


1, Introduction

Construotion of a self-consistent theory of nonlccal

interaotions of quantized fields 7/ became possible owing to the
followlng two 1deas.

First, the form faotors must be entire analytical funotions
in the momentum space and must decrease rapldly enough in the
Buolidean space. Seoond, the form faotor must be guantized, i.2.,
1t 1s necessary tn lntroduoe supplementary degrees of freedom,
whioh determine the regularization in order to enable the transi.-
tion to the Buclidean metrio and re-establishment of the form
faotor in the limit of canocelled regularization. Development
of these ideas allowed the construotion of the finite and unita-
ry S-matrix for arbitrary enough interaotion Lagranglans in
saoh perturbation order

What 1s inoomplete in this construotion? The following
problem arose from invi:stigations of the causality oonditions.
The coeffioient functions of the S.matrix in the configuration
spaoe turn out to be analytical funotions. Analytio methods
used in the investigation of looal propertles of analytioal
functionals make 1t impossible, in principle, to determine
a spaoe looalization of studled funotionals within an aoouraoy
of a certain distanoe given by the nonlocality 2/ + Obviocusly,
the use of nonanalytiocal methcds is needed, However, thess
methods are not developed, The results obtained by the projecting
sequenges of funotions/l/rouse doubts because,as is shown in rer./:’{
there are examples of explicitly nonlooal funotionals whioch are,
as looal ones, charaocterized by the projeoting sequenoes of
funotions. Therefare, the existenos of the miorooausality
oonditicn,understood as a strict equality of the ocorresponding
funotional cutside of the light oone, remains an open prodblem
in the theory with nonlcoal interactions,



On the other hand, causality is nothing else than
oorrectness of the Cauchy problem of the quantum-field
Sohrodinger equation (or equation of Tomanaga and Schwinger).
However, the utilization of the regularization procedure in the
oonstruction of B-matrix both in the looal and nonlocal theories
reduces to that the S-matrix 1s not a solution of the corres—
ponding equation and 1s determined by a serles of limits,

It seems therefore that the matural properties of the Sherodinger
squation solutions as unitarity, and causality are to be proved
separately.

Diffioulties 1n nonlocal theory arise usually when a non-
looal form faotor is inmtroduced into the interaction Lagrangian,
but the Schrodinger field equation (or Tomonaga-Sohwinger egqua~
tion) remains local
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where, for example,
h 4 g;(x)“j[fiz V(x-x)(p(.c)]

The integrability conditions are violated within this approaoh
and numerous other diffioculties arise (see rer.“{ for example).
¥e assume that while introduoing nonlocality in the
interaotion Hamiltonlan the equation of Tomonaga and Schwinger
must be treated also nonlooally but with retardation. In this
way only, in our opinion, one can get rid of difficulties
oaused by the integrabtility conditlions in the nonlocal theory.

In this paper we shall show that the S-matrix desoribing
nonlocal interaotions of quantigzed fields 1/ solves the
Cauchy problem of the evolutiocn equation (or Schrodinger equa-
tion in the interaction picture at imaglnary time, i1.e., in the
Buclidean metric) with retardation. In this way supplementary
degrees of freedom with respect to the Fook spave of physical
partioles need not be introduced.

Strioctly speaking, formulation of such an equation with
the correctly stated Cauchy problem at imaginary time dces not
answer direotly the question about the oausality condition of
the S-matrix in Minkowski spaoce. However, a simple analytioal



oconnection between S-matrices both in Euclidean dnd Minkowski
spaces without any doubts means that oausality of the evolution
equation must ensure absenoce of any physioally observable nonocau-
=al phenomena.

2. Field Operator at Imaginary Time

We shall oconsider the theory of a one component soalar
field (P(x) desoribing partioles with mass »2 . The field
operator {P{z) oay be written in a standard way (see /5/,
for example)
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where w= (,,,3_,_;2)/2.

+
Creation aa,‘-,‘ and annihilation a.; Boson operators satisfy
ordinary oommutation rules:

(. L,
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Ve aszume that there exists a single vaouum state 1/0/-: /D)
whioh obeys the conditions:
{olo} = 1,

a;/")=0 Vi

State veotors of soalar particles are represented by rays
ir the Fock space which 1s,as usually,constructed over the basis

(2.2)

(2.3)
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where n=0,1,2544s «

Now we pass to imaginary time 4t -5-L7T , or to the
Buolidean metrio. In the oconstruotive quantum field theory the
physiocal Hilbert space. F of a free field in Minkowski space
18 oonsidered as a subspacé of the Hilbert spaoe A of a free

Euclidean field (see ref./"/).Eupeciall_y,in order to obtain



Buclidean Green funotions and to oonstruot the soattez_;ing
matrix 77/ in oreation and nnn.ihustion operators Q; and A
the supplementary degree of freedom a.. bed aPG ( a,_.-» a..s )
oonneoted with imaginary time is introduoced so that commutation
rules are of the form

), s "y ' (4) (2-5)
[x,sj -u»] J(S( R')dle-€')= 6 (e-%'),

where KE=(6, l?) ’

Here we shall not enlarge the number of degrees of freedom
of a scalar field and we shall construct a space of our
Euolid ean states over the same basis (2.4).

So, we introduce the free field ¢P(x,), where x€=(t', 2)
in the Euoclidean space, 1l.6.,at imaginary time by the replacement
£->-iT 1in the expression (2.1) for the field operator q0(t,3) :

T )=P(5Z)=pl-it, ¥)=
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Let us introduce the T-produoct operation,i.e.,the imaginary
~time T  ordering operstion. In representation (2.6) the
parameter 7  is introduced explicitly, so the 7 product
operation is defined straightforwardly:

T(qb(xlf) P(x, )) By ). .. P, ) (2.7

(510,56 .50, ).

Further, we shall define the two-point Buolidean Green
function whioh will be called oausal

8, (5e-z,)= <oIT(P(x,) Pl ) Job =
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where A= /8, Aj.) ’ k’i: 62—1- A;’ and :(1(/3) is the

Macdonald function. The obtained function A (%, ) represents
an analytical continuation to + - T of the causal Jreen
function in Minkowski space:

¥ —ik{x, -
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Now let us consider the oommutator of the fields ¢/xr)
and the function 4 _ (---) :

f¢/ %) P(%,,) (2;” f“ elk(z 25»'440/( 7-7) (2.9

1 (48 ,KEG%) -0t
A{_)(II[— q}f):(o/¢/§[)¢{z‘;€)/g)=fg;}a g:’ e +=5).
We see easlly that integrals in the -ight—hand side of the
formuls (2.9) do not exist under an arditrary choice of the
differsnas (Z',—'Zé). Therefore,; only the T-produot of operators
&(Z;)  has & reasonable maiiematiocal meaning.
Let us introduce operators 42 /®] of the following type:
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Operators ,? [ ¢] are defined by a set of functions
£ R (Xye 5. I”E)} s the properties of which will be elaborated

below,
Let us define the operation of conjugation

(900)= (¢l )= pter)=Ble) . e

Then for the operator /e in (2,.10) we obtaln the following
expression

R¥[¢]=Z ;‘ff]:"f"'ﬂ% E*(z’f""’z”ﬁ)'
R
: ,7-‘(¢(/'2;f)-.. ,@/’T»A‘)),

Now we determine the operation of multiplication of two operators

gj [®] and AZ [®] of the type (2.10) by definition:

(2.12)
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3. The State Space at Imaginary Time

Let us define the state spaoce N of the system as a set
of veotors of the type

W= Rlp] [o> , (3.1)

where E has the form (2.10). It willl be assumed that the
state (3.1) 1s given if all the funotions E,, (2‘75; s Xpe )
determining the operator £ /%7 in (2.10) are known.

Notise that any state in the Fock space f must be repre-
sented in the way (3.1) in the case of the corresponding choice
of the set of functions j K, (%,e,..., %,)}in the operstor R[]
since there exists a simple linear connection between sets of
basic vectors:

Jo> Jo>
at lO) ¢(1;[)IO>

a a,; o> T Pl )0d | G2
CL'?; af; 10> T(¢/ %) tpf«gf))/o)
Lo T 10D fr/m) ¢/g,)/o>

The appropriste formula of this oorrespondence can be easily

found, 1f necensary.
The most important here is the following: the Fook spaoe F

consists of vecotors of the type

ﬁk’ fdk 7Z/ /—, &;'"a[:’ /0) (3.3

but the space A of veotors



‘,V——-%%f/r,; fdz (e %, ).

. 71/@[2}’5) ¢//za£ )/)//0) (3.4)

Obviously, from representations (3.3) and (3.4) it follows that
the space F i8 a subspace of A , since some set of
mutually different vectors (different sets of functions Pn/---) )
from N corresponds to each veotor from F

In the scattering problem the initial state of the type
(3.3)is given at some T,=-7" » where 7 500 . In this case
such a state oan be written in the form

W)= n_ffai*fdf:, %, (2, %)
. T/¢/7_o/r P, "?r/))/o> )

whe re 7,1 /x_;)"';f.n) 1s connected simply with 75,, (A:;, »-,}(_,’,)
in (3.3). The state (3.5) can be also rewritten in the form
(3.4), where

’?{75) 'IE)- L, /JJ) )[/J-/?"—lo)

(3.5)

The norm of state vectors from ‘/\f is given by

// %//2:/% V): \"0/,\9*/¢]([¢]//D) =
(3.6)
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It is known (see /6’8/. for exanple) that for a free Euoclidean
rd



fleld there exists such a Gaussian positive measure Jf?
that

S fle)- )= <ol T (o) &lme)lfos . G

Then the Euclidean norm (3.6) 1is

T R < .
where the functional K’[FY is given by

E[’F]:% nl';ﬁzrf“‘fdxns e,(‘(m:‘"} rns_)f/-'c,f)--- 7((1‘,,5) .

Therefore, functions ;(7,,/2“,5,--- »X,z) must be such that the
norm (3,8) 1is finite,

So, we have constructed the state space Jlf s which inclugdes
all vectors of the type (3.1) for which the nom (3.6) (or (3.8))
1s finite. Furthermore, the operators K /@] (2.10) have been
introduoced for which the operatlons of conjugation (2.12) and
multiplication (2.13) are defined.

4, The Interaction lamiltonlan and The Evolution Equatilon

The dynamics of a quantum field system 1s described by
the Schrodinger equation. In the interaction ploture it has

the form
L% WYie) = %4 () W) (4.1)

with some initial condition:

(4.2)
=Y
wit) =Y,
Passing to imaginary time +—>-(T we get
el — v
(4.3)

Vi )=y,



It 18 customary tou ocall the equations (4.3) as evolution
equatiors. .

in the loocal quantum field theory interaction Hamiltonians
are usually of the form o2 pelynomials in the field operators.
For exsmple, for the self-interaoting scalar field we have

H, (f):jfdf‘ Wi, #) (4.8

or in the imaginary-time formulation
_ = AV (4.5)
Hzlf)—jr‘“ @ /T,l‘).

If we look for a solutlon of the equation (4.3) with the
Familtonian (4.5) in the form (3.1), then we have standard
prodblem of the local quantum field theory with all its difficul-

ties.
Consider now the quantum fleld theory wlth the nonlocal
interaoction. Introduce the spreaded fleld:

B (x)= ¢ (2 B)=[dy aly®)D(T+E,T1F) (.6

- 2 2 —;2
where Ye=(£F), 4 =FE"+F and a/ﬁfz,,)
1s a real function, the properties of which will be discussed

iater.

Let us calculate the cousal Green function of the spreadec
field (having in mind that the T—orderiung symbol concerns thc
field PHrz) It

Blig )= <o/ T o) Bz ) 0 = Joo, [, 2l4)ay?)

T (Bt 1) Pty o) = Pl J4,200aY) o

ik Y 2
) . e G (XY~ T Zor )z ﬁ/f []//‘;2)]8__ 4l _{7_5)
1
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where .
- l2) o E
X/ﬂ":)‘f"% a"”"f) € . (4.8)
We shall assuwme that the function a/j;} 45 chosen

8o that the X («?) 1s an entire analytio function in the
complex £2- plane and that it inoreases so rapidly as A’:—n”

that 2
é%év== JZG éziffgiiz & Do

@’ T . .9
Instead of the interaction (4.5) we write
I 707= g (47 ¢ ) =

H 2] ﬂq/ N T/I 9?2 /z,'z)/ (4.10)

K

- ofee 1 oo, al)T( T S, 227).

Therefore, the interaotion Hamiltonian (4.10) belongs to the olass
of operators K[¢] (2,10). Notice that the interaotion Hamilto-
nian may be ohosen in the normal form:

H [re]=gfe: T{p )} =

(4.11)
¢
= [Jx" 7"/994 (7 %)~ 6¢;2/zf’)2/4)f322/g)}
where Do) 1is given by (4.9). In this case
<o/t AL To,@7: /)= O.

Using the representation of the state vector 7//'(1“) (3.1)
we shall write the evolution equation (4.3) for the nonlocal
interaction (4.10) or (4.11) in the following form:

@% LCle, o] /cS = —776[1%’-‘/\"%@.7]/0) N CRE)



The operation of multiplication in the right-hand side of (4.12)
i1s defined by (2.13). The initlal condition for equatlon (4,12)

V)= lee] /0= [#] /) (4.22)

So, the obtained evolution equation 1s retarded, sinoe the
"time® 7  in the nonlocal Hamiltonian A (7) (4.10,4.11) may
precede the times in field operators K'[Z',p] « However, the
T—ordering operation in equation (4.12) arranges the times

appropriately.
Equation (4,12) with the 1initial condition (4.13) may be

rewritten as

L RIte]=-T{Hmelllt97),  ©“9
RIG,o]= L[] (4.15)

Notioe that 1f the solution (4.15) 1s written in the form L/77)
then 1t does not satisfy the condition

RITG)= RILT)R(5,T,) (< <7),

where multiplication 1s understood in the ordinary sense. This
is an immediate consequence of nonlocality of the theory.

Nevertheless, the Cauchy problem for equation (4.14) can be
formulated.

If we introduce the space out—offs 9-39 (%) 1n order to
got rid of the 1ifficulties caused by the Haag theorem, the
Hamiltonian HI [T ¢ ] represents an operator in the considered
space A . We have

H, [To7= a'f;g/;}_.T/fgﬁ‘/(// F)]: (4.16)

Conslidering the norm of the state
W= H [Te] oy

we get
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1= <o/ T H [z0] H, [Z071 /03 =

=[5 (145 gt )p05) 6 9¥-2) <6.9%) o] < oo

Therefore, the ultraviolet catastrophe i1s absent in the oonside~

red nonlooal theory.
Let us tyrn now to the solution of equation (4.14) with
the initial ocondition (4.15). The solution is given by

Rl #7= T{ezp/: fw’%{ [t/e] ] Rlo. } (4.17)

For the state vector we get

Vo= Rl S”]/O) . ’ (4.18)
The norm of state V/Z‘)T(hla) equals
IV fgyorffe s} ferey o

1f the Hamiltomian /4, /2, /] 1n (4.19) s chosen in the fomm
(4.16), then owing to (4.11) we have

HLITE] > -69%) [az9t2).
For the morm (4,19) we gst

/ V)< [ exp }f 6(7~7; )2%0) f dZ9(%) } ) (4. ao)‘

So, we see that the solution exists in the state space A/
Uniqueness of ths obtdined solution follows straightforwardly

from (4,17).

The obtained solution (4.17) produces the S-matrix that
coincides oompletely with the S-matrix construoted and investige-
ted in ref.” ™,

13
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