

сообщения

OбъРДИНЕННОГО

ИНститута
ЯдерНых
исследований
дубна
$890 / 2-81$
$23 / 11-81$
E2-80-740
V.N.Pervushin

NON-ABELIAN FIELDS AS GLUON BAGS

1. Introduction

To solve the problem of confinement in QCD it is neoessary to find a aimple physical analogy, adequate to the confinement meohanism. Recently there have appeared some analogies claiming such an adequacy.

The most popular one is the analogy of non-Abelian fields with ferromagnetic: the QCD ooupling oonstant, depending on distances, plays the role of temperature, and the problem is just to find the phase transition potnt and to describe dynamioally this transition from short to long distances $/ 1 /$.

In my works $/ 2,3$ a different analogy of the non-Abelian theory with theories of superfluidity $/ 4,5,6 /$ is dereloped. It is assumed that due to the infrared divergence the interaction at long distances plays so essential role that one may speak only about the quantwe states and spectrum of the whole interacting systen and it is inpossible to consider the states of free gluons and quasiss. Just that 1dea of colleotive dynamics is leading in theories of superfluidity.

The physical methods of "remoring infrared catastrophe" consist briefly in the following. The two types of the oollective excitations are distinguished in the superfluid liquid:
$18 t$ - weak quasiparticle excitations (looal dymanics); the mathematiogl apparatus of desoribing the quasipartioles praotically ooincides with thet of the usual quantum field theory /7/ with tis quantiagtion principles (ifniteness of the observables, stability of the physioal states, Eermitean oharacm ter of Haniltonian, etc.).

2nd - exoltations of the whole systom (global dynamics); in the superfiuid liquid this is the coorainates of center of
inertia or angle of turning for a rotating liquid as a anique object. Just the "global" movement as a Fhole is the essence of the superfluid phenomenon. As a rule, the global dynamios has a physical meaning in the presence of a singular condensate (1.e.s onnumber field, defined on the olass of functions nonranishing at spatial infinity in $R(3)$ or nondifferentiable at some points of $R(3)$.

Theory, whioh simultaneousiy describes the Bose-condensate with the global dymamics (superfluid component) and the quasipertioles (normal component) is called the twomomponent theory.

Thus, we have the following logical scheme:

At first sight such a scheme is contradictory because the existence of the condensate and the giobal dynamics (i.e., the simultaneous movement of all the field system as a whole) contradicts the relativistic invariance principle.

I shall show that the relativistio invariance may be reproduced within the soheme just following the ideas of the theory of superfluidity. The problem raised here is as follows: to reconstruct the relativistic-invariant two-component theory of non-Abelian fields without infrared oatastrophe. Mathematically such a reconstruotion is formulated as a realization of a unitary (physical) representation of the topological nontrivial gauge group. The reconstruotion is oarried out in three steps :

1) The proof of existence of the global dynamics.
2) The proof of existence of the local dynamics.
3) The restoration of the relativistic invarianoe.
2. Global Dynamics and Characteristic Classes

The existence of the global characteristics of non-Abelian fields has bean pointed out for classical solutions of Yang-milis

$$
\begin{align*}
& \quad S=\frac{1}{2 g^{2}}\left(d_{x}^{4} t_{r}\left(F_{\mu v} F^{\mu \nu}\right) ; F_{\mu v}=\frac{\left.F_{\mu \nu}^{a}\right)_{i}^{a}}{2 i} g\right. \\
& F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g^{a b c} A_{\mu}^{a} A_{v}^{a} \tag{I}
\end{align*}
$$

It can be shown /8/, that vacuous Xang-milis solutions, minimizing the functional (1), satisfy the duality equation

$$
\begin{equation*}
F_{\mu v}=F_{\mu v} ; F_{\mu v}=\frac{1}{2} \varepsilon_{\mu v \alpha \beta} \quad \rightarrow \alpha \beta \tag{2}
\end{equation*}
$$

and are characterised by an integer Pontryagin index x)

$$
\begin{equation*}
\nu[A]=-\frac{1}{16 x^{2}} \int d_{x}^{4} \operatorname{tr}\left(F_{4 v} F^{\mu v}\right) \tag{3}
\end{equation*}
$$

The functional of a kind of (3) are called characteristic classes in topology $/ 9 /$. Whey have the renaricable property

$$
\begin{equation*}
\delta V[A] / \delta A=0 \tag{4}
\end{equation*}
$$

and reflect the global feature of non-Abelian fields as a whole.
The vacuum solutions (ingtantons) are supposed $/ 10,11 /$ to give a basic contribution to the Faddeev-Popor functional integrail, like classical trajectories of tunnelling in quantum mechanics of periodic potentials.

The Hamilton formalism in gauge $A_{0}=0^{/ 12 /}$ gives the most clear statement of the problem of quantization of such a theory with nontrivial topology.

In this gauge fields A_{i} are defined up to the gauge stationary transformation, and the functional (3) is of the for ie of difference of two functional.
$x)_{\text {For finite }} \operatorname{sction}(1)$ in $R(4)$ non-Abelian fields are gage on the boundary $g(4): A_{\mu}=V^{-1}(x) \partial_{\mu} V(x)$. Integer V is a degree of mapping of $s(4)$ to $\mathrm{Su}(2)$ given by $\hat{V}(x)$.

$$
V_{t_{1} t_{2}}=\int_{t_{1}}^{t_{2}} d t \int d_{x}^{3}\left(-\frac{1}{16 x^{2}} \operatorname{tr} F_{\mu \nu}^{*} F^{\mu \nu}\right)=\int_{t_{1}}^{t_{1}} d t \dot{N}_{t}=N_{t_{1}}\left[A_{i}\right]-N_{t_{2}}[A](5)
$$

$$
N_{t}\left[A_{i}\right]=\frac{1}{8 \pi^{2}} \int d_{x}^{3} \varepsilon_{i j k}\left(\frac{1}{2} \partial_{i} A_{j}^{a} A_{k}^{a}+\frac{g}{6} \varepsilon^{a b_{c}} A_{i}^{a} A_{j}^{b} A_{k}^{c}\right)
$$

Which are transformed under the gauge groups as

$$
\begin{align*}
& \left.N_{t}[v(x))^{-1}\left(A_{i}+\partial_{i}\right) v(x)\right]=N_{t}\left[A_{i}\right]+n(v) \tag{6}\\
& n(v)=-\frac{1}{12 x^{-2}} \int d^{3} x \varepsilon_{i j k} \operatorname{tr}\left[\left(v^{-1} \partial_{i} v\right)\left(v^{-1} \partial_{j} v\right)\left(v^{-1} \partial_{k} v\right)\right] .
\end{align*}
$$

As we have shown above, the definition of the smooth function class plays the basic role for the topological properties. Because of the finiteness of observables (energy, momentum, etc.) we should choose smooth A_{i} and therefore $V(\vec{H})$, in particular

$$
\begin{equation*}
\lim _{|\vec{x}| \rightarrow \infty} v(\vec{x})=I . \tag{7}
\end{equation*}
$$

For matrix $\vartheta(\vec{x})$ (7) number $n(v)$ (6) is integer and means the degree of smooth mapping of $R(3)$ to $\operatorname{sU}(2)$ given by matrix $V(\vec{x})$. ($n(v)$ indicates how frequently the space $r(3)$ has turned about $\operatorname{SU}(2)$). Thus the gauge group is topologically disconnected and, besides continuous, has discrete transformations. The Total gauge group is a product of a "small" continuous group $G_{0}(n=0)$ by infinite cyclic group of all integers Z (The factor group G / G_{0} is called the homotopy group $\left.T_{3}(S U(2))=Z\right)$.

The functional N (6) is a classical realization of the group Z representation.

While solving the Schrödinger equation

$$
\begin{align*}
\hat{H} \psi_{\varepsilon}[A]= & \varepsilon \psi_{\varepsilon}[A] ; \quad \hat{H}=\frac{1}{2} \int d^{3} \dot{x}\left[\hat{F}^{2}+B^{2}\right] \\
& E_{i}^{a}=i \delta / \delta A_{i}^{a} ; B_{i}^{a}=\frac{1}{2} \varepsilon_{i j k} F_{j k}^{a} \tag{8}
\end{align*}
$$

besides the Gauss condition of invariance under group G_{0}

$$
\begin{equation*}
\nabla_{i}(A) \hat{E}_{i} \psi_{\varepsilon}[A]=0 \quad ; \quad \nabla_{i}(A)^{a c}=\delta^{a c} \partial_{i}+g \varepsilon^{a b_{i}} A_{i}^{b} \tag{9}
\end{equation*}
$$

it is necessary to impose the condition of covariance of "wave function" ψ_{ε} under the transformations of group Z

$$
\begin{equation*}
T \psi_{\varepsilon}=e^{i \theta} \psi_{\varepsilon} \quad ; \quad T \in Z \tag{10}
\end{equation*}
$$

where θ is the quasimomentum $0 \leqslant \theta \leqslant \pi$. Equation (10) is an analogy of the "periodic condition" of the wave function in the above-mentioned quantum mechanics of the periodic potentials, in which for the representation of the operator ' T ' one usually uses the classical variable N (6), changing by an integer

$$
\begin{equation*}
T=\exp \left(\frac{d}{d N}\right) \tag{11}
\end{equation*}
$$

But the representation of ' T ' in form (11) is contradictory for the Yang-Millis theory: operator T does not commute with the Hamiltonian

$$
[T, H] \neq 0,[[T, H], H] \neq 0 \text {, etc. }
$$

The operators T, H have no common eigenstates besides the "vacuum state" with zeromene ry ($\varepsilon=0$).

$$
\begin{aligned}
& \text { state" with zeromene rgy } \left.(\varepsilon=0) \text { (as } H \psi_{0}=0\right) \\
& \psi_{0}[T, H] \psi_{0}=0
\end{aligned}
$$

Such a state is easily constructed, if we substitute the solum ion of eds. (10), (9) in the form of a "plane wave"

$$
\psi_{0}=\exp \{i(2 \times k+\theta) N\} \quad(k-\text { integer })
$$

to the Schrodinger eq.(8). As a result we obtain the equation for the momentum

$$
(2 x k+\theta)= \pm i\left(\frac{8 \pi^{2}}{g^{2}}\right) .
$$

As the momentum is imaginary, the solution ψ_{o} is a nonphysical (nonunitary) representation of group Z. Wave function ψ_{0} obeys simultaneously the Euclidean duality equation in the opera tor form $\hat{E} \psi_{0}= \pm B \%$ and, probably, reflects the nonphysical meaning of the classical instantons.

These facts and experience of quantum mechanics give doubts
about the existence of the exact physical solutions of the get of eqs. (8)-(11). Then, the question arises: How does one construct the unitary (physical) representations of group Z ?

> To answer this question, one considers the exactly solvable model $Q E D(1+1)$, which is topologioaliy equivalent to Yang -wills theory

$$
S^{\prime}=\frac{1}{2} \int d F_{01}^{2} F_{01}^{2} ; \quad F_{01}=\frac{1}{2 \pi} \int d x F_{01} A_{1}-\partial_{1} A_{0}
$$

(Me hare here the map of $R(i)$ into $U(i): T_{T}(U(J))=7$). For gauge $\mathcal{A}_{0}=0$ the analogies of eqs. (8) -(II) are

$$
\begin{array}{ll}
\hat{H} H=\varepsilon \psi & ; H=\frac{1}{2} \int d x_{1} \hat{E}_{1}^{2} ; E_{2}=i \delta / \delta_{1} \\
\partial_{1} \hat{E}_{1} \psi=0 & ;
\end{array}
$$

$T \psi=e^{i \theta} 4 ; \quad ; T=e^{\frac{d}{d N}} ; N_{i}=\frac{1}{2 \pi} \int d_{x}, A_{1} ; \nu_{i_{2}}=N_{t_{i}}-N_{t_{2}}$.

$$
74=e^{i v} ; \quad 1=e^{d N} ; N_{i}=\frac{1}{2 \pi} \int d_{x_{1}} A_{1} ; \nu_{\zeta t_{2}}=N_{t_{1}}-N_{t_{2}}
$$

In that case the plane ware" $\psi=\exp \{i(2 n k+\theta) N$, is the exact physical solution with the finite energy density $E / V_{1} \sim(2 x k+\theta)^{2} \quad$ According to the usual way of quantization there are no local dynamic variables in this model, as there are no transverse degrees of freedom. However, we see that the nontrivial dynamics exists which is described by variable \mathcal{N},
canonical conjugate to the oanonioal conjugate to the operator of a constant electric field $\hat{E} \psi \sim(2 \pi k+\theta) 4$ $E / V_{1} \sim(2 x k+\theta)^{2} \quad(2)$ $E \Psi \sim(2 \pi k+\theta) 4$, nonvanishing at infinity $R(y)$.

And such a dynamics corresponds to the excitation of the sjgter as a whole, ice., it is global. (The stationary state of $Q E D_{(2+1)}$ is equivalent to the ground state of the superfluid, moving along the closed ring $/ 6 /$).

Thus, to construct the unitary (physical) representation of the homotopy group it is sufficient to consider the oharaoteristic class $V[A]$ (3) as a global dynamical variable, and to go out of the smoothefunotion class).

Let us prove that Fang -Mills theory allows the existence of the global dynamic variable \dot{y}, bound with the characterristio oles $V[A]$ by the relation

$$
\begin{equation*}
\nu=\int d x(\dot{\nu}+M[A]) \tag{13}
\end{equation*}
$$

The basic quantities are the functional of action (1) and characteristic class (3) in Minkowsky space. We shall not restrict ourselves to the smooth-function class. To separate the dynamical variables in gauge theory one needs to solve an equation of constraint. In the Abelian gauge theory this is the classical equation for the scalar potentials $A_{0} / 14 /$

$$
\begin{equation*}
S S[A] / \delta A_{c}=0 \tag{14}
\end{equation*}
$$

which is on a distinct status as the canonical momentum, conjugate to A_{0} equals zero (A_{0} is not an operator, but c-number in contrast to the spatial component \mathcal{A}_{i}). We shall consider eq. (14) as an equation constraint in non-Abelian theory also, with two comments: eq. (14) is defined beyond the points of singularities, and the action itself allows arbitrariness: in view of eq. (4) the functional (3) may be added to the action and the constraint (14) does not change.

A solution of the classical equation for A_{c}
is given as a sum of a solution of the homogeneous equation

$$
\begin{equation*}
\nabla_{i}^{2} \phi=0 \tag{15}
\end{equation*}
$$

and a solution of the nonhomogeneous one

$$
\begin{equation*}
A_{0}=\dot{\nu}(t)\left(C_{13}^{-1}\right) \phi+\frac{1}{\nabla_{i}^{2}} \nabla_{j} \partial_{0} A_{j}, \tag{16}
\end{equation*}
$$

where $\underset{\sim}{\dot{V}}$ is the global dynamical variable, common for the whole space. The factor C_{B} is defined by substituting eq. (16) into eq. (3) Prom the condition (13). Operator in (16) should be defined in the class of functions where substitution of (16) into (1), (3) gives the action

$$
\begin{equation*}
L=\frac{1}{2} \int d^{s} x\left(E_{T}^{2}-B^{2}\right)+\frac{1}{2} \dot{\nu}^{2} C_{\phi} C_{B}^{-2}-\dot{\nu} C_{E} C_{B}^{-1} \tag{17}
\end{equation*}
$$

$$
\begin{align*}
& E_{T_{i}}^{a}=\left(\delta_{i j}-\nabla_{i} \frac{1}{\nabla_{k}^{2}} \nabla_{j}\right)^{a b} \partial_{a} A_{j}^{b} ; B_{i}^{a}=\frac{1}{2} \varepsilon_{i j k} F_{j^{k}}^{a}, \tag{18}\\
& C_{B}=\frac{g^{2}}{\delta x^{2}} \int d^{3} \times B_{i}^{a}\left(\nabla_{i} \phi\right)^{a} ; C_{E}=\int d^{3}\left(E_{i}\right)_{i}^{a}(\nabla \phi)^{a} ; C_{\phi}=\int d^{3} \times(\nabla \phi)^{2} . \tag{19}
\end{align*}
$$

fields $\beta, E, \nabla \varnothing$ satisfy the transversality condition

$$
\begin{equation*}
\nabla_{i} B_{i}=\nabla_{i} E_{i}=\nabla_{i}\left(\nabla_{i} \phi\right)=0 \tag{20}
\end{equation*}
$$

beyond the points of singularities. owing to eq. (20) the funotionals (19) are the characteristic classes. They are nonzero only for singular fields $B, E_{r}, \nabla \phi$. Thus, the condition for existence of the global variable 13 the singular fields. Let us represent gauge fields A_{i} as a sum of a singular field b_{i} (nonvanishing at infinity or nondifferentiable at some points of space $R(3)$) and regular field a_{i} (smooth and vanishing at singularities) which describes the local dynamical variables (quastpartioles)

$$
\begin{equation*}
A_{i}={\underset{i}{i}}^{b_{i}}+{\underset{\sim}{a}}_{i} \tag{II}
\end{equation*}
$$

In this case coefficients $C_{\varphi_{,}} C_{B}, C_{F}$ in eq. (17) depend on the "condensate" $\underset{\sim}{b}$ only. Local and global variables in eq. (17) are separated completely. . The wave function of the cores. ponding quantum system 1 s factorized: $\psi=\psi \mathrm{g} l \mathrm{ob}(\nu) \psi \mathrm{V}_{\mathrm{oc}}(\mathrm{a})$. The plane wave ψ glob $(\nu)=e^{i \rho \nu} \quad$ is a stationary state of the system, because the Lagrangian (17) depends on the "Telicity" $\dot{\sim}$ only. The spectrum of momenta is defined by the condition

$$
\begin{array}{r}
\psi_{g} \operatorname{lc} b(\nu+1)=e^{i \theta} \psi g \operatorname{lob}(\nu) \\
p=2 \pi k+\theta \tag{22}
\end{array}
$$

For the stationary state the number \mathcal{D} is fuzzy, and classical field with fixed ν has no physical meaning. Recall that the basic task of quantization of a strong-interacting system is to find the energy spectrum of weak excitations, or, in other wort s, to find stationary states. To solve this task, it is necessary first
to pass to the stationary state of the global variable \mathcal{V} (as is made in the microscopic theory of superfiuldity).

3. Local Dynamics

We have defined the global dynamics as a common variable for the whole space and have found that the condition of its existence is the singular condensate.

Let us prove analogously the existence of the local dynamic variable, defining its properties following quantum field theory $/ 7 /$ and Bogolubov work $/ 6 /$; and then construct explicitly the condensate and local variables x).

Define the local variables $a_{\text {a }}$ as the weak stable excitetions with finite energy, momentum and other observables. This means that the fields a_{i} are defined in the oles of smooth functions, vanishing at singularities of the condensate.

Let us prove that a singular condensate allows the existence of weak local excitations with finite energy.

To be convinced of that, it is sufficient to express the action (17) in terms of the conserving global momentum (22):

$$
S=\int d t L(p, G)
$$

$$
\begin{gather*}
L(P, a)=\frac{1}{2}\left[\int q_{x}^{3} E(a+b)^{2}-(\sqrt{2} \times(D \phi)=)^{2} / \int \sigma_{x}^{3}(\nabla \phi)^{2}\right]- \\
-\frac{1}{2}\left[\int a^{3} \times B(a+b)^{2}-\rho^{2}\left(\int d^{3} x(D \phi) B\right)^{2} / \int q^{3} x(D \phi)^{2}\right] \tag{23}\\
\rho^{2}=\left(\frac{g^{2}}{8 \pi^{2}}\right)^{2}(2 \pi k+\theta)^{2}
\end{gather*}
$$

It is easy to show that for $\rho^{2}=1$ and the potential condensate

$$
\begin{equation*}
E(b) \sim B(b) \sim \nabla(b) \varnothing \tag{24}
\end{equation*}
$$

x) Such a proof of the existence apparently has first been applied by D. Hil bert in the Invariant Theory /15/.
the expansion of the action in fields $a_{\text {, starts from the }}$ second order in a.

$$
S(a+b)=S(b)+S^{\prime}(b) \cdot a+\frac{1}{2} S^{\prime \prime}(b) \cdot a^{2}+\cdots=\frac{1}{2} S^{\prime \prime}(b) a^{2}(25)
$$

(as the condensate (24) satisfies classical equations beyond singularities and at the points of singularities 8-functions in the second term $S^{\prime \prime}(b) \cdot a$ are multiplied by zeros of fields a_{i}).

By our definition of fields $Q_{\text {: }}$, the theory with action (25) will be stable and will have finite observables. The choice of eqs. (24) is consistent with the requirement of stationarity and transversality condition outside singularities (20). (In accordance with the Landau Theory of superfluidity $/ 5 /$, poteatialite of condensate is a necessary condition for the "superfluid component ${ }^{\text {n }}$.

The condition $\rho^{2}=1$, generally :spacing, is optional because the action (see p.7) allows arbitrariness up to the characteristical class.

The schema of separating the dynamical variables described above permits the introduction of interaction with spinor fields /2,3,14/ Lagrangian density Lagrangian density $(\underset{\sim}{a}, \underset{\sim}{b}, 4)=-\frac{1}{4}\left(F_{\mu \nu}^{a}(a+b)^{2}-F_{\mu}^{a}(b)^{2}\right)+i \psi \psi_{\mu}\left(\partial^{\mu}+a^{2}+b_{i} \psi_{k}\right.$
$b_{\mu}=\left(\phi, b_{i}\right)=g_{i} b_{\mu}^{a} \frac{c^{a}}{2_{i}}$, where fields $\xlongequal{\ell}$ satisfy eq. (24).

Since as a final step we should restore the group of motion of Minkowiky space, we consider here the particular oases, eq. (24), of the stationary solutions of duality equations in Minkowsky space

$$
\begin{equation*}
-\left(\nabla_{j}(b) \phi\right)^{a}=\therefore B_{j}^{a}(\underset{\sim}{b}) \tag{27}
\end{equation*}
$$

A general solution to (27) may be written like the most general solutions, obtained up to now in Euclidean space (see, for example, /16/)

$$
\begin{equation*}
b_{\mu}^{a}=\frac{1}{\dot{g}} \sum_{\mu \nu}^{(t) a} \partial^{\nu} h_{\mu} \rho \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{o j}^{(+) a}=i \delta_{j a} ; \sum_{i j}^{(+) a}=\varepsilon^{a_{i j}} ; \sum_{\mu \nu}^{(+)^{a}}=-\sum_{\nu / \mu}^{(+)^{a}} \tag{29}
\end{equation*}
$$

and the function ρ satisfies the equation

$$
\begin{equation*}
\partial^{2} \rho=0 \tag{30}
\end{equation*}
$$

The condensate is stationary, $\rho \sim e^{i k_{0} t} f(\vec{x})$, then due to the spherical symmetry (for the condensate at rest there is no preferable direction) it is natural to classify by the spherical functions

$$
\begin{align*}
\rho(x, t) & =e^{i k_{0} t} p_{\rho}^{m}(\cos \theta) j e(z) e^{i m \varphi} \tag{31}\\
\vec{x} & =(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, z \cos \theta),
\end{align*}
$$

where $P_{e}^{m}, j_{l}(z)$ are Legendre polynomials and Bessel functions.

In Appendix A the speotra of quasiparticles for the condensate (31) with $l=0$ are calculated and it is shown that the complex stationary solution (31) does not lead to physical difficulties with the Hermitian character of Hamiltonian. The spectrum of operator $\left[i \nabla_{j}(b)\right]^{2}$ is positive definite and the eigenvalue $\left[i \nabla_{j}\right]^{2}=0$ does not belong to the physical spectrum. (The corresponding solution is not normalized). Thus, the condensate (31) is energetically favourable and represents bags x) for coloured quasiparticles with the confinement parameter k_{0}^{-f}, which appears like the dimensional photon momentum in the conformal invariant
x) One of the first hadron models of the bag type has been considered in ref. /18/.
4. The Restoration of Translation and Relativistic

Invariance
The new perturbation theory in coupling constant g coincides with expansion in a. In such cases one usually restores the initial translation and relativistic invariance by zero-modes of physical fields a, which are obtained by the action of generators of a restoring group on classical field $\underset{\sim}{\ell}$ (It is just the way used for the expansion around the instantons /11/ and in soliton theory /16/). However, in our case, zeromodes do not belong to the physical spectrum and the Lorentz-group is not covariance group of eq. (27). (We destroy the usual Lorentz-invarlance, when we introduce the global dynamics). Condensate (31) transformed under the Lorentz-group does not belong to classical solutions and the corresponding perturbation theory becomes unstable.

The covariance group of eq. (27) (1.e.; group of transformations, bf which eq. (27) becomes covariant $F_{\mu_{v}}=i{ }_{\mu \nu}^{*}$) is the group, in which the usual Lorentz generators $L_{\mu v}$ are replaced by the generators.

$$
\begin{equation*}
L_{\mu \nu}^{\prime}=L_{\mu v}+\sum_{\mu \nu}^{(+) \phi} T^{a} \tag{32}
\end{equation*}
$$

(where T^{a} are generators of the colour group). These generators with the Lorentz transformation make a rotation in the colour space by a constant.

The corresponding stationary solution (31) (bag at rest) transforms into a bag, moving with arbitrary velocity \vec{V} from arbitrary point \vec{X} of space $R(3)$. The dynamics of such a motion will be described in analogy with the two-component theory of superfiuidity $/ 5 /$.

Equations (26), (30) allow us to formulate the "relatiFistic" invariant two -component theory with the Lagrangian density

Where \mathcal{Z} is defined by eq. (26), and $\lambda(x)$ is the Lagrange factor. Lagrangian (33) describes the condensate, the equation of motion of which does not depend on the presence of quasipartioles (analogousiy, in statphysics the weak quasipartiole excitations practioally do not influence the condensate dynamics).

For the dynamical system (33), in a usual way one may construct the energy-momentum and angle-momentum tensors. The last is Lorentz-invariant for colourless states.

The asymptotic states of hadron-bags are described by the Lagrangian without the quasiparticle interaction ($g=0$). In that case we have four-dimensional nonlinear and exactly solvable model. Consider for illustration the case of the spinor particles

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \dot{\psi}+J_{\mu} \partial^{\mu} \ln \rho+\partial_{\mu} \lambda \partial^{\mu} \rho ; J_{\nu}=i \dot{\psi}^{\mu} \Sigma_{\mu i}^{(r)} \psi
$$

Define the complex-conjugated variable
$J_{\lambda}=\frac{\partial z}{\partial \dot{\lambda}}=\dot{\rho}+J_{0} / \rho ; \quad \pi_{\psi}:=\frac{\partial \mathcal{L}}{\partial \dot{\psi}}=i \bar{\psi} \gamma_{0} ; \quad x_{\rho}=\frac{\partial z}{\partial \dot{\rho}}=\dot{\lambda}$.
Let us accomplish the canonical quantiaation of this system and define the physical state of the condensate as a coherent state of the ifeld ρ

$$
|0\rangle_{\text {phys }}=\exp \left\{i \int d^{3} x \hat{\pi} \rho_{c k o s s}\right\}|0\rangle_{\text {Fock }},
$$

where Plass is one of the classical solutions of eq. (26) and $|0\rangle_{\text {Fock }}$ is the Fook vacuun

$$
{ }_{F_{O c k}}\langle 0| \hat{\pi}_{\lambda} ; \hat{\pi}_{\rho} ; \hat{\pi}_{\psi} ; \hat{\lambda} ; \hat{\rho} ; \hat{\psi}|0\rangle_{\text {Fock }}=0 .
$$

The energy spectrum for the oondensate at rest is oalculated in Appendix A.

Using the conservation laws, it is easy to show that the physical observables, averages of the Hamiltomian, mowentum, and angular momentum

$$
\begin{aligned}
& H=\int d^{3} x\left(i \bar{\psi} \gamma_{i} \nabla_{i}(b) \psi+\dot{\rho}^{\prime}+\partial_{i} \rho \partial_{i} \lambda\right)=\int d^{3} x T^{\infty} \\
& P_{i}=\int d^{3} x\left(i \bar{\psi} \gamma_{0} \partial_{i} \psi+J_{0} \partial_{i} \ln \rho+\dot{\lambda} \partial_{i \rho}+\dot{\rho} \partial_{i} \lambda\right)=\int d_{x}^{3} T^{0 i} \\
& M^{\mu \nu}=\int d^{3} x\left\{x^{\nu} T^{0 \mu}-x^{\mu} T^{0 \nu}+\bar{\psi} \gamma^{0}\left[\frac{1}{4}\left[\gamma^{\nu}, \gamma^{\mu}\right]+\sum \nu\right] \psi\right\}
\end{aligned}
$$

for "empty" bags (without quasiparticles) are equal to zero. For a moving bag with quasiparticles in the considered case the relativistic relations are fulfilled between the energy and momentum

$$
\begin{aligned}
& \left.\langle E\rangle_{v}=\frac{M}{\sqrt{1-\vec{V}}}, \quad \vec{\rho}\right\rangle=\frac{\vec{V} M_{1}}{\sqrt{1-\dot{V}^{2}}}
\end{aligned}
$$

where $\}^{(-)}, \xi^{(+)}$are the operator of "death" and "birth" of quasiparticles. Thus, the spectrum obtained in Appendix A is the spectrum of hadron masses

One may consider also classical solutions of the condensete, describing N bags, moving with arbitrary velocities from arbitrary points of space

$$
P_{N}=\sum_{i=1}^{N} \rho\left(k_{0}, l_{i}, m_{i}, \vec{V}_{i}, \vec{X}_{i}\right)
$$

Due to the quasiparticle "confinement", asymptotical states for an N-bag solution P_{N} are completely factorized. Hadrons can interact only by a quasiparticle at the moment of the bag intersection. At the decay of hadron, when all quarks are transformed to leptons, the "empty" bag disappears in the physical vacuum which is the continuum of "empty bags".

Conclusion

The basic distinction of the approach, developed here, from analogous approaches with the gluon condensation is the introduction of the global dynamic variable. The global danamics is the essence of the superfluidity phenomenon, and in non-Abelian theory the introduction of the global variable is at least one of the way of the construction of stationary
quantum states as a unitary representation of the homotopy group. We have shown that the singular condensate, satisfying the duality equation in Minkowsky space allows simultaneously the existence both of global and local dynamic variables.

The classification of the solutions of duality equation naturally leads to hadron bags and to two -component relativistic theory, in which "empty" bags are not observable.

Experience of studies of Yang-mills theory in Euclidean space has shown that, probably, the most adequate mathematical apparatus for the new perturbation theory is the twister formalism.

The author is grateful to N. N. Bogolubor, AoK.Beldin, A. V. Bfremor and D. V. Shirker for useful discussions.

Appendix
Let us calculate quasipartiole spectra for the condensate

$$
\begin{aligned}
& \rho=e^{-i k_{0} t} \frac{\sin \left(k_{0} \tau\right)}{\tau} ; \quad k_{0}=1 \\
& b_{\mu}^{a}=\left(\phi, b_{i}^{a}\right)=\frac{1}{g} \sum_{\mu \nu}^{(+) a} \partial^{i} \ln \rho
\end{aligned}
$$

Consider, first, the equation for a scalar coloured field

$$
\left(\nabla_{\mu}(b)^{2}\right)^{a b} a^{b}=0
$$

substituting $a^{b}{ }^{1 n}$ the form

$$
a^{b}=n^{b} \sum_{e}^{u} \frac{\mu_{e}(t)}{e}\left(e^{+i F_{e} t_{1}^{(t)}}+e^{-i E_{e} t_{z}(-i)}\right) ; n \frac{b}{b} \frac{x^{e}}{z}
$$

we obtain the equation for l_{l}

The normalized solutions and spectrum have the form:

$$
\begin{aligned}
& U_{l}=(\sin \tau) \partial_{2}\left[\frac{1}{\sin \tau} \sin (l+2) r\right] \frac{1}{\pi} \sqrt{\frac{1}{(l+3)(l+1)}} \\
& E_{l}=(l+2) ; \quad 4 \pi \int_{0}^{\pi} d_{2} U_{l} U_{l} U_{2}=\delta_{l l_{2}} ; l=0, l, l, \ldots
\end{aligned}
$$

The operator $\left[i \nabla_{j}(\dot{\ell})\right]^{2}$ is defined in the class of normalized functions for which $\left[i \nabla_{j}(b)\right]^{2}>0$.

The epinor equation

$$
\gamma^{\mu} \nabla_{\mu}(b) 4=0 ;\left(4=\left(4 \psi_{R}\right)_{i}^{i}\right)
$$

may be solved by the Grossmann substitution /19/

$$
\begin{aligned}
& \psi_{l}^{(t)}=\sum_{l=0}^{\infty}\left(\xi_{l}^{(+)} \psi_{e}^{(t)} e^{i E_{e} t}+\xi_{e}^{(-)} \psi^{(-)} e^{-i F_{l} t}\right) \\
& \psi_{e}^{(+)}=\left(\frac{\sin z}{2}\right)^{1 / 2} \cdot\binom{u_{1}^{(\rho)}}{\frac{\sin x}{2} u_{2}^{(\rho)}} B_{2} N_{\rho}^{1 / 2} \\
& 4 e^{(-)}=\left(\frac{\sin 2}{2}\right)^{1 / 2}\binom{u_{2}^{(l)}}{\frac{\sin 2}{2} u l_{j}^{(\rho)}}{b_{2}} N_{e}^{1 / 2} \\
& U_{1}^{(l)}=\left(1-i \frac{\theta_{i} \partial_{i}}{l+2}\right) \frac{\sin (l+1) \tau}{\sin t} ; \\
& C l_{2}^{(\ell)}=\left(1+i \frac{\sigma_{i} \partial_{i}}{l+1}\right) \frac{\sin (l+2) \tau}{\sin \tau} ; \\
& E_{\ell}=(\ell+3 / 2) ; \ell=0,1,2, \ldots
\end{aligned}
$$

$N_{e} \quad$ is defined from the condition $\int d^{3} \times \bar{\psi}_{e}^{(+)} \gamma_{0} \psi_{e}^{(-)}=1$

$$
N_{e}^{-1}=4 \pi^{2}\left[2+\frac{1}{(l+2)(l+1)}\right]
$$

$$
\begin{aligned}
& \text { Or, in a more compact form: } \\
& 4 \sim \sum_{\ell=0} \rho(x)^{1 / 2}\binom{\partial^{(+)}\left(\left[\xi_{l}^{(-)} \rho((l+2) x)+\xi_{\rho}^{(+)} \rho^{*}((\rho+1) x)\right] / \rho(x)\right)}{\rho^{*}(x) \partial^{(-1)}\left(\left[\xi_{l}^{(-)} \rho((\ell+1) x)+\xi^{(+)} \rho^{*}((l+2) x)\right] / \rho^{*}(x)\right)} \sigma_{2} N_{\rho}^{1 / 2} \\
& \partial^{(\pm)}=\alpha_{\mu}^{(\pm)} \partial^{\mu} ; \quad \alpha_{\mu}^{(\pm)}=\left(1, \mp \sigma_{i}\right)
\end{aligned}
$$

For gluons we have the solution

$$
\begin{aligned}
& \text { For gluons we have the solution } \\
& \left.a_{\mu}^{c}=\sum_{l=0} \bar{u}_{1}\left\{\alpha_{\mu}^{(t)} \rho(x) \partial^{(-)} \sigma^{c} \frac{1}{\rho^{2}(x)} \partial^{(t)}\left[\zeta_{l}^{(-1)} \rho\left(\left(\rho_{+}+3\right) x\right)+\xi_{\rho}^{(+)} \rho^{*}\left(\rho_{+}\right) x\right)\right\}\right] u_{2}
\end{aligned}
$$

$\bar{u}_{1}, u_{2} \quad$ are constant spinors, $\quad E_{\rho}=(l+2)$.

References:

1. Mandelstam S. Phys.Report, 1976, 23C, N 3.
2. Pervushin V.N. Proc. V Int.Symp, on Nonlocal Quantum Field Theory, 1979, JINR, P2-12462, p. 227, Dubna, 1979.
3. Pervushin V.N. JINR P2-12225, 1979; JINR E2-12890, 1979. JINR E2-80-17, Dubna, 1980 . Первушин В. Н. ТМ Φ, $1980,45,34 \mathrm{I}$.
4. London P. Nature, 1938, 141, p.643; Phys.Rev. 1938, 54, p.947.
5. Лендау Л. Д. ХЭТФ, I94I, II, 592; ДАН СССР, 1948, 6I, 253.
6. Bogolubor N.N. Journ. of Phys., 1947, 2, p.23.
7. Боголобов Н.Н., Џирков Д.В. Введение в теорию квантованных полей, "Наука", М., I972.
8. Belavin A. et al. Phys.Iett. $1975,59 \mathrm{~B}, \mathrm{p} .85$.
9. Дуоровин Б.А., Новиков С.П., Фоменко А.Т.Современная геометрия "Наука.", Мь, I979.
10.Polyakov A.M. Phys.Lett., 1975, 59B , p.83.
10. Callan C.G., Jr., et al. Phys.Rev. 1978, D17, p. 2717.
12.Jack1w R. Rev.Mod.Phys.. 1977, 49, p. 681.
11. Дирак П., Принцины квантовои механихи, "Наука", М., I979.
12. ІІолубаринов П.В. ОПЯИ, Р-242I, Дубна, I965.
13. Weyl H. BuIl.Amer.Math.Soc. 1944, 50, p.61.2.
14. Jackiv R. Nohl C. Rebbi C., Particles and Fields, p.189, ed. D. H. Boal and A.N.Kamal N 4, 1978.
15. Protogenov A.P. Phys.Lett., 1972,65B, 62.
16. Боголрбов Н.Н., Струминскй Б.В., Тавхелидзе А.Н. ОИЯИ Д-I968, Дубна, I960.
17. Grobsman B. Phys.Rev. 61A, 86, 1977.
