon_{\alpha 2 f}=1$

3. Reductions

A specific foature of the ohiral Lagrangian is the presence of derivatives in it. The faot that the derivatives are present in an internotion Lagrangian of the type

$$
\begin{equation*}
\mathcal{L}^{I}=d a^{i} d a^{j} g_{i j}^{T}(a)+d a^{i} B_{i} \cdot(a, \psi) \tag{15}
\end{equation*}
$$

may, generally speaking, lead to rearrangements of matrix elewents in perturbation theory due to integrating by parte ("transfer" of derivatives) and reducing some propagators to
δ - functions. Such a rearrangement vihich changes the structure of the Feymman diagrans, in terminology of ref. 9 is called reduction (or contraction of lines ${ }^{3}$).

The main purpose of our paper is to formulste the perturbation theory without reductions.

As a starting point of such formulation ve suggest the ohoice of a Lagranginn ($1 . \theta$. a coordinate system) proceeding from the most simple properties of this Lagrangian itself with respect to reduotions.
Consider, for instance, a matrix element of the type

$$
\langle 0| T^{*}\left(\int d^{+} x: \mathcal{L}^{-1}(x):\right)^{2}|0\rangle
$$

It is obvious that reductions will be absent if arter integrating by parts the integrand will not change, 1.c. if the interaction Lagrangian obeys the condition

$$
\begin{equation*}
d^{\prime} a^{i}\left[g_{i j}^{I} d a j+\beta_{i}(a, \psi)\right]=-a^{i} d\left[g_{i j}^{I} d a j+\beta_{i}(a, \psi)\right] \tag{10}
\end{equation*}
$$

It is easy to prove that the coordnate system satisfying condition (16) does exist and it: is unique. It $1 s$ just the nomal coordinate system (13).

Indeed, in these coordinates the derivatives of the Goldstone fields onter into the interaotion Iagrangian in the form of a combination with the group struoture constants

$$
\begin{equation*}
d a^{p} C_{j \neq}^{\beta} a^{j} \Phi_{A}(a, \infty, \infty) \tag{17}
\end{equation*}
$$

($\overbrace{\beta}$ stands for all the remaining factors).
The expression (17) satisfies the condition (16) due to antisymatry of the group structiure constants C_{f}^{β} in lover indioes.

To pass over to some other coordinate system is made via the transformations

$$
\begin{equation*}
a=a^{\prime} f\left(a^{\prime}\right) \quad ; \quad f(0)=1 \tag{1B}
\end{equation*}
$$

The interaotion Lagrangian in the normal coordinates (13) after the transformations (18) again obeys the condition (16). (In this sense, the Lagrangian in normal coordinates, before and after the transformations (18), resembles the Lagrangian without derivatives in nonohiral theories of the $\lambda \varphi^{4}$ type, where there are no reductions as derivatives are absent).

However, the new interaction Lagranfian contains, in addition to the transformed expression (17), also the "kinetia" pert Thioh arises due to the transformations (18) in the "free" Lagrangian

$$
\begin{equation*}
\frac{1}{2} d a_{i} d a_{i}=\frac{1}{2} d a_{i}^{\prime} d a_{i}^{\prime}+\frac{1}{2}\left\{d\left[a_{i}^{\prime} f\left(a^{\prime}\right)\right] d\left[a_{i}^{\prime} f\left(a^{\prime}\right)\right]-\alpha a_{i}^{\prime} d a_{i}^{\prime}\right\} . \tag{19}
\end{equation*}
$$

It is just the latter term in (19) whioh violates the oondition (16) and, as in the $i \varphi^{4}$ theory, is responsible for reduations. 4. Quantum Theory

As the generating funotional for Smatrix it is oonvenient to use expressions in the form of the oontinual integral with
 Here N is the nomalization, $\mathscr{F}^{(i n)}$ the asymptotio field (souroe), $A(a) / \Pi d o$ the invariant measure over the group, 1. 8. .

$$
\begin{equation*}
\mu(a) / \nabla d a=\mu\left(a^{\prime}\right) \Pi d a^{\prime} \tag{21}
\end{equation*}
$$

14

$$
\begin{equation*}
G_{a}^{\prime} \rightarrow G_{6} G_{a} \tag{22}
\end{equation*}
$$

where G_{f} is a group transformation.
In integral (20) one can take any integration variables. In our oase, following Seot, 3 , we take the nomal ocordinates (13):

$$
\alpha \rightarrow \alpha^{N} ; \mu(a) \rightarrow \mu^{N}(a) ; G \rightarrow G^{N} .
$$

Consider the quasi-olassical expaneion of funotional (20)
For this expansion the ohange is made for integration variables separating the "olusaioal" fields φ obejing the equation

$$
\frac{\delta \mathcal{L}(\varphi)}{\delta \varphi i}=-\alpha^{2} x_{i}^{(i n)}
$$

and "quantiged" Pielde Γ orar whioh 1misgration is ompied out. The usual change of Fariables
x The fields ψ in (6) will be oonsidered to be olassioel.

$$
\begin{equation*}
\vec{a} \rightarrow \vec{p}+\vec{r} \tag{23}
\end{equation*}
$$

breaks the oondition (16). We should make a change of variables such that:

1. the condition of absence of reductions with respect to the fields Γ be fulfilled;
2. the Lagrangian in (20) at $\Gamma^{\prime}=0$ be the Lagrangian of the "classical" fields φ in the normal coordinates. In this case the generating functional for Smatrix in the tree-diagram

$$
\begin{align*}
& \text { approximation } \\
& S\left(\pi^{i n}\right)_{t \text { vee }}=\exp \left\{i \int^{\prime} \alpha_{K}^{\psi}\left[\mathcal{L}\left(\omega^{N}\left(\varphi, d^{\prime} \varphi\right), \theta^{N}(\varphi, d \varphi)-d^{\prime} \varphi^{\prime} \pi_{i}^{\prime 2}\right]\right\}\right. \tag{24}
\end{align*}
$$

aooording to results of ${ }^{9}$, gives the matrix elements without reductions.

A natural way for separating the classical fields, without violating the condition (16), is to use the geometric properties of the ouryed Riemann space of the Goldstone partioles, namely to underetand the sum of vectors (23) as the addition of vectors in the ourved isospace f the foldstone particles (addition of vectors in the quotient space G / H), 1.e.,

$$
\begin{equation*}
G_{a}^{N} \rightarrow G_{\varphi}^{N} G_{\Gamma}^{N} \tag{25}
\end{equation*}
$$

where G_{a}^{N} is defined by (8).
Trensformation (25) has aimple geometrical interpretation. It gives the normal ooordinate bystem with tho origin at the point φ, coordinates of the point φ themselves being also the normal coordinates.

The Cartan forms are obtainad in the new ooordinates Γ subatituting (25) into (9)

$$
\left[G_{\varphi}^{N} G_{n}^{N}\right]^{-1} d\left[G_{\varphi}^{N} G_{\Gamma}^{N}\right]=\omega \dot{\omega}(\Gamma d \Gamma / \varphi, d \varphi) X_{i}+\overline{\theta^{\alpha} / /} \phi / / \varphi d \varphi / Y_{\alpha} \cdot(26)
$$

Using the substitution with parameter t

$$
\Gamma^{i} \rightarrow t r^{i}
$$

and differentiating both sides of (26) wit: respect to t we find the fundamental Carman equations, the same as in the classical case, eq. (ll),

$$
\begin{align*}
& \frac{\partial \bar{\omega}^{i}}{\partial t}=d \Gamma^{i}+\Gamma^{k} \bar{\theta}^{\beta} B_{k \beta}^{i} \tag{27}\\
& \frac{\partial \bar{\theta}^{\alpha}}{\partial t}=\Gamma j \bar{\omega}^{k} C_{j k}^{\alpha}
\end{align*}
$$

but with the nonzero boundary oomitions in the normal coordinates

$$
\begin{equation*}
\bar{\omega}^{i}(0,0 \mid \varphi, d \varphi)=\omega^{i}(\varphi, d \varphi) ; \vec{\theta}^{\alpha}(0,0 \mid \varphi, d \varphi)=\theta^{\alpha}(\varphi, \alpha, \theta) . \tag{28}
\end{equation*}
$$

Solution to these equations has the form

$$
\begin{align*}
& \left.\omega^{i}\right|_{t=1}=\sum_{n=0}^{\infty}(-1)^{n}\left(M_{n}^{n}\right)^{i}\left[\frac{\omega^{\prime}}{(2 n!}+\frac{(D \Gamma)^{\prime}}{(1 n+1)^{\prime}}\right] \tag{29}\\
& \left.\bar{\theta}^{\beta}\right|_{k=1}=\Gamma^{i} C_{j k}^{\beta} \sum_{n=0}^{\infty}(-1)^{n}\left(m_{n}^{n}\right)^{k}\left[\frac{\omega^{1}}{(2 n+1)!}+\frac{(9 \Gamma)^{\prime}}{(2 n+2)!}\right],
\end{align*}
$$

where

$$
(D \Gamma)^{i}=d \Gamma^{i}+\Gamma^{*} B_{x \beta}^{i} \theta^{\alpha} \psi,(\theta) ;\left(m_{r}\right)_{k}^{i}=-B_{k \beta}^{i} \Gamma^{*} C_{j e}^{\beta} \Gamma^{j} .
$$

For the $S U(2) \times S U(2)$ chiral theory in the dimensionless variables (see (14)) we get

$$
\begin{align*}
& \vec{\omega}^{i}=\omega^{i}+F_{x}(\phi r)^{i}+\left(\delta_{i \varphi}-\frac{\Gamma_{i} \Gamma_{2}}{\Gamma^{2}}\right)\left[(\mu r)^{i}\left(\frac{\sin r}{r}-1\right)+\omega\left(\alpha \sigma_{-1}\right)\right] \\
& \vec{B}^{\mu}=\Gamma^{j} \mathcal{E}_{A j \times}\left[\frac{\sin \Gamma}{\Gamma} \frac{\omega^{k}}{\Gamma}+(D)^{2} \frac{1-\cos { }^{2}}{\Gamma^{2}}\right] \tag{30}\\
& \left.(D \Gamma)^{i}=d \Gamma^{i}+\epsilon_{i \& \beta} \Gamma^{k} \theta \beta / \varphi, d \varphi\right) ; \quad \Gamma=\sqrt{\Gamma_{i}^{i}},
\end{align*}
$$

where $\left(\psi^{\prime}(\varphi, d \varphi), \theta^{\beta} / \varphi, d \varphi^{\prime}\right) \quad$ are defined by (11).
Just as the Cartan forms (13), the forms (29)
satisfy the condition (16) in virtue of the construction of the: forms with the hel p of the structure constants antisymietrle in Lower Indioes (seen. (17)).

Thus, allowing for the invariance of the measure $\mu(\mathbb{j}) / 7 \mathrm{ju}$ under the transformations (25) (sec (21), (22) ti:e gencratin: funotional for smatrix without reductions in the variables (25)

So the denerating functional for Smatrit: without reductinns is the generating functional in the normal conrdinates for the "quantized" ficlds Γ with the oricin at the point, the normal coordi nates of which are the "classical fields" \mathscr{G}.

In principle, a coordinate system may be taken aribitrary for the fields φ, i.e. an arbitrary parametriantion may be used for the transformation G_{φ} when dividing the variables α Into φ and Γ in (25). This will result in forms $\bar{\omega}, \bar{\theta}$ satisfying the same fundamental equaticas but with the boundary conditions (28) in an arbitrary coordinate system.

The quasiciassical expansion of the generating functional (J1) with the covariant dependenoe on the Ifelds φ is just a generalization to arbitrary ohiral dymazas groups and to intermotions Fith arbitrary partioles of the so-called oovariant perturbation theory by Honerkamp ${ }^{3}$ which oorresponds to the ohoice of the mormal coordinates for the fields Γ at the point φ in arbitrary coordinates.

The method we have presented for formulating such a perturbation thoory is essentially simpler than the apparatus of olassioal differential geometry used in ${ }^{3}$.

Abstract

However, the latter is indispensable for the case when a chiral Lagrangian contains noninvariant the plon-mass type terms (aee saner by U.K. Volkov and the author ${ }^{4}$). Conclusion

In this paper we have found the generating funutional for S_matrix (3.) in the perturbation series expansion of whioh there are no reductions resulting in ohange of the struoture of the Feymman diagrams (oontraotions of lines).

To formulate suoh a theory it sufficee to take the normal coordinate system and to allow for the foometrioal properties of the curved space of the goldstone particles, when dividing integration variables into the "olassioal" and "quantized mifolds. By the equivaleace theorem, the reduoed perturbation theory in an arbitrary ooordinate systom ooincides with the perturbation theory without reductions (31) ${ }^{3,9}$. In this sense the perturbation the ory without reductions (31) is the invariant perturbation theory and it is rather useful in applying of the regularization methods based on the selection of a definite oless of diagrams, eithrr with a fixed number of vertioes ${ }^{4-7}$ or with a fixed number of loops ${ }^{14}$. Gne can say that the perturbation theory without reduction in the coordinates (25), (29) is as simpler and more oonvenient than a perturbation theory in other conrdinates, as the $\lambda \varphi^{4}$ theory is sim.ler and more oonvenient than any other equivalent theory derived from the $\lambda \varphi^{4}$ theory by the transformation $\quad \varphi=\varphi^{\prime} f\left(\varphi^{\prime}\right), f(0)=1$.

In oonclusion the eutnor exprasas hingratitude to B.M.Barbeshov, D. I. Blokhint sev, M.K.Volkov for regular interest in the work, to V.I.Ogievetsky, V.I.Tkach fer useful disouesions and espeoially to D. V. Volkov for valuable advioes and remarks. The author
also expresses his deep gratitude to D.V.Volkov for invitation to the Kharkov Physical I'eohnical Institute where this work has been completed.

APPENDIX
In the Appendix we write down the minimal Lagrangian for
 The Lagrangian for olassical fields φ (in dimensionless

$$
\begin{align*}
& =1 / 1 F_{\pi}^{2} \omega^{\prime}(\varphi, d \varphi) \omega(\varphi, d \varphi)+\bar{N} \hat{d} N-M \bar{N} \exp \left\{\gamma_{5} \bar{c}_{i} \varphi_{i}\right\} N \text {, } \tag{A,L}
\end{align*}
$$

where $\omega^{\prime} \theta^{*}$ are defined mr (14); $\hat{d}=\gamma_{\mu} \frac{\partial}{\partial x_{4}}, \gamma_{5}^{2}=1$.
The Lagrangian for olassioal and quantized fields is

$$
\begin{align*}
& \mathcal{L}(\varphi, I, N)=\frac{1}{2} \Gamma_{x}^{2} \bar{\omega} i(\Gamma, d \Gamma / \varphi, d \varphi) \bar{\omega} \cdot(\Gamma, d \Gamma / \varphi, d \varphi)+\bar{N} \bar{d} N- \\
& -M \bar{N} \exp \left\{\gamma_{5} \bar{C}_{1} \frac{\varphi_{i}}{2}\right\} \exp \left\{\gamma_{5} \theta_{i} \gamma_{i}\right\} \exp \left\{\gamma_{5} \gamma_{i} \gamma_{i}, \sigma_{2}\right\} N_{1}
\end{align*}
$$

where $\bar{\omega} \cdot(\Gamma, d \Gamma / \varphi, d \varphi)$ are given by (30).
If oas applies the superpropagator method of regularization ${ }^{7}$, Which leads to the normal ordering of fields Γ (see paper by the author ${ }^{3}$) to calculate matrix elements, it is convenient to employ the following expression for the generating functional

$$
S\left(\pi^{i n}, N\right)=\left\langle 0_{1} / T^{*} \exp \left\{i \int_{N}^{4}\left[: d^{2} / 4, P, N\right): d \sin ^{i} d \pi_{i}^{i n}\right]\right\}\left|a_{n}\right\rangle_{(A, 3)}
$$

where $\mathcal{X}^{I}(\varphi, \Gamma, N)=\mathscr{L}(Y, N)-\mathcal{Z}_{0}(N, N)$.
$\mathcal{L}_{0}(r, N /$ is the "free Lagrangian

$$
\left\langle 0_{, r} / / i_{\rho}\right\rangle \quad-\quad \text { the vacuum average over fields } \Gamma
$$

$$
\left\langle\Delta / T^{*}\left[\Gamma_{i}(x) \Gamma_{x}(y)\right] / 0\right\rangle=\frac{1}{i \pi_{4}^{2}} \Delta^{c}(x-y) d_{i x} .
$$

1. S.Heinbere, Phys.Rev.Lett., 18, 507 (1971).
2. L. D.Faddeev, A.A.Slavnov, Tgor.Mat.F1z., B, 297 (1971);
A. A.Slavnov, Nucl.Fhys , B31, 301 (1971);
S.Gerstein, R.Jackiw, B. W.Jee, S.Vetaberg, Phys.Rev., D3, 2486 (1971).
3. J.Honerkamp, Huci.Phys., B36, 130 (1972);
G.Eoker and J.Honerkanp, 1bud., B52, 211 (1973);
J. Honerkamp et al. Bonn Dairersity preprint, July (1973).
7.N.Pervushin, JINR E2-7540, Dubne (1973).
4. H.Lehman and II.Trute, Nucl.Phys, 52, 580 (1973).
G.Eoker and J.Honerkamp, 1b1d., B62, 509 (1973).

Y, N, Pervighin, M.K.Volkov, JINR E2-7661, Dubna (1974).
5. N.K. Volkov, V.N, Pervushin, JIMR E2-7283, Dubna (1973).
6. V.N.Pervushin, M.K.Yolkov, JINR 22-7835, Dubna (2974). G. Y.Efimov, JETP 44, 1207 (1963).
E.S.Fredkin, Nuol.Phy3., B49, ᄂ 24 (1963).
B. A. B. Borisov, Y.I.Ogievetsky, JINR E2-7684, Dubna (1974).
9. D. V. Yolkov. Preprint ITF-69m75, Kiev, 1969, in "Partioles and NuOl eus", 4, 3 (1973).
10. V. N. Parvush1д. JINR preprint: P2-7644, Dubna, (1973).
11.S.Coleman, G.ivess, B.z:mino, PhJs.Rev.j177, 2239 (1969).
G.C.Callan et al. 1b1d.,177, 2447 (1969).
12.E.Cartan, Journal Math. pures et appl.9, v.6, 1 (1927).
13. B. Cartan, Leoons sur la geometrie des espaces de Riamann,

Paris, 3785, 1946.
14.S.Coieman, E. Helnberg, Phys.lleчッ, D7, 18B8 (2973).
15. P.Chang, F.Gursey, Phys. Hev., 164, 1752 (1967).

Roceivad by Publishing Dopartment on June 22, 1974.

