

Объединенный институт ядерных исследований дубна

1288/2-81

E2-80-878

B.Z.Kopeliovich, L.I.Lapidus

THE DIFFRACTIVE DISSOCIATION OF HADRONS INTO THE HIGH MASS STATES

Submitted to "Письма в ЖЭТФ"

1. Let us consider the inclusive reaction $a+b \rightarrow X + b$ in the triple-regge region: $M_X^2 >> s_0$, $\frac{s}{M_X^2} >> 1$. Here $s_0 = 1 \text{GeV}^2$, M_X is the X effective mass. It is known (see, for instance, ref.^(1/) that if $x \rightarrow 1$ ($x=1-\frac{M_X^2}{s}$) then the triple-pomeron contribution to the inclusive cross section will dominate

$$\left(s\frac{d^{2}\sigma}{dM_{X}^{2}dq_{L}^{2}}\right)_{PPP} = C_{PPP}(q_{L}^{2})\left(\frac{s}{M_{X}^{2}}\right)^{2\alpha_{P}(q_{L}^{2})-\alpha_{P}(0)}\left(\frac{s}{s_{0}}\right)^{\alpha_{P}(0)-1} . (1)$$

It is seen that the pomeron intercept $a_p(0) > 1$ leads to the violation of the Feynman scaling, as the cross section increases with energy. Here we shall prove that this increase will be changed to a fast drop.

2. In the constituent quark model the triple-pomeron term corresponds to a case when only one constituent quark in a hadron dissociates into a high mass, while the other quarks are the spectators or produce a small mass state^{*}.

Diffraction of a constituent quark is considered here in the eigenstate method $^{/4\cdot7/}$. The diffractive amplitude of α into β has a from $f_{\alpha\beta} = \sum_{k} c_{k}^{\alpha} c_{k}^{\beta} f_{k}$, where f_{k} is the scattering amplitude in a state $|\alpha, k\rangle$, which has definite number k = 0,1,2... of wee partons. The coefficient $c_{k}^{\alpha} = \langle \alpha, k | \alpha \rangle$. In a case of constituent quark one can apply the two-component approximation $^{/4,5'}$, where $f_{k} = f_{k} = 1$, and $f_{0} = 0$. This assumption leads to $f_{\alpha\beta} = f(\delta_{\alpha\beta} - c_{0}^{\alpha}c_{0}^{\beta})$. The cross section of quark diffraction dissociation, which is summed over all the final states with $M_{\beta}^{2} < M_{x}^{2}$, is equal to:

^{*} In the quark model the PPR term is related with valon scattering - the process discussed in papers $^{/2,3/}$.

$$\frac{d\sigma_{diff}^{q}}{dq_{\perp}^{2}} = \frac{d\sigma_{e\ell}}{dq_{\perp}^{2}} |c_{0}^{q}|^{2} \frac{1}{P_{q}^{2}(s)} \left(\sum_{\substack{M^{2} < M_{X}^{2} \\ \beta < M_{X}}} |c_{0}^{\beta}|^{2} - |c_{0}^{q}|^{2}\right)$$
(2)

after elastic cross section subtraction.

One can see that the sum $\sum_{\substack{M \not\in M_0^2 \\ M \not\in M}} |c_0^\beta|^2$ equals to the contribution into the total passive state norm < q, 0 | q, 0 >, which is connected with passive parton fluctuations, containing no parton with rapidity smaller than $y = \ln(s/M_X^2)$. On the other hand, the sum of such state norms is equal to the relative probability of transition from active state to a passive one when the quark rapidity is increased under Lorentz transformation from zero to $\ln(M_X^2/s_0)^{/8}$. Thus $\sum_{\substack{X \in M_X^2 \\ M \notin X}} |c_0^\beta|^2 = |c_0^q(M_X^2)|^2/|c_0^q(s)|^2$.

Substituting this result into expression (2), one obtains

$$s\frac{d^{2}\sigma_{diff}}{dM_{X}^{2}dq_{\perp}^{2}} = -\frac{s}{M_{X}^{2}} \frac{d\sigma_{e\ell}}{dq_{\perp}^{2}} \frac{1}{P_{q}^{2}(s)} \frac{d[P_{q}(M_{X}^{2})]}{d[\ln(M_{X}^{2}/s_{0})]}.$$
(3)

Here $P_0 = 1 - |c_0^q|^2$ is the weight of the quark active state.

3. Expression (3) and diffraction dissociation data give a possibility to determine with high accuracy the energy dependence of P_q . For example, if the quark energy is 100 GeV, $P_q = 0.57^{/9'}$, $\sigma_{tot}^{QN} = 17 \text{ mb}^{/9'}$, $G_{PPP}^{QN} = (\sigma_{tot}^{QN} / \sigma_{tot}^{NN}) G_{PPP}^{NN}$, where $^{/1/2}$ $G_{PPP}^{NN} = 3.2 \text{ mb/GeV}^2$. After comparing (1) and (3) at $q_1^2 = 0$ one obtaines $d[\ln P_q]/d[\ln (s/s_0)] \approx -0.06$ for $s = 200 \text{ GeV}^2$. This value is in good agreement with the results of analysis $^{/10'}$ of data on $K_L - K_8$ regeneration on nuclei.

4. The parton cascade model^{/11/} gives the following expression $P_q(s) = P(\infty)/\{1-[1-P(\infty)](s/s_i)^{1-\alpha}P^{(0)}\}$ Taking $a_P - 1 = 0.07^{/12}$ and $P_q = 0.57$, one finds $d[\ln P_q(s)]/d[\ln(s/s_0)] \approx -0.067$ which agrees very well with the value determined above.

This consideration can be reversed: if $(\alpha_p-1)\ln(s/s_0)<<1$ the substitution of P(s) from ref.^{11/} into the relation(3)leads to the approximate Feynman scaling. In this way one can calculate the effective triple-pomeron constant which is in good agreement with the known experimental value.

5. At high energies $(a_p - 1) \ln(s/s_0) >> 1$ the value of $d[P_q(s)]/d[\ln(s/s_0)]$ in (3) decreases⁸ as a power of energy $\frac{11}{(s/s_0)}^{1-\alpha_p}$. At the same time the value of cross section $d\sigma e^{\ell}/dq_1^2$ cannot rise faster than a power of $\ln(s/s_0)$. Consequently the Feynman scaling should be strongly violated at

very high energies. Such phenomenon has been found indeed in the experiments with cosmic rays ^{/13/}. It should be seen also at the energies of future large accelerators.

6. The simultaneous energy dependent decrease of $P_{\rm g}({\rm s})$ and increase of $\sigma_{\rm tot}^{\rm qN}$ lead to a specific behaviour of hadron-nucleus cross sections with energy: the cross section should increase for light nuclei and decrease for large nuclei. At the quark energy of 100 GeV, for instance, the total hadron-nucleus cross sections decrease with energy for the nuclei with the atomic number $A \ge 30$. For the nuclei ${}^{207}{\rm Pb}$ and ${}^{238}{\rm U}$ such a decrease is visible: d[ln $\sigma_{\rm tot}^{\rm qN}$]/d[ln(s/s₀)] ≈ -0.03 in accordance with the experimental data ${}^{/19'}$.

7. The ratio of the real-to-imaginary parts of the elastic quark-nucleus scattering amplitude has the form $^{\prime 15\prime}$

$$\frac{\operatorname{ReF}^{qA}}{\operatorname{ImF}^{qA}} = -\frac{4\pi}{\sigma_{qA}^{qA}} \int d^{2}b \int dM^{2} \frac{d^{2}\sigma_{qM}^{qN}}{dq_{\perp}^{2} dM^{2}} \Big|_{q_{\perp}^{2} = 0} \times$$

$$\times \left[1 - P_{q} + P_{q} e^{-\frac{\sigma_{log}^{qN}T(b)}{2P_{q}}}\right] \xrightarrow{\infty}_{ff} d\ell_{1} d\ell_{2}\rho(b,\ell_{1})\rho(b,\ell_{2}) \sin(\Delta q_{2}|\ell_{2}-\ell_{1}|).$$
(4)

All notations here are from paper: $^{15/}$. It is seen from (4) that in case of Feynman scaling the ratio (4) does not depend on energy. Substitution of (3) into (4) gives an approximate-ly constant ratio (4) in a wide energy range. But at energies $(a_p-1)\ln(s/s_0) \gg 1$, ReF_{0A}: 1 tend to zero.

REFERENCES

- 1. Kazarinov Yu.M. et al. JETP, 1976, 70, p.1152.
- 2. Tsarev V.A., Yad.Fiz., 1978, 28, p.1054.
- Anisovich V.V., Levin E.M., Ryskin M.G. Yad.Fiz., 1979, 29, p.1311.
- Kopeliovich B.Z., Lapidus L.I. In: Proc. of the V Int. Seminar on High Energy Physics Problems. JINR, D1,2-12036, Dubna, 1978, p.469.
- 5. Kopeliovich B.Z., Lapidus L.I. JETP Lett., 1978, 28, p.664.
- 6. Miettinen H.I., Pumlin J. Phys.Rev., 1978, D18, p.1696.
- 7. Zamolodchikov A1.B. et al. JETP, 1979, 77, p.45.
- 8. Grassberger P. Nucl. Phys., 1977, B125, p.83.
- 9. Kopeliovich B.Z., Lapidus L.I. TRIUMF, TRI-79-1, Canada, 1979, p.110.
- Kopeliovich B.Z., Nikolaev N.N. Z.Phys.C, Part. and Fields, 1980, 5, p.333.

- 11. Zamolodchikov Al.B., Kopeliovich B.Z., Lapidus L.I. JETP, 1980, 78, p.897.
- 12. Kopeliovich B.Z., Lapidus L.I. JETP, 1976, 71, p.61.
- Takahasji Y. In: Cosmic Rays and Particles Physics 1978. Ed. Caisser T.K., 1979, AIP Conf. Proc., No.49, p.166.
- 14. Murthy P.V.R. et al. Nucl. Phys., 1975, B92, p.269.
- 15. Kopeliovich B.Z., Lapidus L.I. JETP Lett., 1980, 32,p.612.

Received by Publishing Department on December 30 1980.