C 324.2

объединенны̆ ИНСтитут пдерных
 исслвдованй
 дубна

$596 / 1-8) \quad$ Экз. чит. ЗАनА
 E2-80-705

G.V.Efimov, Kh.Namsrai

THE SCHRÖDINGER EQUATION
IN THE QUANTUM FIELD THEORY
WITH NONLOCAL INTERACTIONS

Submitted to "TMФ".

1. Introdustion

Construotion of a self-consistent theory of nonlocal interaotions of quantized fields $/ A /$ became posaible owing to the following two ideas.

First, the form faotors must be entire analyticel funotions in the momentum space and must decrease rapidiy enough in the Fuolidean space. Seoond, the form faotor must be quantized, 1.e., it is necessary to introduoe supplementary degrees of freedom, whioh determine the regularization in order to evable the transition to the Eucilidean metrio and re-establishment of the form faotor in the limit of oanoelled regularization. Developnent of these ideas allowed the construotion of the finite and unitary S-matrix for arbitrary enough interaotion Lagrangians in eaoh perturbation order

What is inoomplete in this construotion? the following problem arose from investigations of the oausality oonditions. The coeffioient functions of the Smatrix in the oonfiguration space turn out to be analytical functions. Analytio methods used in the investigation of looal properties of analytioal functionals make it impossible, in prinoiple, to determine a spaoe looalization of studied funotionals within an aoouraoy of a oertain distanoe given by the nonlooality /2/ obriously, the use of nomanalytioal methods is needed. However, these nethods are not developed. The resuits obtained by the projeoting sequenoes of funotions $/ 1 /$ rouse doubts beoause, as is shown in ref. $/ 3 /$ there are examples of explicitly nonlooal funotionals whioh are, as looal ones, oharacterized by the projeoting sequenoes of funotions. Therefore, the existenoe of the miorooausality oondition, underatood as a strict equality of the oorresponding functional outside of the light oones remains an open problem in the theory with nonlooal interaotions.

On the other hand, causality is nothing else than oorrectness of the Cauchy problem of the quantum-field Sohrödinger equation (or equation of Tomanaga and schwinger). Howerer, the utilization of the regularization procedure in the oonstruotion of B-matrix both in the looal and nonlocal theories reduoes to that the g-matrix is not a solution of the corresponding equation and is determined by a series of limits. It seems therefore that the natural properties of the Shcrodinger equation solutions as unitarity, and causality are to be proved separately.

Dififoulties in noniocal theory arise usually when a nonlooal form faotor is int roduoed into the interaction Lagrangian, but the Sohrơdinger field equation (or Tomonaga-Sohwinger equation) remains local

$$
\begin{equation*}
i \frac{\delta}{\delta \sigma(x)} \psi[\sigma(x)]=\mathscr{H}(x) \psi(\sigma(x)) \tag{1.1}
\end{equation*}
$$

Where, for example,

$$
\mathscr{f}_{I}(x)=g\left[\int d x^{\prime} V\left(x-x^{\prime}\right) \varphi\left(x^{\prime}\right)\right]^{4}
$$

The integrability conditions are riolated within this approa oh and numerous other diffioulties arise (see ref./4/f for example).

Fe assume that while introduoing nonlocality in the interaotion Femiltonian the equation of Tomonaga and Schwinger must be treated also nonlocally but with retardation. In this way only, in our opinion, one oan get rid of diffioulties oaused by the integrablity oonditions in the nonlocal theory.

In this paper we shail show that the S-matrix desoribing nonlocal interaotions of quantised fielas $/ 1 /$ solyes the Cauohy problen of the erolution equation (or Schródinger equation in the interaction pioture at imaginary time, i.e., in the Eualidean metric) with retardation. In this way supplementary degrees of freedon with respeot to the Fook spane of physical partioles need not be int roduoed.

Striotly speaking; formuletion of suoh an equation with the correctly atated Cauohy problem at imaginary time does not answer direotly the question about the oausality condition of the S-matrix in Minkowaki spaco. Howover, a simple analytioal
connection between S-matrices both in Euclidean and Minkowski spaces without any doubts means that oausality of the evolution equation must ensure absence of any physically observable nonoausal phenomena.
2. Field Operator at Imaginary Time

We shall oonsider the theory of a one oomponent soalar field $\varphi(x)$ desoribing partioles with mass M. The field operator $\varphi(x)$ yas be written in a standard way (see $/ 5 /$, for example)
$\varphi(x)=\varphi(\vec{x}, t)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \vec{k}}{\sqrt{2 \omega}}\left(a_{\vec{k}}, e^{-i \omega t+i \vec{k} \vec{x}}+a_{\vec{k}}^{+} e^{i \omega t-i \vec{k} \vec{x}}\right)$,
where

$$
\begin{equation*}
\omega=\left(m^{2}+\vec{k}^{2}\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

creation $a_{\vec{k}}^{+}$and annihilation $a_{\vec{k}}$ Boson operators satisfy ordinary oommutation rules:

$$
\begin{equation*}
\left[a_{\vec{k}}, a_{\vec{k}}\right]=\left[a_{\vec{k}}^{+}, a_{\vec{k}^{\prime}}^{+}\right]=0, \quad\left[a_{\vec{k}}, a_{\vec{k}^{\prime}}^{+}\right]=\delta^{(3)}\left(\vec{k}-\vec{k}^{\prime}\right) \tag{2.2}
\end{equation*}
$$

We assume that there exists a single raouum state $\psi_{0}=|0\rangle$ whioh obeys the conditions:

$$
\begin{align*}
& \langle 0 \mid 0\rangle=1, \\
& a_{\vec{k}}|0\rangle=0 \quad \forall \vec{k} . \tag{2,3}
\end{align*}
$$

State reotors of soalar particles are represented by rays in the Fock space which is,as usually, constructed over the basis

$$
\begin{equation*}
\psi_{\vec{k}_{1}, \ldots \vec{k}_{n}}^{(n)}=\frac{1}{\sqrt{n!}} a_{\overrightarrow{k_{p}}}^{+} \ldots a_{\vec{k}_{n}}^{+}|0\rangle \tag{2.4}
\end{equation*}
$$

where $n=0,1,2, \ldots$.
Now we pass to imaginary time $t \rightarrow-i \tau$, or to the Buolidean metrio. In the oonstruotive quantun field theory the physioal Hilbert space. F of a free field in Minkowski space is considered as a subspaci of the Hilbert space \mathcal{N} of a free Euclidean field (see ref. ${ }^{/ 6 / \text {). Especially, in order to obtain }}$

Euclidean Green functions and to oonstruot the soattering matrix $/ 7 /$ in oration and annihilation operators $a_{\vec{k}}^{+}$and $a_{\vec{k}}$ the supplementary degree of freedom $a_{\vec{k}}^{+} \rightarrow a_{\vec{k}, \epsilon}^{+}\left(a_{\vec{k}} \rightarrow a_{\vec{k}, \epsilon}\right)$ oonneoted with imaginary time is introduced so that commutation rules are of the forms

$$
\begin{equation*}
\left[a_{\vec{k}, \varepsilon}, a_{\vec{k}, \varepsilon^{\prime}}^{+}\right]=\delta^{(3)}\left(\vec{k}-\vec{k}^{\prime}\right) \delta\left(\varepsilon-\varepsilon^{\prime}\right)=\delta^{(4)}\left(k_{E}-k_{E}^{\prime}\right) \tag{2.5}
\end{equation*}
$$

Where

$$
k_{E}=(\varepsilon, \vec{k})
$$

Here we shall not enlarge the number of degrees of freedom of a scalar field and te shall construct a space of our Euclidean states or er the same basis (2.4).

So, we introduce the free field $\phi\left(x_{f}\right)$, where $x_{f}=(\tau, \vec{x})$ in the Euclidean apace, 1.e., at imaginary time by the replacement $t \rightarrow-i \tau$ in the expression (2.1) for the field operator $\varphi(t, \vec{x})$:

$$
\begin{gather*}
\phi\left(x_{E}\right)=\phi(\tau, \vec{x})=\varphi(-i \tau, \vec{x})= \\
=\frac{1}{(2 \pi)^{3 / 2}}\left(\frac{d \vec{k}}{\sqrt{2 \omega}}\left(a_{\vec{k}} e^{-\omega \tau-i \vec{k} \vec{x}}+a_{\vec{k}}^{+} e^{\omega \tau+i \vec{x} \vec{x}}\right)\right. \tag{2.6}
\end{gather*}
$$

Let us introduce the T-produot operation,i.e., the imaginary -time \mathcal{T} ordering operation. In representation (2.6) the parameter τ is introduced explicitly, so the 7^{\top} product operation is defined straightforwardly:

$$
\begin{array}{r}
T\left(\phi\left(x_{t E}\right) \ldots \phi\left(x_{n_{E}}\right)\right)=\phi\left(x_{n E}\right) \ldots \phi\left(x_{1 E}\right) \\
\left(\tau_{1} \leq \tau_{2} \leqslant \tau_{3} \leqslant \ldots \leqslant \tau_{n}\right)
\end{array}
$$

Further, we shall define the two -point Euclidean Green function which will be called causal

$$
\Delta_{c}\left(x_{1 E}-x_{2 E}\right)=\left\langle 017\left(\phi\left(x_{1 F}\right) \phi\left(x_{2 E}\right)\right) \mid 0\right\rangle=
$$

$$
\begin{align*}
& =\frac{1}{(2 \pi)^{3}} \int \frac{d \vec{K}}{2 \omega} e^{-\omega / \tau_{1}-\tau_{2} /+i \vec{k}\left(\vec{x}_{F}-\vec{x}_{2}\right)}= \\
& =\frac{1}{(2 \pi)^{4}} \int \frac{d^{4} k_{E} e^{i k_{E}\left(x_{1 E}-x_{2 F}\right)}}{m^{2}+x_{F}^{2}}= \\
& =\frac{m}{(2 \pi)^{2}} \frac{X_{1}\left(m \sqrt{\left.\left(x_{1 E}-x_{2 E}\right)^{2}\right)}\right.}{\sqrt{\left(x_{1 F}-x_{2 E}\right)^{2}}} \tag{2.8}
\end{align*}
$$

where $k_{E}^{\prime}=(\varepsilon, \vec{k}), k_{E}^{2}=\varepsilon^{2}+\vec{k}^{2} \quad$ and $\vec{X}_{1}^{\prime}(z)$ is the Macdonald function. The obtained function $\Delta_{c}\left(x_{\varepsilon}\right)$ represents an analytical continuation to $t \rightarrow-i \tau$ of the causal oren function in Minkowsici space:

$$
\Delta_{c}\left(x_{1}-x_{2}\right)=\frac{1}{(2 \pi)^{4} i} \int \frac{d^{4} k e^{-i x\left(x_{1}-x_{2}\right)}}{m^{2}-\kappa^{2}-i \varepsilon} .
$$

Now let us consider the commutator of the fields $\phi\left(x_{F}\right)$ and the function $\Delta_{-1}(\cdots)$:

$$
\begin{aligned}
& {\left[\phi\left(x_{1 F}\right) \phi\left(x_{2 E}\right)\right]=\frac{1}{(2 \pi)^{3}} \int \frac{d \vec{k}}{2 \omega} e^{i \vec{k}\left(\overrightarrow{x_{1}}-\vec{x}_{2}\right)} \cdot 2 S / \omega\left(\tau_{7}-\tau_{2}\right)} \\
& \Delta_{i-1}\left(x_{1 E}-x_{2 E}\right)=\langle 0| \phi\left(x_{1 E}\right) \phi\left(x_{2 E}\right)|0\rangle=\frac{1}{(2 \pi)^{3}} \int \frac{d \vec{x}}{2 \omega} e^{i \vec{K}\left(\vec{x}_{1}-\vec{x}_{2}\right)-\omega\left(\tau_{1}-\tau_{2}\right)}
\end{aligned}
$$

We see easily that integrals in the =ight-hand side of the formula (2,9) do not exist under an arbitrary ohoice of the difference $\left(\tau_{1}-\tau_{2}\right)$. Therefore, only the T-produot of operators $\phi\left(x_{f}\right)$ hes a ressomble malsemetical moaning. Let us introduce operators $R[\phi]$ of the following type:

$$
\begin{align*}
R[\phi]= & \sum_{n} \frac{1}{n!} \int d x_{t F} \ldots \int d x_{n E} R_{n}\left(x_{r \epsilon}, \ldots, x_{n \xi}\right) . \\
& \cdot T\left(\phi\left(x_{t \epsilon}\right) \ldots \phi\left(x_{n E}\right)\right) . \tag{2.10}
\end{align*}
$$

Operators $R[\phi]$ are defined by a set of functions $\left\{R_{n}\left(x_{1 E}, \ldots x_{n E}\right)\right\}$, the properties of which will be elaborated bel on.

Let us define the operation of conjugation

$$
\begin{equation*}
\left.\left(\phi\left(x_{F}\right)\right)^{*}=\left(\varphi^{+}(i \tau, \vec{x})\right)^{+}=\varphi(-i \tau, \vec{x})=\phi_{(}^{(} x_{\varepsilon}\right) \tag{2.1i}
\end{equation*}
$$

Then for the operator R in (2.20) we obtain the following expression

$$
\begin{align*}
R^{*}[\phi]= & \sum_{n} \frac{1}{n_{!}} \int\left(\alpha x_{F} \ldots\right)\left(d x_{n E} R^{*}\left(x_{1 E}, \ldots, x_{n E}\right) .\right. \tag{2.12}\\
& \cdot T\left(\phi\left(x_{1 F}\right) \ldots \phi\left(x_{n E}\right)\right)
\end{align*}
$$

How we determine the operation of multiplication of two operators $R_{1}[\phi]$ and $R_{2}[\phi]$ of the type (2.10) by definition:

$$
\begin{gather*}
R_{1}[\phi] R_{2}[\phi]=T\left(R_{1}[\phi] R_{2}[\phi]\right)= \tag{2.13}\\
=\sum_{n_{1}, n_{2}} \frac{1}{n_{1}!n_{2}!} \int d x_{1 F} \ldots \int d x_{n_{1} F} \int d y_{1 F} \ldots \int d y_{n_{2} E} R_{n_{1}}\left(x_{1 F}, \ldots, x_{n_{,},}\right) . \\
\cdot R_{n_{2}}\left(y_{n_{F}}, \ldots y_{n_{2} E}\right) T\left(\phi\left(x_{1 F}\right) \ldots \phi\left(x_{n_{\xi},}\right) \phi\left(y_{1 F}\right) \ldots \phi\left(y_{n_{2}, E}\right)\right)
\end{gather*}
$$

3. The State Space at Imaginary Time

Let us define the state space N of the system as a set of vectors of the type

$$
\begin{equation*}
\psi=R[\phi]|0\rangle \tag{3.1}
\end{equation*}
$$

Where R hes the form (2.10). It will be assumed that the state (3.1) is given if all the functions $R_{n}\left(x_{1 E}, \ldots, x_{n E}\right)$ determining the operator $X[\varnothing]$ in (2.10) are known.

Notice that any state in the Fork space F must be represented in the way (3.1) in the case of the corresponding ohoice of the set of functions $\left\{R_{n}\left(x_{1,}, \ldots, x_{n k}\right)\right\}$ in the operator $R[\phi]$ since there exists a simple linear connection between sets of basic vectors:

The appropriate formula of this oorrespondenoe can be easily found, if necessary.

The most important here is the following: the rok space F consists of reotors of the type

$$
\begin{equation*}
\left.\psi_{F}=\sum_{n} \frac{1}{n!} \int d \overrightarrow{k_{1}} \ldots \int d \overrightarrow{k_{n}} f_{n}\left(\overrightarrow{k_{n}}, \ldots \overrightarrow{k_{n}}\right) \frac{1}{\sqrt{n!}} a_{\overrightarrow{k_{1}}}^{+} \ldots a_{\overrightarrow{k_{n}}}^{+} / 0\right\rangle \tag{3.3}
\end{equation*}
$$

but the space N of rectors

$$
\begin{gather*}
\psi=\sum_{n} \frac{1}{n!} \int d x_{1 E} \ldots \int d x_{n E} P_{n}\left(x_{1 E}, \ldots, x_{n E}\right) \\
\left.\cdot T\left(\phi\left(x_{1 E}\right) \ldots \phi\left(x_{n E}\right)\right), 0\right\rangle \tag{3.4}
\end{gather*}
$$

Obviously, from representations (3.3) and (3.4) it follows that the space F is a subspace of \mathcal{N}, since some set of mutually different vectors (different sets of functions $R_{n}(\cdots)$) from \mathcal{N} corresponds to each vector from F.

In the scattering problem the initial state of the type (3.3) is given at some $\mathcal{I}_{0}=-7^{\text {, }}$, Where $T \rightarrow \infty$. In this case such a state an bo written in the form

$$
\begin{align*}
\psi\left(\tau_{0}\right)= & \sum_{n} \frac{1}{n!} \int d \vec{x}_{1} \ldots \int d \vec{x}_{n} \tau_{n}\left(\vec{x}_{1}, \ldots, \vec{x}_{n}\right) \\
& \left.\cdot 7\left(\phi\left(\tau_{0}, \vec{x}_{1}\right) \ldots \phi\left(\tau_{0}, \vec{x}_{n}\right)\right) / 0\right\rangle \tag{3.5}
\end{align*}
$$

where $\overrightarrow{y n}_{n}\left(\vec{x}_{1}, \ldots, \vec{x}_{n}\right)$ is connected simply with $f_{n}\left(\overrightarrow{x_{1}}, \ldots, \overrightarrow{x_{n}}\right)$ in (3.3). The state (3.5) can be also rewritten in the form (3.4), where

$$
R_{n}\left(x_{1 E}, \cdots, x_{n E}\right)=\eta_{n}\left(\vec{x}_{1}, \cdots, \vec{x}_{n}\right) \prod_{j=1}^{n} \delta\left(\tau_{d}-\tau_{0}\right)
$$

The norm of state vectors from N is given by

$$
\begin{aligned}
& \|\psi\| \|^{2}=(\psi, \psi)=\left(0 /\left\{\frac{n^{*}}{\infty}\right] P[\phi] / 0\right\rangle= \\
& =\sum_{n_{1}, n_{2}} \frac{1}{n_{1}!n_{2}!} \int d x_{1 E} \ldots \int d x_{n_{1}, E} \int d y_{1 E} \ldots \int d y_{n_{2} E} R_{n_{1}}^{*}\left(x_{1 E}, \ldots, x_{n_{1} E}\right) .
\end{aligned}
$$

It is known (see $/ 6,8 /$ for example) that for a free Buolidean
field there exists such a Gaussian positive measure $d \mu_{f}$
that

$$
\begin{equation*}
\left.\int_{t p_{f}} f\left(x_{\xi}\right) \cdots f\left(x_{n \varepsilon}\right)=\dot{\sigma}\left|T\left(\phi_{i}\left(x_{z}\right) \cdots \phi_{(}\left(x_{n \xi}\right)\right)\right| 0\right\rangle . \tag{3.7}
\end{equation*}
$$

Then the Euclidean norm (3.6) is

$$
\begin{equation*}
\left\|\psi_{\|}\right\|^{2}=\int d \mu_{f}|R[f]|^{2}<\infty \tag{3.8}
\end{equation*}
$$

where the functional $K[f]$ is given by

$$
R[f]=\sum_{n} \frac{1}{n!} \int d x_{1 E} \ldots \int d x_{n E} R_{n}\left(x_{T E}, \ldots, x_{n E}\right) f\left(x_{1 E}\right) \ldots f\left(x_{n E}\right)
$$

Therefore, functions $K_{n}\left(x_{1 E}, \ldots, x_{n E}\right)$ must be such that the norm (3.8) is finite.

So, we have constructed the state space \mathcal{N}, which includes all vectors of the type (3.1) for which the norm (3.6) (or (3.8)) is finite. Furthermore, the operators $K[\phi]$ (2.10) have been introduced for which the operations of conjugation (2.12) and multiplication (2.13) are defined.
4. The Interaction Hamiltonian and The Evolution Equation

The dynamics of a quantum field system is described by the Schrodinger equation. In the interaction ploture it has the form

$$
\begin{equation*}
i \frac{\partial}{\partial t} \psi(t)==\psi_{I}(t) \psi(t) \tag{4.1}
\end{equation*}
$$

With some initial condition:

$$
\begin{equation*}
\psi\left(t_{0}\right)=\psi_{0} \tag{4.2}
\end{equation*}
$$

Passing to imaginary time $t \rightarrow-i \mathcal{C}$ we get

$$
\begin{gather*}
\frac{\partial}{\partial \tau} \psi(\tau)=-H_{I}(\tau) \tau^{\prime \prime}(\tau) \\
\psi\left(\tau_{0}\right)=\psi_{0} \tag{4.3}
\end{gather*}
$$

It is customary to owl the equations (4.3) as evolution equations.

In the local quantum field theory interaction Hamiltonian are usually of the form of polynomials in the field operators. For: example, for the selt-interaoting scalar field we have

$$
\begin{equation*}
H_{I}(t)=g \int d \vec{x} 40^{4}(t, \vec{x}) \tag{4.4}
\end{equation*}
$$

or in the imaginary-time formulation

$$
\begin{equation*}
H_{I}(\tau)=g \int d \vec{x} \phi^{4}(\tau, \vec{x}) \tag{4.5}
\end{equation*}
$$

If we look for a solution of the equation (4.3) with the Hamiltonian (4.5) in the form (3.1), then we have standard problem of the local quantum field theory with all its difficultties.

Consider now the quantum field theory with the nonvocal interaction. Introduce the spreaded field:

$$
\begin{equation*}
\left.\phi_{a}(x)=\phi_{a}(\tau, \vec{x})=\int d y_{\varepsilon} a!y_{E}^{2}\right) \phi(\tau+\xi, \vec{x}+\vec{y}) \tag{4.6}
\end{equation*}
$$

where $y_{F}=(\vec{\xi}, \vec{y}), y_{F}^{2}=\xi^{2}+\vec{y}^{2} \quad$ and $a\left(y_{F}^{2}\right.$) is a real function, the properties of which will be discussed later.

Let us calculate the causal Green function of the spreader? field (haring in mind that the T-ordering symbol concerns the field $\phi(x)$):

$$
\begin{aligned}
& D\left(x_{E}-x_{2 E}\right)=\left\langle 0 / T\left(\phi_{a}\left(x_{1 E}\right) \phi\left(x_{2 E}\right)\right) \mid 0\right\rangle=\int d y_{1 E} \int d y_{2 E} a\left(y_{l E}^{2}\right) \lambda\left(y_{2 E}^{2}\right) . \\
& .\langle 0| T\left(\phi\left(x_{1 E}+y_{1 E}\right) \phi\left(x_{2 E}+y_{2 E}\right)\right)|0\rangle=\int d y_{1 E} \int d y_{2 E} a\left(y_{T E}^{2}\right) a\left(y_{2 F}^{2}\right) . \quad \text { (4.7) } \\
& \int \frac{d^{4} k_{E}}{(2 \pi)^{4}} \frac{e^{-i k_{E}\left(x_{1 E}+y_{1 E}-x_{2 F}-y_{2 E}\right)}}{m^{2}+k_{E}^{2}}=\int \frac{d^{4} k_{E}}{(2 \pi)^{4}} \frac{\left[X\left(k_{F}^{2}\right)\right]^{2}}{m^{2}+k_{F}^{2}} e^{-i k_{F}\left(x_{1 E}-x_{2}\right)},
\end{aligned}
$$

$$
\begin{equation*}
X\left(x_{F}^{2}\right)=\int d y_{F} a_{F}^{\left(y_{F}^{2}\right)} e^{-i k_{F} y_{F}} \tag{4,8}
\end{equation*}
$$

We shall assume that the function $a\left(y_{E}^{z}\right)$ is chosen so that the $X\left(x^{2}\right)$ is an entire analytic function in the complex x^{2} - plane and that it increases so rapidly as $k_{E}^{2} \rightarrow \infty$ that

$$
\begin{equation*}
\mathcal{D}(0)=\int \frac{A^{4} k_{k}}{(2 \pi)^{4}} \frac{\left[x\left(z^{2}\right)\right]^{2}}{m^{2}+\varepsilon_{E}^{2}}<\infty . \tag{4.9}
\end{equation*}
$$

Instead of the interaction (4.5) we write

$$
\begin{gather*}
H I[\tau, \phi]=9 \int d \vec{x} T\left\{\phi_{a}^{4}(\tau, \vec{x})\right\}= \tag{4.10}\\
=9 \int d \vec{x} \prod_{j=1}^{4} \int_{i,} d y_{i \xi} a\left(y_{j i}^{2}\right) T\left\{\prod_{k=1}^{4} \phi\left(\tau+\tau_{k}, \vec{x}+\vec{y}_{k_{k}}\right)\right\}
\end{gather*}
$$

Therefore, the interaction Hamiltonian (4.10) belongs to the oles of operators $R[\varnothing]$ (2.10). Notice that the interaction Hamiltonplan may be chosen in the normal form:

$$
\begin{align*}
& H_{I}[\tau, \phi]=g \int d \vec{x} \cdot T\left\{\phi_{a}^{4}(\tau, \vec{x})\right\}:= \tag{4.11}\\
=g & \left.\int d \vec{x} T\left\{\phi_{Q}^{4}(\tau, \vec{x})-6 \phi_{a}^{2}(\tau, \vec{x}) D(0)+3 \mathscr{D}^{2} / 0\right)\right\}
\end{align*}
$$

where $\mathscr{D}(0)$ is given by (4.9). In this case

$$
\left\langle 0 \mid: H_{I}[\tau, \phi]: 10\right\rangle=0
$$

Using the representation of the state vector $\psi(\tau)$ (3.1) we shall write the evolution equation (4.3) for the nonlocal interaction (4.10) or (4.11) in the following form:

$$
\begin{equation*}
\left.\frac{\partial}{\partial \tau} R_{i}\left(\phi, \phi|c\rangle=-T\left\{H_{I} i \tau, \psi \mid \because r_{i}, \phi\right]\right\} / 0\right\rangle \tag{4,12}
\end{equation*}
$$

The operation of multiplication in the right-hand side of (4.12) is defined by (2.13). The initial condition for equation (4.12)
18

$$
\begin{equation*}
\left.\left.\psi\left(\tau_{0}\right)=R\left[\tau_{0}, \phi\right] / 0\right)=R_{0}[\phi] / 0\right\rangle \tag{4.13}
\end{equation*}
$$

So, the obtained evolution equation is retarded, since the "time τ in the nomlooal Hamiltonian $H_{I}(\tau)(4.10,4.11)$ may precede the times in field operators $K[\tau, \phi]$. However, the r-ordering operation in equation (4.12) arranges the times appropriately.

Equation (4.12) with the initial condition (4.13) may be rewritten as

$$
\begin{gather*}
\frac{\partial}{\partial \tau} R[\tau, \phi]=-T\left\{H_{I}[\tau, \phi] R[\tau, \phi]\right\} \tag{4.14}\\
R\left[\tau_{0}, \phi\right]=f_{0}[\phi] \tag{4.15}
\end{gather*}
$$

Notion that if the solution (4.15) is Frit ten in the form $R\left(\tau, \tau_{0}\right)$ then it does not satisfy the condition

$$
R\left(\tau, \tau_{0}\right)=R\left(\tau, \tau_{1}\right) R\left(\tau_{1}, \tau_{0}\right) \quad\left(\tau_{0}<\tau_{1}<\tau\right)
$$

where multiplication is understood in the ordinary sense. This is an immediate consequence of nonlocality of the theory.

Nevertheless, the Cauchy problem for equation (4.14) can be formulated.

If we introduce the space out-offs $g \rightarrow g(\vec{x})$ in order to get rid of the ifficulties oansed by the Hag theorem; the Hamiltonian $H_{I}[\tau, \phi]$ represents an operator in the considered space \mathcal{N}. We have

$$
\begin{equation*}
H_{I}[\tau, \phi]=\int d \vec{x} g(\vec{x}): 7\left\{\phi_{c \ell}^{4}(\tau, \vec{x})\right\}: \tag{4.16}
\end{equation*}
$$

Considering the norm of the state

$$
\psi=H_{T}[\tau, \phi]|0\rangle
$$

$$
\begin{gathered}
\|\psi\|^{2}=\left\langle 0 / T\left\{H_{T}[\tau, \phi] H_{I}[\tau, \phi]\right\} \mid 0\right\rangle= \\
=\int d \overrightarrow{x_{1}} \int d \vec{x}_{2} g\left(\overrightarrow{x_{1}}\right) g\left(\overrightarrow{x_{2}}\right) \cdot 6 D^{2}\left(\overrightarrow{x_{1}}-\overrightarrow{x_{2}}\right) \leq 6 \cdot D^{2}(0)\left[\int d \vec{x} g(\vec{x})\right]^{2}<\infty
\end{gathered}
$$

Therefore, the ultraviolet catastrophe is absent in the onsidered nonlooal theory.

Let us turn now to the solution of equation (4.14) with the initial condition (4.15). The solution is given by

$$
\begin{equation*}
R[\tau, \phi]=T\left\{\exp \left[-\int_{\tau_{0}}^{\tau} d \tau^{\prime} / /\left[\tau_{T}^{\prime} \phi\right]\right] R_{0}[\phi,\}\right. \tag{4.17}
\end{equation*}
$$

For the state rector we get

$$
\begin{equation*}
\psi(\tau)=R[\tau, \phi]|0\rangle \tag{4.18}
\end{equation*}
$$

The norm of state $\psi(\tau)(4,18)$ equals

$$
\begin{equation*}
\|\Psi(\tau)\|^{2}=\int d \mu_{f} \exp \left\{-2 \int_{\tau_{0}}^{\tau} d \tau^{\prime} H_{I}[\tau, f]\right\} \cdot\left(R_{0}[f]\right)^{2} \tag{1,19}
\end{equation*}
$$

If the Hamiltonian $H_{I}[\tau, f]$ in (4.19) is chosen in the form (4.16), then owing to (4.21) we have

$$
H_{I}[\tau, f] \geq-6 D^{2}(0) \int d \vec{x} g(\vec{x})
$$

For the norm (4, 19) we get

$$
\begin{equation*}
\|\psi(\tau)\| \leqslant\left\|\psi_{0}\right\| \exp \left\{6\left(\tau-\tau_{0}\right) D^{2}(0) \int d \vec{x} g(\vec{x})\right\} \tag{4,20}
\end{equation*}
$$

So, we see that the solution exists in the state space \mathcal{N}. Uniqueness of the obtained solution follows straightforwardly from (4.17).

The obtained solution (4.17) produces the S-matrix that ooinoides oomplet ely with the S matrix oonstruoted and investigam ted in ref. $1 /$.

1. Bfimov G. F. Nonlocal Interactions of Quantized Fields, Mosoow, "Hauke", 1977.
2. Fainberg V. Ya., Soloviev M.A. Ann. Phys. (N. Y.) 1978, 113, p.421-447;

Соловьев M. А. Тиј , 1980, 43, с.202-209.
 p.149-159.
4. Markov M.A. Hyperons and K-Mesons. Moscow, Fizmatgiz., 1958.
5. Bogolubov N.N. and Shirkov D.V. Introduction to the Theory of Quantized Fields, Moscom, "Nauke", 1973;
Sohweber S.S. An Introduotion of Relativistic Quantum Field Theory, New York, Row, Peterson and Company, 1961.
6. Simon B. The $P(\varphi)_{2}$ Euclidean (Quantum) Field Theory, Princeton Univ.Press, 1974.
7. Petrina D.Ya., Ivenoy S.S. and Rebenco A.I. Equations for Coefficient Functions of the Scattering Matrix, Moscow, "Nauka", 1979.
8. Efimov G.V. Commun.Math. Phyt., 1979, 65, p.15-44.

