


1. In the superspace approach the role of & real Grassmann
variable is played naturally by Majorana spinors
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where 9« ; é"* are conjugated two-component Weyl splnors and C
is the charge conjugation matrix, Straightformardly, in extended
N-supersymmetries there appear N Grassman-Majorana variables
simultaneously. Even the simplest superfield CP(x,a‘.ez, oy o)
gontaine a huge number, 2" , of field compomnents.

The aim of the present note 1s to introduce a notlom of
Grassmann analytlcity and to show with a simple example, how i1t
helps to reduce the number of Majorapa spinor variables. The
Cauchy-Riemann analyticity condition
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has the following extension to the Grassmann gcase
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where 93 ( ﬁ:) is the covarisnt spinor derivative with respect

to the Grassmann variable & (VU , This condition says that
supértield P 1s "independent® of the variable 8 -{/4 and 1t
permits us to pass to an W=l superfield V()‘»,G) ‘ depending only on
one Majorans variable. Note that 1n the two-dimensionai caBe a
condition of the form {2) was used already in the supersymmetrlc
string theory /1/ , Purther, already in the N=1 supersymmetzry the
chirality can be also interpreted as the é.xialyticity. Indeed, the
chirality condition
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means that },b‘(x, 9) 1s dependent only ¢n the left :Neyl apinor e
being independent of the conjugated right spiner @* .« The solution
of the condltion (3) is known to have the form (see, 2.g., ref-/z/)
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The solution of the analyticity condition (2) will be given below
and will be used for reducing a superfield with two MajJorana
varlables to the one depending only on one Majorana variable.

2, Now we proceed to our aim, The Grassmann analyticity was
prompted by the known fast that the complexified N=1 onw-shell super—
multiplets are also repre sentation of the N=2 supersymmetry with
central charge ( see and references therein 3. This statement
turned out to be correct alse for off—shell superflelds. Indeed,
consider an appropriate decomposition of the complex superfield
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This decomposition contains the complex vector and scalar fields

a5 M), § (%) forming 0(2) singlet, the traceless
complex symmetric 0(2) tensor PUYK) and the 0(2) doublet of
Dirac spinors VIL(X) « The action for V(X,Q)
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1s imvariant under 0(2) supersymmetry transformations
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In these formulae Fab =%V -6V , gtz g4, 7:9“%_
and the internsl symmetry indices are deliberately written down on
the eame level to stress that we deal here Just witk 0(2) (leaving
aside SU(2) at a moment), The parsmeters of the standard and
gecond supersymmeiries are 6_‘1 and {e' s respectively. In the
superfleld form these transformations are written down as

SV=-i Q'Y

with generators i .
Q= t55r — (790 (5e)
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having commutation relstions
{0, Q)= 2s™ypr2ie™ 2. @)

It is important that 1ln our 0(2) superalgebra there 1s the central
charge > proportional to the mass parameter

Z\V=mV , ZVF=-mV~ o)



Iike the electric charge, operator Z takes opposite values
for particles and antipartioles., Presence of the term with three
spinor derivatives in Eqe (8b) 15 somewhat surprising. Now we shall
show that these transformations arise quite naturally,

3+ To this end,we oonsider a complex superfield 'fP(x,a,i])
- that satisfies the Cauchy-Riemann condition (2), 1.0, P 1s
analytic, Tts supersymmetry generators are naturally defined by

Qe:: ’:%ﬂ‘(ﬁ@)« ) Q:= L%d-(?’}?)g\—aad\z (11)

and obey the commutation relations (). The central-charge generator
2 acts on 4’, P*as 1n Eg-ns (10) with the change of \ by P.
Then spinor derlvatives in the conmdition (2) are:
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The Cauchy-Riemann condition can be solved (analogously to (4) ) and
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It appears that the superfield V(X,Q) considered above is expressed
in terms of {.P(XJ 8) as follows:

V(x,0) =9 (68) + 1 DD 9w8), 16

Then transformations

5P, 6, =18 Pix,6,9)

correspond just to the tramsformations (8) for V (X,G). The action
(8) can be rewritten as

(13)
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Equation (16a) for the Lagrangian density demonstrates once more
the analogy wlth the msual N=1 chiral case 2/ .

4, The representation {13a) suggests the presence of "analyti-—
cal basis® and "antlanalytical basis"
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in form similar to the left and right bases in ¥=1 case/4/ and
turning into the latter for Q;ngS ( witk an appropriate change of
the scale of X due to differentiation in (2) ). Really, (17a) and
(17b) form invariant superspaces of the N=2 supersymmetry. A hope
arises to obtaln a purely geomeirlcal formulation of the N=2 super-
gravity without constraints analogous to that propoéed inﬂ' for the
N=1 case. To this end, one has, in the first place, to extend

0(2) to SU(2) and to study the analytical properties of some
supermultiplets considered in /3/ .In the case of higher supersymmet—
ytes one can think of a deep internal relation with hypercomplex
numbers /8/ . We have checked that the hypercomplex coordinates
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form invariant spaces of the N=4 supersymmetry { €k are quater—
nion imaginary unlts) and of N=8 supersymmetry { €.« are cotonion
imsginary unlts). These problems will be discussed in our Further
publications.
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