


1, Introduction

To solve the problem of confinement ian QCD it is necessary
to find a simple physical analegy, adequate to the confinement
meohanism, Recently there have appeared some analogles clalming
such an adequacy.

The most popular one 1s the analogy of non~Abellan fields
with ferromagnetic: the QCD coupling oonstant, depending on dis—
tances, plays the role of temperature, and the problem is Jjust
to find the phase transition point and to desoribe dynamically
this transition frem short to long distances /%,

In my works 7253/ a different analogy of the non—Abellan
theory with theories of superfluidity /477?% 1s developed. It 18
assumed that dus te the infrared divergence the interaction
at long distances plays so essential role that one may speak
only sbout the quantum states and spectrum of the whole lnterac—
ting systen and 1t is impossible to consider the states of free
gluons and quarks, Just that 1dea of colleotive dynamios is
leading in theories of superfluldity.

The physical methods of “removing infrared oatastrophe®
coneist briefly in the following. The two iypes of the vollective
excitations are distinsuiahed in the superfluid liquid:

18t — weak quasiparticle exoitations (looal dynamics);
the mathematical apparatus of desoriblng the quasiparticles
practically colncides with that ¢f the usual quantum field
theory T wentts quantivstion principles (finiteness of the
ohservables, stability of the physical states, FHermitean charace
ter of Hamiltonian, eto.).

25d — exoltations of the whole system (global dynamics);
4n the superfluid liquid this is the cbordinates of center of



inertia or angle of turning for a rotating 1li1quid as a unique
object. Just the "global movement as a whole is the essence of the
superfluld phenomenon, As a rule, the global dynamios has &
Physical meaning in the presence of a singular condensate (i.e,,
o~number field, defined on the olass of funotions nonvanishing

at spatial infinity in R(ﬂ or nondifferentiable at some points

of R(I ).

Theory, which simultaneously describes the Bose~condensate
wlth the global dymamics (superfluid component) and the quasi-
rarticles (normal component) is called the two—component theory.

Thus; we have the following logical acheme:

Physical primciple Buysloal methods
: 7
1)Relativistio invariancel*— — — «» — — 1) global dynamics /4
2)Gauge invariance 2) Condensate 7736/
y Infrared
) SU‘- -~invariance 3) Looal dy'namics/5’6/
catastrophe

At first sight such a schems is contradloctory because the
existence of the condensate and the global dypamics (i.e., the
simultaneous movement of all the field system as a whole)
contradicts the relativistic lnvariance prineciple,

I shall show that the relativistio invariance may be
reproduced within the scheme just following the ideas of the
theory of superfluldity. The problem raised here is as follows:
to reconstruct the relativistic-lovariant two—component theory of
non—Abelian fields without infrared oatastrophe, Mathematically
such a reconstruoction is formulated as a realizgtion of s unitary
(physical) representation of the topological nomtrivial gauge
group. The reconstruotion 1s carried out in three steps :

1)The proof of existence of the global dynamics .
2)The proof of existenca of the local dynamics .
3)The restoration of the relativistic invariancs.



2. Global Dynemics and Characteristic Clasaes

fhe existence of the glebdal characterisiica of non-—Abellan
£1elds has basn pointed out for classioal solutions of Yang-fiile
equations with the finite Buclidean action

,S’=5§1jaf3; fe/%;,F/") S K =%——?-:7 W
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It can be shown /B/, that vaocmam Yang-Mills solutions, minimizing
the funotional (1), satisfy the duality equation
_o* . *®¥O L %8 (€
Eo=E, o e F b
and are characterized by an integer Pontryagin index x)

WAL=, [t Er (F )

The functiopals of a kind of (3) are called characteristic ¢lasses
in topology 19/ . They have the remarkable property

5v[A%A:0 D)

and reflect the globtal feature of nen~Abelian fiélds as a whole.

The vacuum solutions (instantons) are supposed 710,11/ 4,
give a basic contribution to the Paddeev-Popov functlonal lnkeg~
ral, like ¢lassical trajectories of tunnelling in guantum
mechamics of perlodic potentlals.

The Hamilton formalism in gauge 74, = 0 12/ glves the
most clear statement of the proliem of quantization of suck &
theory with nontriviel topology.

In this gauge fields A are defined up to the gauge
stationary transformatiom, and the functlonal (3) is of the
form of difference of twe functionals.

(&)

x)ror finite action (1) in R(4) non-ibellan fields are gauge
on the bomndary 8(4): A. = ?)"2‘)@ 27x) . Integer V ia
a degree of mapping of S(4) to SW(2) glven by P»x) .
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which are transformed under the gauge groups as
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Az we have shown above, the definition of the smooth
function class plays the basic role for the topologloal proper-
tles., Beoause of the finilteness of observadles (energy, momentum,
etc.) we should choose smooth ;4.‘. and therefore 2% , in
particular

&m v-(A:’) = I. (7)
IX = 0=

For matrix 2*(X) (7) mumber () (6) 1s integer and
Deans the degree of smooth mapping of R(3) to 8U(2) glven by
matrix V&) . ( A(%) indicates how frequently the space R(3)
has turned about SU(2)). Thus the gauge group la topologically
disconnected and, besides oontinueus, has discrete transformations.
The Total gauge group is = product of a "smallv continuous group

Go (a=0) by infinite oyelic group of all integers =
(The factor group G’/G:, 1s called the homotopy group
T (SUR) = 2 ).

the functional (6) 13 a classical realization of the
group F  representation,

While solving the Schrodinger squation

H %A =e AT H=1 [wilF% 5]
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besides the Gauss condition of invariance under group G:,
]| jac 2L CJ( 4
W/A‘)E%[’df}zo ; V:(A} =57 +35(7{1 (9

i1t is necessary to impose the condition of covariance of "wave
funotion® é‘é under the transformations of group Z

T ek . T EZ, (10)

where O 1is the guasimomentum OF ©<¥ . Equation (10) 1s
an analogy of the Wperlodic condition® of the wave function in
the above-mentioned gquantum mechanios of the perlodic potentlials,
in which for the representation of the operator 7 oné usually
uses the olassioal variable N (6), changing by an lnteger

T = exp(;f;;)'. (1)

But the representation of ’T in form (11) 1is contradioctory for
the Yarg-Mills theory: operator 77 does not coummute with the
Hamiltonian

[TH]#0 [[THIH]#0, ato.

The operators T ; H have no oOmMmoOn elgenstates besides the
#yacuum state® with zero-energy (€= D

4 [T HI%= © Coo #7005

Such a state is easlly constructed, 1f we substitute the solu-—
tion of egs. (10), (9) in the form of a "plane wave®

%’ = exXp {e'(.'?x,é +4)/Vj ¢ & - integer)

to the Schridinger eq.(B). As a result we obtain the equation for
the momentum

i ot ).

As the momentum 18 imaginary, the solution % is a nonphysical
(nonunitary) representation of group Z o+ Wave functioea ¢°
obeys slmultaneously the Euclidean duality equation in the opera-
tor form LY =8 % and, probdahly, refleots the nonphysi-
oal meaning of the classical instantons.

These facts and experience of quantum mechanios give doubts



about the existence of the exact Physioal solutions of the set
of eqs, (8)~(21). Them, the question arises: How does one construot
the unitary (physical) Tepresentations of group Z ¢

To answer this questlon, one considers the exmotly solvable
medel (3 E.D((,I) s which is topologioally equivalent to
Yang-Mills theory

s=L[i 7" WA= f#E, A A4

/

(We bave here the map o A(Y) nto U(Y) : Taftr()= 7 3
For gauge 740-‘-'0 the analogies of eqs. (8)-(11) are

f'}l/”-’c“éb , H:‘z'ffﬂ’xi [:112 , ,éj: (‘J’/J’
3154):0 / o« )
Té=eP4% /‘/=e"”")/‘,-/-‘g;fa%;ﬁ/' Ry =N -,

In that case the “plane wave® 4 = expo § f'(‘?*'é'*'g)/‘/ f

1s the exact physical golution with the finite energy denasity
£ ~ (254 + 8)? + docording to the usual way of quantizationm
there are no local dynamio variahbles in this model, as thera

are no tranaverse degrees of freedom. However, we ses that the
nontrivial dynamics exists which 1s described by variable 4/ ,
canonioal -conjugate to fhe operator of a constant electrio fleld
F#aCoctra) s Donvanishing at infinity &¢7)

And such a dynamics corresponds to the exoitatiom of the
systemn as & whols, i.e,, 1t 1a global, (The stationary state of
QE’Q(,,,) is equivalent to the ground state of the superfluid,
moving along the olosed ring /! Ve

Thus, to construct the unitary (physical) represeatation
of the homotopy group 1t is sufficient tg ¢onsider the characte—
ristic olass V/A] (3) as a globel dyramical variatle, and
to go out of the smooth~funotion tlass),

Let us prove that Jang-Milla theory allows the existence
of the glodal dynamio vartatle Y, bound with the characte—
ristic olass V[AT] by the relation

Vo= fae (- A7) a»



The baslc quantities are the funotionals of action (1) and
charscteristic class (3) in Minkowsky space. We shsll not
restrict ourselves to the smooth=function clasdg. To geparate the
dynamical varlables in gauge theory one needs to solve an
equation of constraint. In the Abelian gauge theory this is the
olasslcal equation for the soalar potentials - 714/

Sy[A-]/SA-C = O (14)

which is on a distingt status as the canonical momentum,
conjugate to A»o equals zero ( 14;_, 1s not an operator, but

¢ —number in contrast to the spatial oomponent Ai ). We
shall consider eq. (14) as en equation constraint in non-Abelian
theory also, with two comments: eq. (14) 1s defined beyoud the
points of singularities, and the action itself allows axrbitra~
riness: in view of eq. (4) the functlional (3) may be added

to the aotlon and the constraint (14) does mot change.

A solution of the classical equation for e

p - ) ace . 4c¢ ke £ (1.4')
VA =VZak [ V=50 rg¢ A
i1s given as & 3sum of 8 solution of the homogeneous equation
z .
vig =0 | - (5)
and a solution of the nonhologeneous one

Qe

. gy 7. : ‘
A2 C)P A

where y is the global dynamiog:.l. .lvarig‘ble, oomnon for
the whole space, The factor C',g its defined by substituting
eq. (16) into eq. (3) from the condition (13) .« Operator
in (16) should be defired inm the class of functions where
substitution of (16} into (1), (3) glves the ‘action

B ' S = Jaeld :

\ ‘ Fd 2] AR -2 _ E , -4

L= ffan(ES - B) 2G0T Y EG
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Fields 5/. ['_ ) ng satisfy the transversality sondition

VB =L = (me)=0 ' (ao)

beyond the points of singularities, Owlng to eg. (20) the
funotionals (19) are the characteristic classes. They are nongero
only for singular fields 5’, E, P9®. Thus, the oondition for
existence of the global variable is the singular fields, Let us
represent gauge fields 74: 4% a sum of a singular field ’éi
(nonvanishing at inﬂmtj or nendifferentiable at some points of
space K (3) ) and regular field & ( smooth and vanishing
at singularities) which desoribes the loocal dynamioal variables
(quas:l.particles) ’

74“5 = é +a. (20)

In this case coeffiocients Cga, Cg ) Cr in eq. (17) depend on
the “condensate™® f only. Lieoal and global variables in eq.(17)
are separated completely. . Ths wave funotion of the 00TTEsw
ponding quantwe system 1s factorigzed: <= 4%(94’ {v) 4(1/;.,_/.{_?) .

The plane wave 41’3(05 (V)=er¥ is a stationary state of
the system, becauss the Lagrangian (17) depends on the “velocity®
1% only. The speotrum of momwenta 1s defined by the condition

-~

ot (vr1)= e ® Y00 (p) |
P = 23’1’ * & . (22)

For the statlonary state the numbsr VY 18 fusry, and olassical
fleld with fixed ¥V has no physical meaning. Recall that the
baslo task of quantization of a strong-irterascting system 1s tg
find the energy spectrum of weak exoltations, or, in other woris,
to find stationary states.To solvae this task,it 1s necessary first



to pass to the statlonary state of the global varlable L)
(as 1s made 1in the microscopic theory of superfluidity).

3. Local Dynamics

¥e have defined the global dypamics as a common variable
for the whole space and have found that the condition of its
existence 1s the singular condensate.

Let us prove analogously the existence of the local dynamic
variable, defining 1ts properties following quantum field theory
/17 and Bogolubov work 6 ; and then construct explicitly the
condensate and local variables x) .

Define the local variables @, as the weak stable excita—
tions with finite energy, momentum and other observables. This
means that the fields @,  are defined in the olass of smooth
functions, vanishing at singularities of the condensate.

Let us prove that a singular condensate allows the
exlstence of wesk local excltatlons with finite energy.

To be convinced of that, 1t is sufficlent  to express the
action (17) in terms of the gonserving global momentum (22)3

= Jae l(p.g)
, , ‘ 2
[(&.9‘)=j/fdi E(‘a,;)z ~ /f,f;(l?sz)z.—%jﬁ?@z]_
. : SUNPIRINT
- 3;/{/ﬂa§ [?(@?ﬁj{)‘z __nyz /J;{ K{t7£)é%;ji;%ﬂ¢7¢92;7

~/92:=(§%;@)?C23n4 + 65)2.

(23}

I+ is easy to show that for‘/02=-7 and the potential condenmsate

E(¢) ~ BE) ~ V(8 & (24)

P .
x) Such a proof of the exlstence appareantly has first been
applied by D.Hilbert in the Invariant Theory 15/.°



the expansion of the action 1in Tields O, starts from the
second order in (-

; y; e
S 18)=S16) + S 7€) 8 +50 1) 0% = L5 18)ai
.
(as the condensate (24) satisfies classical equations beyond
singularities and at the points of singularities 8-funeticens 1in
the secend term ,Jvﬂfgjﬂg are multiplied by zeros of
fields @, ),

By our definition of fields a0 » the theory with aection
{25} will be stable and will have finite observables. The choelce
of eqs. (24) 1s consistent with the Tequirement of stationarity
and transversality condition outside singularities (20). (In
accordance with the Landau Theory of superfluidity /5/, potentia~
1ity of condenszate 1s g nacessary condition for the "superfluid
component "),

The condition _P= f + generally :speaking, is optional
because the action (see p.7) allows arbitrariness up to the
characteristical olass.

The soheme of separating the dynamical variables described
above permits the introduetion of interaction with apinor fields
/253,14/ + Let us represent the fipgl result in the form of the
Lagrangian density

e 2 - el A~ Kol
L(a g )= (EL(ard) - E5E)°) + Ty fom £
«é = (¢/ {i) = d-on :9:'—0

where fields 75? satisfy eq. (24).

Since as a final step we should restore the group of motion
of Minkowsky spaoce, we conslder here the partioular oase, eq. (24),
of the stationary solutions of duality equations in Minkowaky
space

s -8 can

A general solutiom to (27 may be written like the ®Bost general
solutions, obtained up to now in Buclidean space (aee, for example,
/

)

10



gua=.1{z(+:a 9»’4/’ (23)

o
where e
e e palp % 57 (29)
Z_'a— "‘\‘g‘a "-Z"d' =¢ /2;«,) Z‘%
and the function f satisfies the equation
p 30
A p=0.
)2
e
The oondensate 1s statlonsry, S~ E X) y then

due to the spherlcal symmetry (for the condensate at rest there
1s no preferable dirsction ) it is natural to classify
by the spherical funotiona

pet) = e CEB wse) jel)e

X = (é I FiaB 2 Buf Fin e-.gf,f.g)'

(31)

) .
whore /[’?e 5 )’( (2) are Legendre polynomials and Bessel
functions.

In Appendix A the speotra of quasiparticles for the conden—
sate (31) with 4_4- ¢ are caloulated and 1t 1s shown that the
complex statiomary solution (31) does not lead to physical Aiffi-
culties with the Hermitean character of Hamiltonlan. The spectrum
of operator [ Z({)]z i positive definite and the eigenvalue
[LVJJZ—': F) does not belong to the physical spectrum. (The
correaponding solution is not normaligzed). Thus, the condensate
(31) 1s energetically favourable and Tepresents bags =/ for
coloured guasiparticles with the confinement parameter ko—! s
whlch appears llke the dimensional photon momentum in the
conformal invarlant

*) One of the first hadron models of the bag type has been
oonsidered in ref, 718/ .



4, The Restoration of Translation and Relativistic
' Invarisnce

The new perturbation theory in coupling constant 5
coincldes with expansion in E « In such cases one usually
restores the initial translation and relativistic invariance
by zero-modes of physical fields 3 » which are obtalned Dby the
action of gemerators of a restoring group on classlcal field é’
(It 1s just the way used for the expansion around the instan—
tons and in soliton theory /16/‘). However, in our
case, zero-modes do not belong to the physical spectrum and the
Lorentz—group is not covariance group of eq. (27). (We destroy
the usual Lorentz~invarlance, when we introduce the global
dynamics). Condensate (31) transformed under the Lorentz—group
does not belong to classical solutlions and the corresponding
perturbation theory becomes unstable.

The covariance group of eg. (27) ( 1.e., group of trans-
formations, by which egq. (27) becomes covariant /;_,-—-; ﬁ: )
1a the group, in which the usual Lorentz generators 4/,.; are
replaced by the generators,

L/'w = '/b, +Z/:”Q 7 (32)

{where 7— “ are generators of the colour group). These
generators with the Lorentz transformation make a rotation in
the colour space by a gonstant.

The corresponding stationary solutlon (31} (bag at _1_-331:)
transforms into a bag, _n;oving with arbitrary velooity
from arbitrary point X  of space K(3) . The dynamics of
suoh a motion will be desecribed in analogy with the two-com-

ponent theoxry of superfluidity /5/.
Equations (26), (30) allow us to formulate the "relati-

vistic" invariant two—compenent theory with the Lagrangian
density

I:f(a)éﬂ’f&,?‘%ﬁ/y) = AAC% oy

12



where L is defined by eq. (26), and A(%x) 1is the Lagrange
factor. Lagrangian (33) desoribes the condensate, the equation

of motion of which does not depend on the presence of gquasipartlo-
les (analogously, in statphysics the weak quasipartiole
excitations practically do not influence the condensate
dynamios ).,

For the dynamical system (33), . in a usual way one may
construct the encrgy-momentum and angle-momentum tensors. The
last 13 Lorentz-invariant for colourless states.

The asymptotic states of hadron-bags are described by the
Lagrauglan without the quasiparticle interaction ( §=0), In
that cese we have four—dimensional nonlinear and exactly solvable
model, Consider for illustration the case ¢of the splnor particies

L= cPY Y +J 2% hp QA T, FEEY

Define the complex—conjugated variable
_oxX _ _— X =y - oL
‘W:"'a,\‘ =P HFIp | Ty T T ¥l [ T ?E{,: "\
Let us accomplish the canonical guantization of this asystem
and define the physlcal state of the condensate as a coherent
state of the field /.7

/o>.0hy) = exp {‘.J"'{z" ‘)?Jo‘;éﬂ-?/o)‘?ad ’

where ;.. 1s one of the classical solutlons of eq. (26)
and "02&' ” is the Fock vacuum

4 “
<o’7.,\,-p, 'j;f,‘yf/0>p“£_:0.
'l‘ho energy speotrum for the condénsate at rest is calculated in
Appendlx A.
Using the conservation laws, it is easy to show that the
physical observables, averages of the Hamiltonlan, momentum, and
angular momentum

H= j“”f(_ Y.V (6)¥ “f‘JOJs 1-’:7/:?,\) _raf-” 7 o0
F:' ’_.Ia"‘x(c 9,%9‘,,‘& e ‘709‘.%0 ",./\9‘/) 4_‘/, 9a4)=ﬁf,§7'm'

Mo [gl [T x T Bl F T T YTV
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for %empty" bags (without quasiparticles) are equal to zero.
For a moving bag with quasiparticles in the considered case the
relativistic relations are fulfilled between the energy and
momentum

w M — v M
CED == PO = Wer=a

M= {'l'_:)‘/:o = < } 4{(' /H(/) )/;H) )7”))/"4}.1/:"(:

Phys(vze)

= < 3‘-:' o ?{:_)/H(ﬁfdﬂ'(w:‘:),”.) j ?(.*j' o ?(‘) JL:.',({ N

Tk

where ?@t 7™ are the operator of “death® and "birth" of
quasiparticles, Thus, the spectrum obtained in Appendix A is
the spectrum of hadron masses

One mey consider alse classical solutions of the condensa—
te, desoribing A/ bags, moving with arbitrary velocities
from arbltrary points of space

A, = /v(k b o VKD
L‘-'4

Due to the quasiparticle "confinement™ yasymptotical states for
an NV -bag solution_/ﬁﬂ, are completely factorized. Hadrons
cen interact only by a quasiparticle at the moment of the bag
intersection. At the decay of hadron, when all quarks are
transformed to leptons, the "empty™ bag disappears in the
physical vacuum which is the continuum of tempty bags".

]

Conclusion

The basic distinction of the approach, developed here,
from analogous approaches with the gluon condensation is the
introduction of the global dynamic variable. The global dyna--
mics 1s the essence of the superfluldity vhenomenon, and in
non—-Abelian theory the introduction of the global variable is
at least one of the way of the comstruotion of stationary



quantum states as a unitary representation of the homotopy
group. We have shown that the singular condensate, satisfying
the dusllty equation in Minkowsky space allows simultaneously
the existence both of globel and local dynamlo variables.

The classification of the solutions of duality equation
ngturally leads to hedron hags and to two-component relatlvistic
theory, ln whioch "“empty" bags are not observable.

Experience of studiss of Yang-Millz theory in Euclldean
space has shown that, vrobably, the most adequate mathematical
apparatus for the new perturbation theory 1s the twistor formalism.

The author l1s grateful to N.K.Bogolubov, A.M.Baldin,
A.ViEfremov and D.V.Shirkov for useful discussions.

. Appendix A
Let us caloulate gquasipartiole spectrs for the
condensate
kol Pinth, ) L k-
L= € — , fe=d

“ w g% ’ (r}" 1)
b= (974) = F 2000 2% 0.
Consider, first, the equatlon for a ascalar coloured field
2 Q’b ‘_ .
(R)) "2 =
4

Substituting CZ in the form

< n"z Ll (o Ly, o ;ﬂ néxf

t’
we obtain the eque.tion tor e

(=%" = FC5u%;) //a,,)])mo LU,

The normalieced solutlons and spectrum have the form:
; L L. Ay
= (4m2) %[ Gy L0042 "’] . ‘{f}’ + )]
' r
EP:(/'F‘Z); “J"”%K/G sdey 5 (=042,



. 7 ey R,
The operator [< 137(0] 1ls defined 1n the class of noxmalized
funotions for which [c Z(g)]‘z >0,
The spinor equation

| . %),
YR¥ =0, ey )/
may be solved by the Grossmann substitution /1%

('*) Z (?H—J " & LF{-,- ;;.. %(‘-)e"f(’t)

(4_0)
(-v-)
(-FMHQ /d;:“?uﬂ"))
- (/)

z/’ew ({"h?) (_J,W {{,) 3e/V?

(j -8 Fin@ra)e

Leo -Jfk?

L(’f” - @+ i__'ol *_.’_L)_*r #rd)r

Sy

=W+ %) lzo,4,2, .

. ——— e
Ne 1s defined from the condition J o LR K L

N s 2 [2 -

0ry 1in a more oompa.ot form'

oy *&)T{F; by + 5 P2 *("))
S _ o/(*) oo - K= (1,72)

/

,{ .
@iy 4 .



For gluons we have the solution

Q Z a,{of‘*fér)zf"g

il »5 e

”1,“2 are constant spinors, E,= Q*’?) .
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