


1. Introduetion

In our preceding paper/1/ a set of infinite-dimensionel
representations of the s8l(n+1,C) Lie algebras was presented.*)
The representations P:n*') from t?ie set, called maximal repre-
sentations, are given by means of Etlln-rl) boson crestion-amni-
hilation pairs af” ‘;I(” s k=1,2,..0on 3 1,321,2,...4k , which
obey the standard CCR and n complex pargsmeters A = (Ai’Az""
...A ) . Since the generators of the maximal representations are
expressed &s polynomials in the canonical pairs, matrix elements
of them may be easily calculated. Sufficient conditions for r irre-
ducibility of r were derived in Ref.t! . If they are satis-
fied, then n+ » is representation with the highest weight A .

In the present paper these results are illustrated and exten-
ded particularly for the simplest cases 81(2,C) ~ A1 and
81(3,C) ~ Az . We shall show that the mentioned irreducibility
conditions are in these cases necessary as well. Moreover, our
method allows us to construct other set of infinite-dimensional
representations of s81(3,C),the so-called mixed representations
(Sec.4). They are irraducible highest-weight representations in
some of the cases when the maximal &8 well &s the standard highsst-
-weight representations (the so-called elementary zeprosontationa/
or Verma modules 3 , ¢f. Sec.I.2.6) are reducible.

Let us recall briefly thet we use the follbwing Cartan~Weyl
basis in 8l(n+1,C) ¢ h = '1+1 j41 7%y "’1 i+1 i 0 r = °1 1417
together with e, , li-jl>1 s 1o)== 1,2,.0.,n , where °:|.J ful-
fil the standard commutation relations

[e5;00] = Jk;l.il 11%3

%) References to assertions and foraulae of this paper will be
hereafter marked by I .



(ef. (I.1),(I.2)). The operators E]’;” . a?”_ act on the vector

space V“+1 which is complex envelope of the set of basis vectors
denoted by the following symbols

]
Pp-1,1

ceees mn_."n_1

By 9

in the standard way, i.e., Eli‘” raises the component o4 by ane

and multiplies by ‘/mki'!»f , ete. (cf.(I.7)).
2. ¥axjipa epresentations of s1(2,C

2.1 The representation space V2 is sparned by the vectors Im”g;
it is more convenient to denote them, e.g., as Xy s D€ No £

2 (0,1 2....} . The maximal representation 95‘2 = P‘\ correspon-

. ding to a weight A @ A(h ) = A€ € 1B expressed through one

pair of creation-annihilation operators ?. 8 (cf. formulae
(I.7),(1.11)) :

2 . _,32,.2
Hy = 24;131 + A1I ,

B2, = -a2 (1)

2 _ w2,72.2
312 = 1(.1.1 - A1 ) »
where Eij = fA(eij) s H? E %(h‘) s Or more explicitly

Hx = (A -2m)x, , @=0,1,2,... ,

351"0‘0 , 3511 = -vB X g me1,2,00. (1a)

3121 J.IH‘ 1 (m - A1)x [ ﬂ=0'1,2,-.-

If A, is not a non-negative integer, then this representation
is irreducible with the highest weight A and the highest-weight
vector x5+ The irreducible highest-weight representations cor-
responding to A € lo are finite~dimensional ; according to Pro-
position 1.3.2 thoy cen be ob*nined ‘'by restriction of ’A to
the subspace Vz S &(U’L)x «t V,, UL .eing the universal enwe-
loping algebra of L = 81(2,C ‘me finds easily



=ef{x, ¢ meA § o A€ Ny 5 (2)

thus the irreducible representation 'fA = fAl‘ Vg is (A1 +1)-di=-
mensional. :

2.2 According to Theorem I.2.4 &8ll irreducible representations
of 81(2,C) with the seme highest weight A are mutually equi-
valent. E:.eclally, if A.If No + then @, has to be eguivalent to
the elementary representation dA given by the formulae (1.4) ¢

"

da(ndy, (A,-zm)ym ’

dplelyy = -m(m=1-ADy, ; {3)
ALy = Yoy

where yo§1 ’ ymEfm y m=1,2,... « Since h,.:h ) €5y =@ - and

e, ,=f form the appropriate Cartan-Weyl besis in s1(2,C) ,both
the representations sre indeed equivelent @
pa(a) = S,d () s, ,  8esl(2,6) (4a)
where
A
%y = (-0%@n>2 () y. . m=0,1,2,... (41)

Analogously, for Ale No the representation FA is equivalent
to DA which is the irreducible (A + 1)-dimensional component
of dj defined by the relations (3) together with DA(f)xA 0

(cf. Sec.III of Ref. 2) On the other hand, @, 4and d, are
inequivalent in this case, because 4, is & highest-weight rep*-e-
sentation while @, is not : X 1is the only eigenvector of H.I
‘snnihilated by E;, , but PA(UL)xo = V $ v, .

2.3 Remerks : (a) The lowest-weight representations are obtained
easily with the help of the sutomorphism 2 of &l(2,C) : T(h)=
= -h , Tie)=2L , T(L)=e . cxearly. it A 4 N (A,tlo) » then
the representation @t (9{:‘ ) is 1rreducib1e with -A and
X, as the lowest weight and the lowest-weight vector, respecti-
vely.

(b) One can obtain some other representations starting with
the same canonicsl realizations (I1.5) but using a different re-
presentation of the canonical pair. For example, representing



qf , Pf oy al , _;? instead of Ef R af (this choice corres~-

ponds to B =X/2 in (I.9)) we obtaein
. =22 .
?A’(h) = 2ajay + I\1 I ,
PA»(e)
. _ -2 2 . 2
Al = -(agay + Ay) 2y

<2
ay

where A : A'(h) = A; = A+2 It A, is not a non-positive
integer, then this representation is irreducible with A" as the
lowest weight. Furthermore, the representation P;»T has the
highest weight -A" ; it is easy to check that it is equivalent
to d-A' for any complex -A; {including non-negative integers).

3. Maximal representations of 81(3,C)

3.1 The representation space V3 is spanned by the vectors

m,, m .
21 22 (3)
m.€ N, . The maximel representations of
my, » By € Ny A
81(3,C) are expressed in terms of three pairs of creation-annihi-

lation operators ;? ,a? , 33 ,ag and Ef ,a? . We rewrite the

formulae (I.11) for n=2 8o that the gererators of the subal-
gebra sl(z,g) co?ggined in tgem afg)exhibited explicitly. The
operators Eij = PA (eii) R Hi -] PA (hi) are then of the form

3 =3 =33 2
Hy = ~-aja + aje; + H, ’

2 P2-zHy t A3
By, = usa) + E5y

B, =)

Bp= -8 )
B, = w83 ¢ By

B}y = 83(a7n] + 30a) - 3H3 - A, - 3 A <308,
B)y = 53a7a] ¢ 3303 ¢ 3B - Ay - g A 4 R)E,

2

2, nd n;"z are given by the relations (1).

whcrc,*ﬂf M



According to Theorem I.4.3 this representation is irreducible if
the conditions

ANy o AN, , 1+ A+ AEE (6)
are sstisfied ; it has the highest weight A = (A,.Az) and the
highest-welght vector xg = 8 0 .

3.2 Theorem : The conditions (6) are necessary and sufficient
for 9:3) to be irreducible.

Eroof ¢ In view of Theorem I.4.3 we h%ve to check the r.ecessary
condition only. Let us denote agein V, = ')lf:”)(UL)xo3
(a) We shall prove firat that

Moy Wap
gy

evszm”sl(ig

A
vViavaap ec
3 ! { M

if A,t LA A2¢ L

(in fact we need to show only tkat V(A, } is invarient and dif-
fers from V, if A€ Ky , however, the implication (7) will be
useful in the rollowing). Clearly V3 € V(A,) , further ,3 Mle v’;
for any m,ne€ No because

o (@3 yn 2D 3 3.3 .3
¥y = (B3 Jl:l1((J-A2)E13-E12E23)xo

belongs to V; sccording to the definition, end in the same time
Y 4is a non-zero multiple of '3 nl as can be verified directly
from the relations (5) by the ssme arguments as thome used in the
proof of Theorem 1.4.3 . Thus the vectors |': n| belong to V;
for all m,ne lo end s=0 ., Assume that this is true also for

8T 1,24004,T ,‘r<)\~1 » It holds
A R e RN

so the assertion is valid for s=z=r+1 as well ; the induction
srgument clesrly bresks at s = A » hence (7) is proved. Combi~-
ning it with Theorem 1.2.5 we see thlt f‘ 3 is reducibdble if

Me X, .

(b) Let further A2- re '0 ’ A‘ srbitrary. We decompose the space
V; into the direct sum V, = C{v,} @ W, where v _? '8 r”l and
¥_ is srsnned by the remaining basis vectors. Consequently, esch

r
vector x¢v; c V3 csn be decomposed uniquely in the form



. P
x Blﬂ} + X ’ et , xe¢ 'r .

On the other hand, one obtaina’ V;

xg by all polynomials in the operators (5). Each of these
polynomisls may be arranged using the commutation relations so
that in all its monomials the operators Ezj sy 1<j , stand in the
left of Hz and E?i s 1> J . Since the latter reproduce or anni-
hilate the vacuum, we m&y, e.g., write

acting on the vacuum vector

vy = €{y(mn,s) £ (5 )“(3?2)“(335)“;:3: mmeeNf. (8

37

The relations (5) and (1) give

m+g-k=-J n-a+k+3|

m 8
y(m'n,“) = Z 2: “kj lk“'J (9)
k

k=0 j=J
where Jk = pax (0 ,s~n~k) . For the present moment we need not
know the coefficients ‘kj explicitly except for

ne1
y(0m,0) = VAT 1 (1) g . (108)

The relation (9) implies that only the vector y(0,r+1,0) may he-
Ve a non-zero component in c{v } » but y(O,r+1, 0) = 0 due to
(102) , thus vic W _$V, .

{c) The remaining case 1+ A+ A, = 1+4re N, is more complica-
ted. The above used decomposition of V3 will be replaced now by
Vy=U. @ U; where U_ is the following (r+3)-dimensional sub-
space

U z e{ ’r+2 |

! 3= 0y1y.0e,re2 §

while Ur is spanned by the remaining basis vectors. The relation
(9) implies easily that a vector y(m,n,s) belongs to Ur irr
n=ss and ma+n = r+2 and vice versa, those y(m.n,-) which do
not fulfil these conditions belong wholy to U . Consequently,
esch vector x¢ V3 can be decomposed uniqucly as follows

r-oz
x = n-o 'Bny(r+2-n.n.n) +x° , x'€ Ur .

Our aim is to verify that the vectors y(r+2-n,n,n)} are linearly
dependent and cannot span therefore the (r+3)-dimensional subspace
U, 5 then v; 4 V, immediately follows.

To this purpose we have to express the vectors y(r+2-n,n,n)
explicitly. It is s tedious but relatively straightforward proce~



dure so we exhibit here results of its mein steps only. Acting on
(10a) by E?a s-times we obtein an expression for y(OQ,n,s) ,
especially for n=s we get

n-1 n - =1
y(0,n,n) = /nt ‘no(i-A?)Jz (% [arm=1 r| kX
i= " 3=0 (10Db)
=1
x 0 a-ap |"j )

Further we have to apply the operator E?; (r+2-n)-times to (10b).
Using the induction argument the relation
r+2

n-1
y(r+2-n,n,n) = n!(r+1-n)! ] (i-A,) c (r+2-j)!
’ i=0 2 J‘r%.i-n nj ’ X (10e)
r+2-j 3 ¢
x rl =M | l

can be proved, where

min{j,n}
Cny = 02::. , (o) 5 I QD B (10a)

k=max(Q, J+n-r-2
The last expression can be simplified with the help of the known
sunming formulae for combination numbers (cf,Ref.4, 0.156) to the

form

hj = 3(r+2+jn) (rﬁ

Thus we obtain finslly

32 r+2-3 §
y{r+2-n,n,n) = a, (1
PNy _Z,-n J n l I a)
where
n=1
a, = ni(r+1)! 1l;lo(i-/\z) ' (11b)
- =1
by = (re2=p0)72 N gy (116)
1=0
and
4 . = —Kt2tjo (114)

nj ~ (§+n-r-1)1

for jJs r+l=n,r+2-n,...,r+2 , vtherwise dn 20,
In oder to show that y(r+2-n,n,n) , r=0.i,...,r+2 y 8re linear-
ly dependent it is clearly sufficient to show

det(dy ) =0 . (12)



he determinant certainly does not change when we subtract a sui-
table linear combination of the last r rows from the second row,
thus

det(dnj) = det(dnj)

where dn;i = dnj for n=0,2,3,.c0.,r+2 and

s Az
d” = Z( -1t (r+2-1)1 a, nJ .
Substituting from (114) into the last expression we ¢btain

_ ril k {x+2+3(k+1)) k!
13 - (1)() '
3 k=mex(0,r-3) (J+k-r)!
These sums can be easily evaluated (cf.Ref.4, 0.155) as follows

d; =a; =1
d".‘l 20 4, J=0y15000,r

and since the first row equals (0,...,0,r+2,r+2) we see that
(12) holds and the proof is therefore completed. B

3.3 The irreducible highest-weight representations referring to

the case when some of the conditions (6) is not fulfilled are

obtained by restriction of P (3) to the corresponding subspace

V; (cf.Proposition I.3,2). However, one has to know V3 explicit=~

ly in order to describe the resulting representstions pnj) =
9&5) A fully. There are four subcases here :

(a) A,,Aze No : we do not diecuss this case because the ,
irreduciblie highest~weight representations here are finite-di-
mensional and well-known (cf., e.g., Ref.5, Chap.10 or Ref.é6,
Sec.10.1),

(b) Ae No, A24 N. : the subspace V3 is given now by (7) § this
relation together with (1),(5) gives the explicit form of p} ,

(c) A,# NO’ A € No ! we do not know V; explicitly here but the
irreducible representation with the highest-weight A= (A,.Az)

can be nevertheless constructed using PA s A (AZ'AI
which ie known from the case (b) , as we shall see a little
later,

In the next mection we shall give an alternative method for con-



structing irreducible highest-weight representations of sl1(3,€)

in the cases (b) and (¢} . It will give also & hint for construc-
tion of irreducible highest-weight representations of sl(n+1,¢),
n23 in some of the cases which are not covered by Theorem I.4.3.

4. lixed representations of s1(3,C)

4.1 4As we mentioned in Sec.I1.2.7, the canonical realizations/7'e/
of gl(n+1,€) which are the essence of our construction are ob-
tained recursively with the help of n canonical pairs, one com-
plex paramater and a realization of gl(n,C) . The latter is not
necessarily a canonical realization of the same type, one may use
instead of it, e.g., a matrix representation. Here we shall employ
this possibility for constructing representations of sl1(3,C) .

We start from the formulae (5), however, instead of the ope-
rators (1) we shall use matrices which generate the (2k+1)-dimen-
sional irreducible represantation of sl(2,€) , k=0 ,% » 1 ,% yoee
The appropriate representation space ng will be of the form
ch cZk*’ (cf.Sec.1.4.5), in other words, it will be spanned by
the vectors

mn
157+ mmeny , 5= ck-ketyok (13)

The mentioned (2k+1)-dimensional matrix representation generates
a representation of sl(2,C) on ng in the following way

E,z'lz ni = (k+8) rg-,n ’
s {3 ““ = (k-8) “:‘”n , (14)
H, uz n" = 28 Ig nl .

To any A = (2k,h2) we get the representation 44 of 8l(3,f)

whose generators are obteined by substituting (14) into (5) ; we
shall call it pixed representation of 81(3,C) . We shall write

/ﬁ(eij) E2 E?j ’ (ﬁ(hi) = H? , whenever it would be necessary to

distinguish the generators of 4, from those of the meximal re-
presentation @ . ’

4.2 Proposjtion @ Let2k2k£ Ny » A4 Ny , then the representation
[&: sl(},c)-r[(u3 ) given by (5) and (14) is irreducible ;



it has the highest weight A= (2k,A2) and the highest-weight
vector Yo = g 0 .

Proof : Clearly Hyyy = 2kyy , Hyyy = Ay, and E'ijo = 0 _for
i>j . The representation 4, has to be 2cuivalent to fr =

= QAI‘ V; (see (7)) in view of Theorem I.2.4 if the present asser-
tion holds. On the other hand, it is sufficient to verify this
equivalence, because ﬁ‘ is irreducible due to Corollary 1.4.Z .

Let ue define the following isomorphism §, : V; > ng :
mnl _ ,_gy2k~s et (ea Y ™ n
5157 = -1 2Kk(2k=1)2..(8+1) "k_s " (158)

for s8=0,1,...,2k , then the relations

fAby) = 8, fpn) 57

~ -1 (15b)
(“A(eij) = SA?A(eij) 5,
can be verified directly. [ ]
4.3 We have mentioned thet irreducible highest-weight repre-

sentations of s1(3,C) with ,(1#. No y Aze No can be constructed
with the help of those previously obtaired. To this purpose we
define a linear mapping T of 81(3,C) into itself by

T(h)) =h, , T(hy) =h

(1€)

'z'(e21)=e32 ’ 't(e31) =~y 'e(e32) ey

'l’(e,z) = €53 'l‘(e13) = -ey3 t(e23) = e, -
Propesition @ I',et A= (AjsA;)  where A14 Ny » I\z T}?ke N, and
denote A’ = (AysAy) . Then the mappings ?‘- T and

/{A:f are (mutuaslly equivelent) irreducible representations
of s1(3,C) with the highest weight A and the highest-
~weight vectors xge V; and Yo€ U‘;k , regpectively.

Proof ¢ One can check easily that T is &n sutomorphism of
81(3,C) . Since the representations F"' and (“‘v are equivalent
due to (15b) the same ie true for ¢, and AT - The automor-
phism ? conserves the subalgebra L of L = 81l(3%,€) 350 the

+
condition I.2.3(ii) is fulfilled. Pinally

3 3 e A hxd = A
fi o ihy)xg = Frethplxg = Ningxg = Axg



3 3. 3,
Pr Tihydxg = Axg 5
and the analogous relations are valid for M,.% too. B

Bemark : The formulese determining these representations explicitly
are obtained immediately from (1),(5),(16) and (5),(14),(16), re-
spectively.

5. Discuggion

In the last section of Ref.! we compared our results to other
known highest-weight representations of sl(n+t,C) , especially to
the elementary representations (Verma modules). The considerations
of the present paper allow us to add some items to this comparison.

The maximal representation §3) of 81(3,C) 1is irreducible
under the conditions (6) ; one can check that the same is true for
the elementary representation d, wueing Theorem 6 of Ref.2 . This
is sketched on Fig.! ! for the weights corresponding to the points

[ irreducible highest-weight representatiens
are finite-dimensienal
—e- 4 and §, reducidle Mgt



which do not belong to the dashed lines both the types of repre-
gentations are irreducible. As for the general sl(n+!,f) algeb-
ras, our irreducibility condition (I.13) ie up to now proved only
to be sufficient for n23 . On the other hand, our condition is
stated directly in terms of the weight components, while for the
use of the mentioned 1rreducibility eriterion (Theorem 6 of Ref.2)
for elementary representations action of the Weyl group elements
on a given weight must be anélyzed; ]

We have obtained also other irreducible highest-weight repre-
sentations of s8l(3,C) using procedures descrited in Seecs.3.3(b)
and 4.1-4.5 . They are again of the form which makes calculaticn
-0f matrix elements of the generators guite simple. They cover a
part of the cases when the maximal as well as the elementary repre-
sentations are reducible as shown on Fig.2 . This construction
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generalizes easily for the highest-weight representatione of
s1(n+1,C) when some of the Ai's are non-negative integers and
the rest of the conditions (I.13) is fulfilled. The remaining ca-
ses need a different approach.
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