
/),9!f IJ, - !1 

J.Hruby 

06b BA MH e HHbl M 
MHCTMTYT 
RABPHbiX 

MCCJIBAOBaHMM 

AY6Ha 

E2-80-815 

ON THE SUPER-SIGMA MODELS 

AND SUPER-SINE-GORDON MODEL 

Submitted to 11 Czechoslovak Journal of Physics 11 

1980 

e. 



1. INTRODUCTION 
The study of models in which fields appear in a nonlinear 

representation played an important role in several areas in 
particle physics. Great progress has been achieved in two-
dimensional field theories with the bosonic sector only. 
However, models with classical fermion fields are of great 
interest as well. 

As is well known, it is most natural to consider classical 
fermion fields as anticommuting variables and via a supersym-
metric extension to obtain both the bosonic and fermionic 
sector. Some models containing anticommuting fields in an 
extension of this type have been considered: the supersym-
metric sine-Gordon model'", the supersymmetric a model ' l>2/ 
and C P " - 1 model / г > and also other nonlinear supermodels. 

Recently a general method has been proposed to build large 
classes of bidimensional supersymmetry models, whose equation 
of motion can be interpreted as the integrability condition 
of a set of linear equations '*'. 

There is shown a close relationship between the group-
theoretical structure and geometric interpretation in the 
supersymmetric case using the modern mathematical language 
of the differential forms. 

In this language the equations of motion in the Bose bidi
mensional nonlinear models appear as the integrability con
dition of the following linear set' 5': 

d v = „, v , (1.1) 
where v is a column of O-forms, M-wJx 1,/i.O,lis a matrix of 
1-forms (in the two-dimensional space-time (x0,x.) ) anddis 
the exterior derivative. 

The integrability condition of the set (1.1) has the form: 
ddv=(d„.-6jA(,j )v - 0, (1.2) 

that is, dui-uĵ t<j=0, where the symbol л means the exterior pro
duct of differential forms ' e / . 
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The aim is to find the expression for и,as a function of 
certain fields such that eq. (1.2) gives second-order dif
ferential equations in these fields. 

For this purpose the 1-form matrix ы is assumed with valu
es in the algebra G of the Lie group G: 

""«"a 1"' (1.3) 

where o>a are 1-forms and I are the generators of the group 
G, in some representation. Then eq. (1.2) can be written in 
the form: 

л..с._ J. „ c a . b 

2 o a b w , ы . (|.4) 

(Maurer-Cartan eq.), where the structure constants of G are 
defined by the commutation relations: 

[I a.I b]-c a
c
bI c • (1.5) 

An important property of eq. (1.2) is gauge invariance; 
Lt means eq. (1.2) is invariant under the local gauge trans
formation 

•ш ' - e~l(og -g~ ldg (1.6) 

for any g(x)6 G. 
There can be considered a subgroup H of the group G such, 

that G=HfF and F=G/H is the symmetric coset space. The cor
responding symmetric decomposition of the Lie algebra G is 
G= H f F , H is the subalgebra, and the following commutation 
relations hold: 

[H,H |C H , 

[H,F I C F, (1.7) 
IF.F 1С H. 

In terms of the matrices о the decomposition can be writ
ten: 

w - ш 1 Hj + „j" F a , (l.8) 

where Hj,F„ are generators of H, F respectively. By substitu
ting the decomposition (1.8) in eq. (1.2) we obtain the 
relations: 
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.<$ш'л «А (1.9а) 

йы1 = •— о к ш л о + — cag&i л м , (1 .9Ь) 
where c^ ,сА, 1с'ао are the structure constants, defined by the 
commutation relations: 

[H^Hjl-o^H,,. [ H J . F J - O ^ . [^.F^l-o^H,. 

S.Sciuto proposed a general method to build a supermodel 
in this formalism'7^. This method is given by a direct super-
symmetric extension of the calculus of differential forms 
to superspace. The extension is based on the definition of 
the "truncated" 1-forms (tl-forms)'7': 

E = d 0 a E a . (1.10) 
where d0 a are the differentials of the Grassmann variables, 
0а(а = 1,2) and Еа(х,0) are the superfields (bosonic or fermio-
nic), defined on the four-dimensional superspace. 

Using the language of truncated forms, the linear set as
sociated with a super-bidimensional model can be written as 

DV-nv: ( I . I 0 

V is a column of 0 forms, fi is a matrix of tl-forms and D is 
the truncated exterior derivative: 

D - ae"i>a-uoa(~ + iie)a . i-y.d. 0.12) 
The integrability condition of the set (!.ll) is 

Dfi-n^nio, (1.13) 
where the symbol = means that the coefficient of d 0 , A d 0 2

o n 

the left-hand side must vanish. 
R.D. "Auria and S.Sciuto have shown'4' that in the supersym-

metric models the tl-form matrix fi takes values in a graded 
tie algebra 6 and eq. (1.13) is invariant under the local 
supergauge transformation. The important thing is that the 
decomposition C=G +0into the even and odd part is automatical
ly symmetric in the sense of the (anti-) commutation relati
ons: 
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[G,G]CC, 

[С. 01 с Q. 

IQ.0UG. ( К , 4 ) 

The actual construction of a supermodel with associated li
near set is only a matter of fixing a graded group G ,and of 
choosing a suitable matrix Q, which takes values in G, such 
that П contains a submatrixы corresponding to the Bose model. 
For this aim we have to consider the following decomposition 
of G /</: 

G ш G +Q, 
C = H + F, (1.14') 
0= O'+Q", 

with the (anti-) commutation relations: 
[C,Q]cO, [H.Q'kO', [Н,0"К 0", 
\Q:Q-IC. F, \Q",Q"\CF, ( I 1 5 ) 

IQ'.Q"|cH. 

plus the commutation relation (1.7). 
After this short review in using the differential-form 

formalism for bidimensional nonlinear models and supermodels, 
we concentrate our attention on the two of them: the classi
cal 0(3) invariant <t model (equivalent to the CP 1 model) and 
the sine-Gordon model and their supersymmetric extension. 

The reason for studying these two models together are as 
follows: 

i) both these models have geometric nature, 
ii) the equivalence between the 0(3) symmetric nonlinear a 

model and the sine-Gordon model exists '8'in the Bose case 
and must exist in a supersymmetric extension, 
iii) the 0(3) symmetric nonlinear model has the most striking 
similarities with four-dimensional gauge theories'9', 
iv) in the superalgebra of the super-sine-Gordon model a 

"central charge" appears 'l0'and, analogously, it must be in 
the super-0(3) a model. 

In this paper we shall proceed as follows: we repeat the 
basic facts about the 0(3) invariant a model in the Bose 
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sector in Sec. 2. Using the language of differential forms, 
whose short review is given in the introduction, we show here 
the connection with the sine-Gordon model. 

The super-0(3) sigma model will be described in a self-
consistent way in Sec. 3. There the invariance of this model 
under complex supersymmetry will be shown and constraints 
will be obtained straight-forwardly from the gauge invariant 
action. 

In Sec. 4 the correspondence between the super-0(3) a mo
del and the super-sine-Gordon model will be shown, using the 
equivalence between the super-0(3) a model and super- CPl 
model. Working with the Lagrangian formalism and Noether's 
supercurrents the presence of the central charges will also 
be demonstrated. 

Some of our results will partly overlap with works of the 
other authors, however, we think that in this work we obtain 
new relations, which could be usefull. 

2. THE 0(3) INVARIANT NONLINEAR a MODEL AND 
SINE-GORDON MODEL IN TWO DIMENSIONS 
The action of the 0(3) a model has the form: 

S"f r d 8*<^* a4*VV d 8 ,i,4*" ) B- (2.0 
where the classical fields 0a(xo,x1), a =1, 2, 3, fullfil the 
constraint: 

i (ф»)г.ф*.фа=1. (2.2) 

The corresponding Lagrangian density takes the simple form: 
ь = -§л*Н* а + т ( < * а " * а ~ih (2-3) 

Л is a Lagrange multiplier. The corresponding Euler-Lagrange 
equation of motion has the form: 

o<£b+ (3 </>a.3 ф*)фЬ.0, <£a.</.a-l. (2.4) 

Using light-cone coordinates x ±- — (x 0 + x ,),as is usually done 
in two-dimensional space-time, eq. (2.4) can be written as 
(see Appendix) 
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0 +
Ь_ +(ф* .ф*)фЬ = 0. 

with the notation д+ф* = ф + . 
Eq. (2.4) is invariant under the local scale transforma

tion: 
»+- |F+ («+)! * + (2.5) 

and F+(F_ ) is a function of x+(x_) respectively, F+fx+j^O. This 
invariance implies that the energy-momentum density 

в -д фл-д ф* - Are <5л <А а • d Л<Д 

is traceless and has only two independent components. The 
energy momentum conservation says that 

l-L<//.^_M+.0. 14-*J •* + !-• 

where symbols ± mean again the derivation of the expression 
in the brackets. 3 

Hence <£+•<&+ = 2 (o!,. <3a) -{+(\\where f (f_)is a new functi
on of (x+(x_) respectively, but we may choose: 

lF ±(x ±)| = ]f ±(x ± )|. 

This ammounts to an identically vanishing momentum density 
and a constant energy density (a-L) in the new coordinates x'±. 
In this new system only one of the 0(3) invariants formed 
from <£a and фЛ is undetermined, namely (фл-ф*\а.пй the follo
wing relations hold: 

<£а.<6аэ1, ф*-ф*а 1, Ф^-Ф^ З1. ф1 .<£а«0, -l£(0a-tf_a)ll,(2.6) 

We denote ф+ • ф^-со$ф, where ф{ ф is a scalar field. 
From the geometrical point of view the action (2.1) can be 

interpreted (for arbitrary n > 1) in the following way'11/: 
Let G be a compact Lie group and H some closed subgroup of 

G. Then the action (2.1) describes the model of fields 
0a(xo, x,), a«l n, which takes values in the coset space G/H. 
The group G acts on such fields according to the transforma
tion law: 

<*'a(x) = g* a(x ), g 6 . G . ( 2 - 7 ) 
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and the action (2.1) is invariant under the transformation 
law (2.7). The expression (<?/,<4а»<?д<£а) then denotes the length 
squared of фл with respect to the chosen G-invariant metric 
in G/H. 

In our case for the 0(3) invariant a model G»SO(3) and 
H-SCH2); the action has the form (2.1) and 0 a e S0(3)/S0(2) 
that is the symmetric coset space. 

If we take G.SU(2) and H«U(1), then SU(2)/U(1) can be iden
tified with the one-dimensional complex projective space 
CP'.So we obtain the CP 1 model, which involves the complex 
fields <£j(x), i»l,2 satisfying a constraint <£?«<£j=l.In addi
tion a local U(l) gauge invariance 

^(«)-е' Л ( ,уМ (2.8) 
is imposed, for arbitrary space-time dependent Л(х). The Lagran-
gian of the CP 1 model with this invariance has the form: 

The local U(I) gauge invariance can be made more obvious by 
introducing an Abelian gauge field A^ and writing 

which transforms under (2.8) like 

А ^ - А ^ Л . (2.11) 

Then the action can be written in gauge invariant form: 

S - | fd 8x(D^.)*.(D^ i); D^.e^iA,, . (2.12) 

This model has the obvious symmetry group SU(2), corresponding 
to rotations of the ф^ (some authors have termed it the S0(2) 
a model). The equivalence with 0(3) a model is given by intro
duction of the vector <£=<£*5ik фк and constraints $*.<£.=! become 
Фл'Фл-} • It means that 0j is the spinor representation ot фл 

(if -Pauli matrices). 
Now we express the 0(3) a model in terms of the differenti

al forms. Eq. (i.4) for the group SO(3) is: 



d W
C«i- f* b Ca,»A И Ь p ( 2 1 3 ) 

where indices a, b, с equal I, 2, 3. 
By selecting <u3 as the connection of the subgroup H»SO(2), 

we obtain from eqs. (1.9 a,b): 

С - ^ и ' л O A (2.14a) 

^ - • ^ ( " ^ л а ^ ^ ' л ш 2 . (2.14b) 

where a,/9 =1,2 and t =-t , e - 1. 
Using l i g h t - c o n e coord inates and performing a Lorentz 

boost ( x + - > A j + , 1 % Л Г ) on the 1-forms й> а .ш 3 we get ' 5 / -

6," ( A ) , A ~ 1 f a d x " + A g a d x + , ( 2 .15a) 

3 ( Л ) . ы

3_дх~ + o , 3 d x + . (2 .15b) 

By s u b s t i t u t i n g e q s . ( 2 . 1 5 a , b) i n t o e q s . ( 2 . 1 4 a , b) we obta in 
two s e t s of decoupled c o n s t r a i n t e q u a t i o n s : 

a_S

a—,ap^8P. ( 2 . 16a ) 

A r a ав 3 f P 
" V - " * P < " + f ' (2.16b) 

which result in ff «const, and g ag a-const. Using scale inva-
riance and the fact that only one of the remaining invariants 
is undetermined,namely, the scalar product f"ga, we can write: 

t a , a a a . r"r<* » в а -а а , 
г Г = g g - 1, f f ±- 0 = g g + , f g - cou<£. (2.17) 

We can choose 
l Ф+ • Ф-. 

f - ( 0 ) . B - ( —г-). (2.18) 
v/l-(*^.*f) 2 
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and the relations (2.17) are fullfilled. From eqs. (2.16a,b) 
the determination of <u follows: 

v i - ( # ; - * _ - ) B c } 

The 1-forms ы1,а> а are given by the relation (2.15a): 
и И = Л ~ а х " + Л ( 0 +

а . ^ а )dx^ 
(2 .20 ) 

» 2 = AVl-(^ +

a.^f ) 2dx + 

and t h e 1-form ш 3 f o l l ows from (2 .15b) and ( 2 . 1 9 ) : 

3 (Ф+'Ф-). 
(О = • d x • (2.21) 

The e q u a t i o n s of mot ion ( 2 . 1 4 a , b) become: 

д_.ш+ - !d+«<c!«<u1i.u>B

u - tu | iu f . (2 .22 ) 

what g i v e s 

I - — - - — 5 — - I W ! - < * • * _ ) . ( 2 > 2 3 ) 

v !-(*»• О + 

Using the relations in (2.6) it can be shown that eq. 
(2.22) is equivalent to the equation 

*+_.+ (<*+ -Ф*)ФЪ- о. 
For this purpose the calculation from ref. ' must be used. 

Moreover from eq. (2.22) we obtain the following: 

1 - - f<?_.arcoos(<£a.<£a)| --d a_^»v'l-co8 fy, 
v'l-(<-4L a) 2 

д+д_ф =-81Пф, (2.24) 

but it is the known sine-Gordon equation in terms of light-
cone variables. 
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Thus we have shown the kuown result'8' that the 0(3) a 
model is equivalent to the sine-Gordcn model, which is given 
by the action: 

g 
S- Г u?x[-i.(<?,0)2+ —(cos00-1)]. (2.25) 

where we have put m - $ = 1. 
This result means that the sine-Gordon model in this reali

zation can be interpreted as a SO(3)/SO(2) model. Using the 
homomorphism SO(3)~SU(2) the sine-Gordon model can be also 
interpreted as the SU(2)/SO(2) model, if we choose ш in 
eq. (1.2) in the following way'4': 

cos 20 sin20 \ + 

d X - (2.26) 

Then from eq. (1.2) the sine-Gordon equation follows in the 
form: 

да 0 ---1-sin 20. 
+ - v 2 

This realization of the sine-Gordon model is equivalent 
to its interpretation as an SU(2)/U(1) model, which is the 
CPWiel. 

3. THE SUPERSYMMETRIC 0(3) INVARIANT NONLINEAR 
a MODEL AND THE ROLE OF THE COMPLEX 3UPERSYMMETRY 

At first we shall describe the construction of the super-
symmetric extension of this model in a self-contained, way. 

We assume the four-dimensional superspace (x и . в ), tfhere the 
Bose coordinates are x ,д =0, I, and the Fermi coordinates 0 

a =1,2. The scalar superfield 
Ф(х,0), ф(х) + 1ваф (х)+2_0а0 F(x) a g a 

defined on the suptrspace (x,0) is "equivalent" to the super-
multiplet of the ordinary Bose fields 0(x), F(x) and the Fer
mi field 0(x). 

The supersymmetric and Lorentz invariant action for the 
0(3) о model has the form /us/: 

j f A " 2 « ^ ( v a - v a ) 
(3.1) 
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and the constraint is given by 
Ф а..Ф а-1, а=1,2.3. (3.2) 

From the action (3.1) the Lagrangian density for the ordi
nary fields is obtained as 

L-JL^«.^«' +i.*\Jr* a -XF a.F a (3.3) 

and the cons t ra in t (3.2) g i v t s : 

фл-Ф* = 1 . 

фл-фа - 0 , (3.4) 

^ a - F a = i - ^ a . ( & a . 

Using the constraints (3.4) in the Lagrangian density (3.3) 
we can write the Lagrangian density for the super-0(3) a 
model in the form: 

L.JLe ф\'а Ф \ l(^./.i)+i/./Ai.#'.^)! (3.5) 
(6 " " (С i5 О 

The -.orresponding equations of motion are 

• <*b + (д ф*-д ф*)фЬ = 0, (3.6а) 

i * 0 b + ±-(ф*.фл)фЬ-0. (3.6b) 

where the form of these equations in light-cone variables 
with exact derivation is given in Appendix. 

Therefore the presence of fermions in the action (3.1) does 
not modify the first-order equations for the bosons. 

One can show that there exists a conserved supercurrent: 
J„ - > * a - / i * a (3.7) 

and the energy momentum tensor has the form: 

- g ( U , * a . * * a i . 
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It is natural to associate a conserved-current invariance 
with a continuous set of transformations. The action defined 
by (3.1) and the constraint (3.2) are invariant under the 
supersymmetry transformation: 

8ф « if ф , 

S0 a = (^^ a+F) f, ( 3 > g ) 

S F a - it *^ a . 

It can be observed that this model has an enlarged super-
symmetry algebra'8'. In fact, the action (1) is invariant un
der supersymmetry transformation with internal symmetry 0(2), 
whose Noether's supercurrents are given by 

V ,"%">*%*". (3.9) 
The structure of an 0(2) expended supersymmetry (or complex 
supersymmetry) implies furthermore the existence of a conser
ved vector current 

У д - . * Ь в * , * \ * в (З.Ю) 
and axial-vector current A„ = f V . 

The manifestly 0(2) invariant super-<7 model can be built if 
two Majorana spinors 0„ , i =1, 2 are considered as Fermi coor
dinates. In this enlarged superspace the constraints 

Ф а(х.е').ф а(.х,б 1) = 1 (3.11) 
contain many degrees of freedom and it is difficult to cons
truct a physically sensible theory involving this field. The
refore E.Witten'2' had to assume a supersymmetric constraints, 
that would remore the extra degrees of freedom. 

Now we shall demonstrate the way in which one must not 
impose any necessary supersymmetric constraints. 

At first we shall show that the action (3.1), invariant 
under the real extended supersymmetry N=2, is also invariant 
under the U(l) complex supersymmetry. Here real means that 
the Fermi variables are real anticommuting spinors and complex 
means that Fermi variables are complex combination of two real 
anticommuting spinors. For this purpose we shall rewrite the 
action (3.1) for the supe r-CP 1 model. 
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In an analogy with the Bose case we shall define the comp
lex s-jperfields <l>j(x,fl), 1 =1, 2, whose components ф.,ф,,Р. are 
complex fields which transform according to the fundamental 
representation of SU(2), while б is a real two-component spi-
nor . Then transformation Ф а=ф ст*фк gives the equivalence 
between the action (3.1) and supersymmetric C P l action which 
follows: 

s-~ м 2 * ^ vir ; . УФ, , ( 3 > 1 2 ) 

where V »D~A is supersymmetric U(l) gauge invariant covariant 
derivative. Here A is a fermionic real superfield, which 
transforms as an Abelian gauge field under U(l) gauge trans
formation. _. 

The constraints Ф-Ф « 1 have the form Ф(.ф[= i and because 
A has no kinetic term in the superaction (3.12) it can be 
eliminated by using the equation of motion: 

А = Ф*. . О Ф | (3.13) 

and supersymmetric CP action has the form: 

s - i [<э?хагв[ОФгОФ1-щ- ОФ{ КФ] .РФ.)]. 4 

This superaction with constraints is equivalent to the super-
0(3) a model. 

This supermodel can be obtained directly from the complex 
supersymmetry. For this we shall define the complex scalar 
superfield C(x,0.0J=i C(x,0j + i0 2 . 0^-лв Z ). The supersymmetry 
transformation on the superspace (x,0,0) acts in the following 
way: 

sx^»- J-[f у^в+Ty o], se~e , se-7: 

and on the superfield C(x, 0,0) acts as follows: 

SC -[<0 + Гб]С. ( 3 ] 4 ) 

where Q-jL-Ltfe) , Q .JL—L(0e) . а два 2 « а дЪа 2 а 
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These supercharges anticommute with the covariaat derivati
ves: 

Da—U—+ i-Цв) , Б = 4r,;+ ~ОИ„ . 
a два 2 ° a два 2 a 

Actually, the complex ccvariant derivatives are just complex 
combinations of real derivatives. This coincidence with comp
lex combinations of real spinors =™d real derivatives into 
complex one has deep reason in a self-duality condition'13': 

DaC(x,0,e)-O. (3.15) 
This condition (3.15) plays a role of the invariant constra
int 

С(х,0.в). C(x_i.:ey0.0). (3.16) 

It shows that the graded Lie algebra with complex supersym-
metry can be realized in a smaller parametric super-
space (x——0у0,0) with the complex Bose variable, but inde
pendent on 0 in Fermi variable. 

The complex supersymmetry then can be written as 

8C = W Л--ЛГ(»в) 1С а два а а 

and for complex ordinary f i e lds ФetФc.Fc we obtain 

8ф—иф , 

8ф . ( P f t ^ 7. (3.17) 
с ** с 

S F c . i r * 0 c 

and the action (3.12) is invariant under this transformations. 
The identification with the fields ф1,ф^1, i =1,2, from 

the action (3.12) can be made by using the relations'13/. 

tfc-tfi+i<4E., фв.ф1+\фе, F-Fj-iP,, . (3.18) 
We remark that for the complex conjugate superfield С the op
posite self-duality condition is valid: 
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Da5=0. (3.19) 
We remember that in the Bose version of the CP model 

a gauge field Л(х) appears. In the supersymmetric version of 
the CP} model we have to introduce a vector superfield 
V(x,0, в), which in the Wess-Zumino gauge has the form:'14/: 

V» — 0y 0Л + "coefficients with two or (3.20) 
2 с v- more 0", 

wheve for simplicity we have not written other components 
explicitly. 

The superfields С and V transform under an infinitesimal 
U(l) gauge transformation as follows: 

SC-iAC , S C . - i A C , S V . i ( A . A ) , 
where Л(х -~0у в,в) is a chiral gauge superfield. 

A complex supersymmetric ant gauge invariant action is 
give.. Ьу /3/; 

S - i - f d 2 x d 2 0 d 2 0 ( - V + C C e V ). (3.21) 

from which the equation of motion follows: 

CC = e- v-l-V. (3.22) 
that implies for the first terms in в -expansior. the follo
wing constraints on the ordinary fields: 

ф-ф * 1 , ф -ф ш ф- ф ш 0. 

In this way we have connected all components in right- and 
left-hand side of eq. (3.22) and so vector superfield V 
acts as a confining force between the scalar superfields. 

So, in a manifestly complex supersymmetry formalism the 
constraints are obtained straightforwardly from the gauge 
invariant action. 
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4. THE CORRESPONDENCE BETWEEN THE SUPER-0(3) 
a MODEL AND SUPER-SINE-GORDON MODEL 
In the introduction we remarked to give the supersymmetrir 

extension of G/H nonlinear models, we had to look for the 
graduation that the (anti-) commutation relations (1.15) are 
valid. In Sec. 2 there was shown that a realization of the 
sine-Gordon model is equivalent to the SU(2)/U(1) model,which 
is equivalent to SO(3)/SO(2) a model. 

If we want to show equivalence between the super-0(3) a 
model and the super-sine-Gordon model, then we have to choose 
supersymmetric extension of SU(2)/U(1) model. Then super-0(3) 
a model, which is equivalent to the super-CP 1 model (see 
Sec. 3), will be also equivalent to the super-sine-Gordon 
model by the following way: 

The super-sine-Gordon model can be interpreted as the in-
tegrability condition of this linear se t/7/. 

0 - —sin 
iz' 

0 -i-СОБф 
V'2 

- — sinO - i-совф О 
v'2 v'2 

(4.1) 
where Ф,\1 ,V a are bosonic superfields, V 3 is a fermionic 
superfield and the truncated 1-form Q=<M1tll +d0 2$l 2. 

By decomposing the superfields in component fields we get 
the matrix fi,corresponding to the supersymmetric extension of 
the Bose SU(2)/U(1) model, which has the form: 

"- (-Q+o)' ( 4 ' 2 ) 

where the submatrix w has the form (2.26) as in the Bose case 
a n d - * + , — • 4 

Q l \ - i ( 8 x +T )/ v' 2^2 d ,'~+ -^.0,«>s<£dx 
(4.3) 
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Substit ing the matrix П in the equation 
«JD- П л Q =0, 

we obtain equations of motion of the super-sine-Gordon model: 
J, 
2 

д д_ф = (зш2<Д + \фф sin0), 

д_Ф1 --cos002, (4.4) 

д+Фг =-cos^^ 1 . 

In this way the equivalence between the super- 0(3) a model 
and the super-sine-Gordon model is shown. 

Now we explain why in super-sine-Gordon the central charges 
appear via this proved eguivalence. 

In Sec. 3 it was shown that the super-0(3) a model is in
variant under 0(2) extended supersymmetry or complex super-
symmetry. 

In this case the supersymmetry algebra can be modified to 
include central charges, as it has been shown mathematically 
by R.Haag et al./l5/: 

4 i ' Q , 8 j

| - 2 V > ' - P y o V 2 1 f i j T<".voW ( 4 - 5 > 

where the 0(2) labels i,j run from 1 to 2. 
This is in agreement with the super-sine-Gordon model,where 

the superalgebra is modified to include central charge because 
certain surface term is nonvanishing ' l°/. 

The conserved supercurrent in the super-sine-Gordon model 
has the form ' 1 в Л 

^IW-V'MJyVl-O. (4.6) 
From (4.6) it is possible to obtain supercharges and show, 
that the anticommutator has the form: 

The extra term T«f dxV(0)-r— • appears in (4.7) due to the non-
trivial boundary condition. T, being the surface term, must 
commute with all other generators of the algebra. In this way 
appearing of the central charge in tha supermodel with topolo
gical excitation is connected with complex supersymmetry. 
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We can demonstrate it on the level of the Lagrangian for
malism: in the two-dimensional space time massless free-field 
supersymmetric Lagrangian density has the following form: 

ь-|<ад<л2--|-^--^2 . (4.8) 

In such a theory the interaction can be added 
i) by a constraint on the fields, 

ii) by a potential. 
The sigma models are the typical representants of the first 
case. The representant of the second case in 0(2) extended 
supersymmetry has the form: 

where the dummy fiel Fj=-V'(0 )and we shall assume V'(<£ () = 
= - - W 0 . . ф. ,V"~-I^i-L^ 0 and the 0(2) labels i,j =1, 2. 
Then the Lagrangian density (4.9) is equivalent to the 

In the case of equivalence the central charge has the form 

T = ~-Lfdx-2-(<* ,-ф,). (4.11) 
2 3x J J 

/l7/ which is in agreement with 
In this way we have shown that the supersymmetry algebra 

of the super 0(3) a model given in'3'must be modified to 
include the central charge T. 

5. COMMENTS • 

In this work the equivalence between the super-0(3) о model 
(it is super- CP'model) and the super-sine-Gordon model has 
been explicitly shown. In fact this equivalence was shown due 
to the equivalence between super-0(3) invariant a model and 
the super-CP*model. It was shown inA/ that the direct super-
symmetrization of the SO(3)/SO(2) model gives the super-
sine-Gordon model. This corresponds to another possibility 
of supersymmetric extension of the sine-Gordon model, then 
only via direct supersymmetrization (d+ -»D. , <£(x>» ф(х,0)) as in'4 
18 " * 



The role of conformal supersymmetry in the super-0(3) a 
model is the bosonification'17',It was shown in the first paper 
of ref. •' that the relation: 

фя -<?Vy a =1.2,3 (5.0 
is valid and the arbitrary spinor у must satisfy the confor
mal supersymmetry condition 

S'ylldyx-0. (5.2) 

Inserting the relation (5.1) into the Lagrangian density 
(3.5) it collapsed in the bosonized form. It is in agreement 
with the first paper of ref.'17', where it is easy demonstra
ted in the SU(2) language. 

In this paper we also demonstrated the crucial role of the 
complex supersymmetry in these models. The appearing of the 
constrai- *-.s in N=2 extended supersymmetry and the generali
sation for other extended supersymmetries will be discussed 
in further publication. 

7. APPENDIX 
In two-dimensional space-time (XQ.XJ) it is usuil to UL 

light-cone variables: 

«+-k«, ±X0). d+,J^:=J- ±Л. 
1 2 ~ «Эх1 дх1 дх° 

Analogically in the four-dimensional superspace i\>0 ),fi-G,l, 
a =1,2 we can define for Fermi variables 

o±.Lntyb)e. 

The notation of ref. has been used; we remember that 0a 

is a Majorana spinor of anticommuting variables and 6a=B = 

The analog of light cone derivatives are covariant derivatives 
D,.D2: 
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We can see: DjD,=-id+, C^D^icL. A naive supersymmetrization can 
be done, performed by substituting д+,д_ with Dj.D 2 into equa
tions of motion. We obtain for presented models the following 
relations (a-Bose case, b-Fermi-Bose case): 

la) equation of motion of the 0(3) a model 
а+а_.фл +(д+фь •д_фЬ)ф* -О, 

lb) equation of motion of the super 0(3) a model 
О 2 О 1 Ф а + (О 2Ф ЬО 1Ф Ь)Ф а-0, 

where Ф а(х.0)- ф \х) + Н0^'А-в гф\(*)) + 19,0 aF a(x). 
The r e l a t i ons are va l id : 

D 2 D ^ S = i F \ в2В+ф\-в^д_ ф\-в1вгд_ д+ф . 

D / . D / .-Ф\ф\ф\вть-ф1^а/ -е2ф\.т\в£Гь.гь 

-в1э_фь-Ф*-в1вгд_фь • а_фъ. 

The equation of motion has the form: 

д_ф\-ИФ*-Ф*)ф1-0, 

a b b a 

а+Фг-цф1.фе)ф1 - о , 

а+а_.фл+(а+фь- а_Фь )Ф ' - о 
and the cons t r a in t s : 

ф • ф R 1, 

ф\ 0 - 0 , 
. a b b 

фГ.Т -\ф1-фе. 
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2a) equation of motion of the sine-Gordon model 
д Э ф =-sin0 i 

2b) equation of motion of the supersine-Cordon model 
D 2 D L Ф =.-sin<t>, 
d_il> + соъфф ж О, 
д ф + совфф - 0. 

д в ф * - -!-sin2<£ - \ф. ф„ sin</>. 
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