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I. INTRODUCTION 

Recently it has been realized that perturbative QCD is 
a reliable tool to study the elastic lepton-hadron and hadron­
hadron processes at asymptotically large momentum transfer/1 -~1 

The most detailed analysis was performed for the simplest 
problem - the asymptotic behaviour of the pion form factor, 
pion treated as a bound state in a q q -system 15- 81 . In .. · 
refs/5,6,8/ it was shown, in particular, that for sufficient­

ly large momentum transfer q=P'- P, the amplitude T(P,P') 

related to the pion form factor may be written in the facto­
rized form: 

I 
, I . • 1 Q2 ..£.: 

T(P,P )~ f dx J dy¢ (y.~.~ ) -E(2, 
2
,x,y, a (J;.R)) x 

0 0 R q ~ ~R s 
(I. I) 

where Q 2 =-q
2

, J< R is the renormalization parameter of the or­

dinary R-operation, ¢ is the wave function describing the 
splitting of the pion into a qq·-state and .E/Q 2 is the am­
plitude of the short-distance (SD) subprocess qqy* ~ q~ij'. 

This picture (see Fig.la) works to all orders and for all lo­
garithms of perturbation theory (PT). A similar representation, 
as is well known, holds also for inclusive cross sections of 
some hard processes·IS,!O/. The splitting parameter 1/Jl. in eq. 

P'- p 

p 

a) b) c) 
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(1.1) separates, as usual, short and long distances (or, using 
another language, ~ is the renormalization parameter for the 
vertices .ifjy5 y

11
rf ljJ corresponding to composite operators). 

In pr1nciple, the product ¢*® E 0 ¢ does not depend on 
a particular choice of p. and ~'-R. In practice, however, one can 
calculate only a few first terms of the perturbative expansion 
for E( ... a

8 ) and the resulting expression will depend on 11 
and p.R.Furthermore, the calculations may be performed in various 
renormalization schemes and one can also use various recipes 
(schemes) for separating the contributions into G 2- and p2 -
dependent factors, and the results will depend, of course, on 
the schemes chosen. 

In the lowest order the SD-amplitude E (see fig.lb,c) is 
given by 

(I • 2) 

and Nc=3 are the usual colour factors. Thus, 

1 

f ~X¢(X,f',f'R)t2 
0 

(I . 3) 

To this order, .E has only an implicit dependence on 11R 
(through as ) and does not depend on Q and f.L· A logarithmic 
dependence on ~.f.L,f.L~ appears only in the next order. These 
logs (JnQ2/f' 2,!n Q 2/l'~ 1 tend to compensate the 1'- and I'R-
dependence of FJ0) . It is clear that for some chof.ce of f.L , 
f'R the lowest-order term F~O) (Q; I', f'R) may strongly differ 
from the "true" value of F17 (Q) (which is the sum over all 
orders), and in this case the higher-order correction to .F~0 ) 
will be large. A natural question is how to choose ll and f.LR 
in such a way that these corrections are as small as possible. 
If one takes, e.g., f.L=flR=Q then E is free from lnQ2/p2-
and InQ'o/fl~- fac·tors which may be responsible for large 
higher corrections if Q >> p,f.LR or Q <<~ .~ R .. The meaning 
of the choice f1 R"" Q is clear: one must equal ~ R to a scale 
characterizing the virtualness of the particles taking part 
in the SD-subprocess, and the latter is proportional to Q2: 
<~>-- a2Q2. Taking 'p.~ =-<k2 > we include vertex- and profa­
gator-correction into the effective coupling constant a 

8
(<1k 1>). 

In a similar way, the notation !ft(x, (.1.2) implies that the 
pion wave function is probed at distances of the order of 1/p, 
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so the ID(Q2 ;~ 2 ) -terms indicate that ~ must also be propor­
tional to Q. 

However, if the ratio a2=<k2>/q 2 is very small (or 
large) compared to 1, then the perturbative expansion for 
F

17
(Q) will contain lna2 -terms, and the choice fl""'~R = aQ 

is more preferable. In particular, if quarks inside·. the pion 
have roughly equal fractions of the pion momentum (i.e'., if 
¢(x)~o(x-1/2)). then the momentum of the exchanged gluon 
~fig.Ib,c) is q/2 and the expansion of F"(Q) over a

8
(Q/2) 

~s the most natural one. Of course, 1/2 does not strongly 
differ from I. However, for accessible momentum transfers 
( Q$ 2 GeV) the difference between a=l and a-1/2 · is very 
essential. 

The wave functions ¢(x.~ 2 ) describe the long-distance in­
teractions, and this means they cannot be reliably calculated 
in PT. Perturbative QCD predicts only their evolution with 
growing ~ 2 /3,5/, In ref /11 1 it was shown, in particular, that 

(I. 4) 

as fl 2-+oo. Here f 17 ,.. 133 MeV is the pion decay constant. It ap­
pears due to the normalization condition11.2/ 

1 2 
f¢(x,f)dx=f" 

0 
(I. 5) 

However, for fl 2:5 I GeV the wave function ¢ (x, p. 2 ) may strong­
ly differ from its limiting form (1.4). For non-interacting 
particles having equal masses one may expect that ¢(x) ~o(x -1/2). 
When the interaction is switched on, the wave function (w.f.) 
broadens (Fig, 2). The width ro of the "soft" wave function 
¢(x,M 2

) (where M~l/R confinement ~ 200-500 MeV) may be esti­
mated as 

(I .6) 

where Eint characterizes the strength of the interaction and 
mq is the typical mass of constituents~ Hence, for hadrons 
built up of heavy quarks (e.g., for J/.P and Y-mesons) ¢(x,Ml 
is rather narrow since E tnt - M ~ 0, 5 GeV and m4 > I GeV. On 
the other hand, the pion w.f. must be very broad since IDq-<<M. 
One can also estimate the width of ¢ 17 (x.M 2 ) using the data 
on the pion structure function: f-; (x,Q 2 )~(1-x) for Q2~ 
30-40 GeV 21121 Starting with the qw~l1-known relation valid 
in the X- 1 region 
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IJ 2 2 A2 2 2 (Q ,M ' ! 
f (x,Q ) - f (x,M )(1-x) 

(I. 7a) 
2 2 2 

IJ(Q ,M ,A )~ 

16 (I .?b) Q2 M2 
(In In -:i"2' · - In In --) 

A A2 

/13/ (see, e.g., ref. ), we ob-
tain that IJ::: 0.6-0.8 for 
A~o.l-0.2 GeV. Using the for­
mula f(x,M2)- ¢ 2 (x,M2) we 
obtain ¢ (x,M 2)- (x(1-x))0.2+0.!, 
i.e., a very broad w.f. 

Note, that the amplitude (I .2) is singular for x,y = o. 
Hence, for sufficiently broad w.f., the main contribution into 
the integral ( 1. I) is given by the region x ,y <<1, where xQ 2 
and xy Q 2 (i.e. , the momenta squared of quark and gl uon 1 ines 
r~lated to the SD-subprocess) are much smaller than Q2 or, in 
other words, the distan~es at which the pion w.f. is really 
probed (r2- 1/xyQ2 + 1 !X Q ) are much larger than the most 
naive estimate r- 1/Q . In such a situation the choice 112, 
fl

2R- xyQ
2 

+ xQ2 should be favoured over the naive choice 

11 2•11~-Q 2.ro find a -particular choice that provides the best 
convergence of the a: 8 -expansion, we must know E(x,y) at least 
in the next-to-leading order. 

In this paper we present (in Sec.2) our results for the 
O(a 2 ) -contribution into the SO-amplitude E(x,y ). In Sec.3 we 
dis~uss the magnitude of the resulting corrections to the pion 
form factor F77 (Q). We analyze, in particular, their f.L •f.LR­
and w.£.-dependence. We observe there that for a broad w.f. the 
C'?rre.ctions are very large if we take IJ. =f.L R .. Q. but just as 
expected, their magnitude is much smaller if we take IJ.2, J.l-2 
of the order of xyQ 2 + xQ 2 . The perturbative QCD-analysis rneg­
lecting power corrections) may be relied upon only if -all 
"large" variables (e.g., .<xyQ 2>. the average virtualness of 
the exchanged gluon), are larger than I GeV2·So, to analyze 
where the perturbative QCD breaks down, we study in Sec.3 also 
the Q2-dependence of <xyQ2>. In Sec.4 we discuss the struc­
ture of higher-order .corrections. In conclusion, we give a short 
summary of our results and formulate some further problems. 
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2. THE SHORT-DISTANCE AMPLITUDE IN THE I-LOOP APPROXIMATION 

The contributions of the multi-loop diagrams contain Qsu­
ally ultra-violet (or renormgroup) and mass logarithms, i.e., 
terms (a lnQ2/~~)N and (a lnQ2!p2f", (a Jn2Q2/p 2 ) res­
pective!;. The RG logs appe~r after the ~ubtraction of the 
UV-divergences, whereas the mass logs are present in some 
UV-convergent integrals. We assume that all masses are zero, 

and the IR cut-off (its magnitude is characterized by p2 ) is 
provided, e.g., by the non-zero off-shell~~sses of the exter­
nal particles. To establish the factorization theorem (1.1) 
one must prove first the cancellation of the double-logarith­
mic contributions (a

5
ln2Q2;p2)N . The remaining single-loga­

rithmic terms (a 
5
ln Q 2; p~ N are sp li tted then into the "short­

distance" and "long-distance" parts: lnQ 2/p2...lnQ 2!J.L2 +lnp.~p 2 . 
Then one must prove that these logs form two fqctors, i.e., 
that the amplitude T(Q2,p2), 

2 2 y lnQ /p ) + 
1 

where 

(2. I a) 

(2. !b) 

(2. I c) 

A detailed discussion of the factorization machinery may be 
found in refs _15,6,8-10/. 

In eq. (2.Ib) it is taken into account that the i -factor, 
usually·related to matrix elements of some local operators, 
contains in general a constant non-logarithmic term·~ a 1 . 
Hence, to find the 0( a 2 ) -contribution into K, · oile must calcu­
late the 1-: loop diagra~s bo'th for T ( q, p ) (i.e., for a process 
q·{i'y*-+ qQ ) and for matrix elements of the relevant operators 
(see eq. (2.1c)). Note, that if the IR cut-off is provided by 
the nonzero off-shellnesses of the external quarks, then both 
t 1 and a 1 are not gauge invariant and only the difference 
e 12 t -a does not depend on the gauge·; choice (see ref~/ 141 ) . 
In QCO, tfie most convenient IR cut-off is baSed on the dimensi­
onal regularization 

---~ 

ct\ d 4: 2< .k (2.2) 
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combined with the subsequent removal of the 1/£ -poles 
(these correspond formally to In(J.t2/p2) lp2~o ) • Our choice 
(2.2) corresponds to the Ms-scheme 114/ The 4"e-YE -factor 
compensates the artifact .contributions ln(4rr) and YE present 
in the standard minimal-subtraction (MS) scheme. External 
lines are now taken on-shell: p2 ""m2 == 0. Hence, the original 
non-regularized amplitude is(formally) gauge-invariant. The 
dimensional regularization preserves the g8uge invariance, 
hence tl is also gauge-invariant now. Furthermore, if' one uses 
the IR cut-off based on eq. (2.2) then, according to a straight­
forward calculation, ~~o and it is sufficient to calculate 
only the 1-loop diagrams for the SO-subprocess qq:y* .... q~q~ 
(cf. refs/15.16/ ). 

A few words about kinematics. The initial state quarks have 
momenta xP.(l-x)P and the final state ones - yP', (1-y) p', 
Moreover, p2= p'2 .. 0. The pion form factor is usually defined 
by 

<P'I J,(o) 1 P> ~ (P,, + r,; )F" (O). (2.3) 

It is convenient to get rid of the v-index multiplying eq. 
(2.3) by P,; , i.e., to define F" by 

op• 
F (Q)~~<P'I{CO)IP>. 
" o• 

(2.4) 

If we adhere to this definition, then the total lowest-order 
contribution into F"(Q) (see eq. (! .3)) is given by the diag­
ram lb only. The contribution of fi.g.lc is zero, because the 
photon vertex P''-factor "kills" the y 5 p~ -factor due to the 
matrix element of. the final state iP'y5y..\Dnt/, -operator. 

We work in Feynman gauge. To remove the mass singularities 
we use the recipe (2.2). For the UV -divergent integrals we 
also use the dimensional regularization 

4-2£ 
( d k 

(2 rr) 4-2 < 
(2.5) 

and 't Hoeft's renormalization1171. It is worth noting here 
that in our calculations all integrals either have mass singu­
larities or are UV -divergent, but not both. Our results for 
all relevant diagrams are given in Table 1·. The di'agratl).S not 
included therein give zero contributions for just the same 
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Table I 

1 ,, l \ -cFy~y\_l(X)+ eny /2. +1J /y 

2. I:I: -CF X~"'-\_ l \1) ~ ~ny / y + tn x /2. + ~ J /X. 

3 ~ -(cl'- CA/2')( ~ l x y) - n 2/ 6 + l!"\xyl ... 2. Uxyl + 4] 12 

4 •x ( cr- CA/'2.) \_L' t:xy )-1f2/6 + 2Llx 9 )+ 2. en y /y . ( l l?<.) + 

+ V.ny/2+ 1) + 2 eny (._ Ll.x.)+ en'j/2+1)) /2. 
') <;;;":? ( CF- c,;z)[ l 2

\ :iCy)- "!1'2/6 + 2. L\y) lhen x/x J -2. eny (llx)t 
djli;""' 

.; en'y"/'2. + 1/ - 2 l 'i:-'1) ( s (x,y) + tn >. ~"Y /(X y"Jr- {n2 x /x+ 
' 2.odn X /X + 2 en X + 2 e,. ""]/2. 

b ~ - ( CF- CA 12) [ 0 (:x y )-n 2/6- 2 L\iy) + 2L\x) ( 1+yf.ny /9) + 

+II I x,y)+ y en'y /y + xy ~ny /tx 9) -'fe""\xy)/Lx9 l + 
4 X en:>< /'X + t..,l'i'i)+2 J /2. 

7 l ( CF- CA/2 )( 2. Ll"Jl) ( 1+ 'I eny ly) -IJ"1\X)+ y1n'y I y-
-yeny /y- 2112. 

8 'A CA [ ~ ltXY)- 3L\R)\X~)+2.J /4 

9 'y CA ~ 2. L\oc) ( h ~y /y) 3l1R\:x.)~ ~2y /~ + ~ny +4) /t;. 

10 y cAt 2.lt1) (\~en""-/x)+e..,2 or./i:+2.:d~ • .,"~"Yhi7J> 

+ Hn x - 2.] I 4 
H ~1 -CF LLIRl(~)- xe"'"-/::x.- ~1 /2 
11 ' ::::J__ CF~ l IRl(:x.)- ~J/z. 

n • ~ -5cAtL"1 L""~l- -,1/15] IG +tfl-( l 1"\xy)-5!3]/3 

14 l -\c f- c A 12) l A l )', x) + ( 1- 2.:>.) q_, '/ /l'J.. y 1] 12. 

~s l~ CF tny/l2y) 

reason as the diagram shown in fig.lc. The total contribution 

is 
(r) 2 2 2 2 2"CF •o -

E (x,y,a
8

,Q /~ ,Q /~R) ~ a 0{1+-[C ((2+lnx)L(yxy)-
N c xy 211 F 
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-5~3) + (C -c /2) 1 [ f:Y +X
2 x (Sp(x) -Sp(x)-

F A (y-x)2 y-x 

-ln i ln y) + 2 xy ln x + (X+ y- 2xy) ln x] + I x <+ y Ill , 

where X~ 1-x , Y~t-y 

CR)(a) =ln(aQ 2 II' 2 ) and 
R 

I d 
Sp(a) ~- f 2!n(l-az). 

0 z 

CAeNc•3 , L(a) = ln(aQ2 11'~ , 
Sp(a) is the Spence function 

(2.6) 

(2.7a) 

TJle functions ·A(x,y)and S(x,a),present in Table I, are given 
by the formulas 

_A(x.y)- [ 2y2y S(x,y) -y(i3y-x) ln(xy) + y 2 (3y-x-2)1n(xy)/y] 

I (y-x) 2 

S(x.a)- [Sp(x) -Sp(X) + Sp(a) -Sp(a) + 

+ lnxlna -lnxlna]l\x-a). 

Note, that although there are terms containing 
eq. (2.6), E<O(x,y) is not singular for x-y. 

3. THE STRUCTURE OF I-LOOP CORRECTION 

(2.7b) 

(2.7c) 

-3' 
(y-x) in 

To get a notion about the structure and magnitude of the 
1-loop corrections, let us represent F rr (G) as 

0) a ~R) o F (Q)-F ll+ s B(Q,f',f' )+O(a-) I, rr " rr R s (3. I) 
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where .F~O) is the lowest-order contribution eq. (1.3) and 

(3.2) 

The term in the square brackets in eq. (3.2) correspOnds to 
the contributions which tend to change ¢ (X, r 2) ~ ¢ (:<:, ai j;l2J 
whereas the ln Q2/ r~ -term t<:nds to substitute g(r R) by 
the effective coupling constant g(a 2Q). We emphasize that 
there are no a priori grounds for taking a1 and a2equal to I. 

The coefficients A and C depend on a particular choice 
of the wave functions ¢(x), ¢(y). To analyse this dependence 
we use the simplest p~rameterization 

The 
lization 
is given 

I 
0.5 
0.2 
0.1 
0.05 
0.01 

r(2+ 2r) 

r 2 (l+r) 
x' (1-x)'. (3.3) 

I 
2 . tn.r r -factor ~s 

condition (1.5). The 
in Table 2. 

necessary to satisfy the norma­
magnitude of A and C for some r 

Table 2 

A c 2 - 2 BCr =v xyQ l 

0 +7. 25 +3.04 
+1.2 +13.4 +2.32 
+5.0 +54.4 +0.39 
+11.5 +204 -2.63 
+24.8 +803 -8.53 
+131 +19953 -55.2 

If we take a 1=a2=1 (i.e., fJ.""fJ.R'""' Q ), then the magnitude 
of the O{a ~) -correction is proportional to that of C. From 
Table 2 it is seen that even for r=l, i.e., for a rather nar­
row w.f., the correction is rather large: ·B=C-= 7.25, i.e., 
70% - correction if a

8
/rr- 0.1. As it was argued in the Intro­

duction, the best choice for a narrow wave function should be 
r 2 =r ~ = Q 2/4 +Q 

2/2. Really, if we take r~ ~: in this in­
terval, then ·B= 4.1 +5.7, i.e., the O(ai) -correction is 
smaller, just as expected. Strictly speaking, the choice 
ll 2 =f.I.~=Q 2/4 + Q 2/2optimizes the convergence of perturbative 
expansion only if we use a "physical" or "momentum-space-sub-
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traction" scheme, i.e., if g(ji) corresponds to a vertex 
with moment~satisfying k~=-11 2 . The meaning of the parameter 
~R in the MS-scheme that we use is less transparent. It is 
known, however, that if one expands the effective coupling 
constant g.(fL) (related to the i -th scheme) over In-l(l'2fA2) 

' 

(3.4) 

then the series expansions obtained for a renormgroup-invariant 
quantity like F"(Q) in, say, i -th and j -th scheme differ 
only by rescaling A1=K iJ:Aj, where Kij is a universal number 
relating these schemes. n particular, ApH weakly depends 
on the vertex chosen to define g pJfl'): A pH/ A-~ 2 (see 
ref . 1 191 ) • This means that the choice 1'2- I' i( MJ Q 2 /4 .;. Q 212 
in a phY.§.ical scheme corresponds to the choice 112:1li =Q 2/1&.-Q 2;g 
in the M~-scheme. For this choice B""t.o.+z.6 for r = 1, i.e., 
the O(a~)-correction is now sufficiently smaller (10+26% if 
a / rr = b. 1 ) • 

As r decreases (i.e., as the w.f. broadens), the.coeffici­
ent c (and, consequently, the magnitude of the o~;)-correc-
tion for I'~I'R = Q ) rapidly (like 1./r 2 ) increases. At 
the same time (though not so very fast, only like 1/r ) increa­
ses the coefficient A. Fot very small r, the main contribution 
into A and C is given by terms which are more singular at 
X=y =0 than .E 0 (x,y). To estimate these terms we represent 
E 1 (x,y) in the following way 

(3.5) 

2 xyQ2 c 
-(11- -N 1)In(--)+ ¢(x,y)-2(C - -2)In(<y)Jl, 

3 ,. 2 F 9 rR • 

where ¢(x,y) is regular for x~y=O and does not depend on 
I' , ~'R and Q . 

The SD-amplitude E (x,y) depends in particular on momentum 
invariants xQ 2 , xyQ 2 , y ~ 2 containing x, y and that 
is why there appear lnx and lny terms. Mass and renorm­
group logs differ in their origin, so it makes sense to con­
sider them separately. 
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The most simple structure have the correctiOns to the gluon 
propagator (see diagram 13, Table 1). They depend only on xyQ2 
The gluon propagator renormalizes multiplicatively, and this 
means that the corresponding log corrections ill(xyQ2/~j) 
will exponentiate in higher orders. Thus, if the appropriate 
choice of ~R reduces considerably the magnitude of the 1-
loop correction, then the higher-order corrections also become 
smaller. Note that in an Abelian theory (e.g. in QED) the be­
haviour of g(~R) is completely determined by that of the re­
normalized propagator of vector particles, and the most natu­
ral choice for J.LR in this case is p.:= xyQ 2 (in a phys.ical 
scheme). The average value of J.L~ for such a choice may be 
easily estimated if we define the 1-loop correction due to 
the ln (xyQ2/ 11:) -term to vanish for p.~=<11i>· This gives 

(3.6) 

where 

ld ldx 1 
<x>- exp(< lnx>) ~ exp!(J--.! ln x ¢(x))( f -¢ (xW I 

0 X 0 X 
(3.7) 

-5 -3 
For smallr we have <x>-exp(-1/r), e.g.,.<x>=5·10 (7-10 ) 

for r=O.l (0.2). 
In QCD, the effective coupling constant g(~R) depends 

both on the renormalization constant of the quark-~luon ver­
tex and of the quark propagator. Thus, to find <11R> in this 
case we take the sum of all terms ln(xyQ'J~~) , ln(xQ 21~ji} , 
ln(yQ 2/r~) present in the UV-divergent diagrams 3,7-9, 
11-13 (Table 1). A simple calculation shows that for small r 
this sum vanishes if we take 

2 64-4Nr 
r 2R = < r 2R > = Q exp [ - .1. -:-::-=-=-1 . 

r 41 -lN1 
(3.8) 

If Nr:; 6, the exponent in eq. (3.8) is close to (-3/2r ). In 
other words, these corrections are minimal for 11i_"""<x;312 Q 2 , 
i.e., when <11i> is equal to the geometric average of quark 
and gluon virtualnesses. It is easy to note, however, that 
the contribution of the RG-logs into C rises only as· 1:/r 
for small r. Hence, the main contrib:ution (0(1/r2 )) into C is 
given by mass logarithms. The largest contribution, equal to 

c 2 (;2 
J(ln (xy) +2ln(xy)ln-) 
2 ~2 

(3. 9) 

ll 



is given by the diagrams 9,10 (Table 1). Similar terms appear 
also in the '1nonplanar" diagrams 3-6 (Table I), but they have 
a colour factor(CF-CA/2) which is 9 times (9=N 2) smaller 
than that of the diagrams 9,10, in accordance wiih the rules 
of the 1/Nc -expansion1201 

It is easy to c·alculate that the contl-ibution (3. 9) va­
nishes for 11- 2="V xyQ 2 , The average value of 11- 2 in this case is 
given by 

(3.10) 

So far we have analyzed only the 11-- and/1-R-dependence of 
the f -loop corrections toE for fixed wave functions.In fact, 
these also depend on 11- and 11-R, e.g., in the leading lo-
garithm approximation it is possible to·show that for JA-•!1-R 
and x close to 0 

2 2 I ¢(x.11 ll :.¢(x,l1
0

)exp lnx x 
x-0 

2CF 
x (--In 

bo 

(3. II) 

In other words2'· the exponent· r(JL 2 ) in the parameterization 
¢(x.112)- xr(J.t ) grows with growing 11 2 . On the other hand, 
<x> and<~>(see eqs. (3.6), (3.7)) depend on r, i.e., on the 
foim of the w.f. Taking ~"<112> in eq. (3.11) we obtain 
a system of two equations. Solving it we obtain the Q 2-depen­
dence of <p.2 > and this enables us to estimate the magnitude 
of<k2 > (the average viltualness of lines inside the SD-sub-
process) ~or various Q . 

If l<k >I:': I GeV 2 then PT usually does not work. In par-
ticular, if i\PH;; 0.5 GeV then the coupling constant a 8 (-.<k~) 
is rather large in this region and the expansion over a 8(-<k2>) 
is meaningless. However, even if A :S 0. 1 GeV and the pertur­
bative expansion converges rapidll enough, this expansion is 
spoiled by power cort·ections O(M /<k~) which cannot be 
neglected for -<k 2 > ;5 1 GeV 2 ( M as usual, is a typical had­
ronic scale: M -1 /Rconr- 500 MeV). 

To find the explicit dependence of <11- 2> on Q ~ one must spe-
cify the parameter i\ in eq. (3.11) and ¢(x,l1~) at some 112. 
Note that from eqs. (1.7) and (3.11) it follows that iff(l-x,M%­
-cf>2(x,M2) then for x ...... 0 this connection is not affected by 
scaling violations. That is why we take r (JL2= 30 GeV2)= 0.5 
(see the discussion after eq. (1.6)). If we choose i\PH= 0.1 GeV 
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then <112> = I GeV 2 for Q 
2 = too GeV 2 .If we choose a larger 

value for A pH then <J.L 2 >... 1 GeV2 is satisfied at larger <;;; 2 
(at Q 2 - 200 GeV 2 for A- 0.2 GeV and at 0 2-3000 GeV"for 
A~ 0.4 GeV). If ApH is smaller than 0.1 GeV then <~2:>- I GeV

2 

is satisfied at smaller Q 2 (atQ2 = 60 GeV 2 for A= 5o MeV, 
at Q 2~so GeV 2 for A~ 30 MeV and at Q 2 = 40 GeV 2 for A= I 0 MeV). 

Thus,for any reasonable choice of ApH a simple~inded 
PT can be used for calculating Frr(~) in QCD only in the 
region Q 2.? 100 GeV ~This value is much larger than the lar­
gest now accessible momentum transfer Q 2 ::: 4 GeV 2. If the pa­
rameter APH is sufficiently small (A pH'$. 0.1 GeV, say) then 
PT is spoiled only by large power corrections, which reflect 
essentially the fact that the pion has a finite size. There 
are also power corrections due to quark confinement and other 
nonperturbative effects. Hence, to understand the behaviour of 
F

77
(Q) for moderately large Q 2 one must take into account the 

power corrections in some way (e.g., phenomenologically). 
A preliminary estimate made by one of the authors (A.R.) shows 
that even making the simplest assumptions about the.structure 
of power corrections gives for .F (Q) a curve which is in 
a satisfactory agreement with exPerimental data in the re­
gion Q2 = H-4 GeV "'2 *. It is worth noting here that if one simply 
extrapolates the asym:ftotic formula (1.3) for Q2Frr (Q) in 
the region Q 2 ~ 4 GeV , then, for any choice of the wave func­
tion, the resulting curve crosses the experimental one 
( Q 2 F exp(Q) ::: 0.4 GeV 2) at roughly a right angle (see 
ref. 177). But, as we have seen in the present paper, there is 
no justification for such an extrapolation, and the drastic 
disagreement mentioned above should not be treated as an evi­
dence against QCD. 

4. STRUCTURE OF HIGHER-ORDER CORRECTIONS 

The minimization procedure for the 1-loop correction desc­
ribed in the preceding section makes sense only if the terms 
most singular at X=y = 0 in higher orders of PT are comple­
tely determined by those of the 1-loop approximation. Other­
wise decreasing the 1-loop correction (which, as we have seen, 
can always be made zero by an appropriate choice of ~ ) may 
not result in reducing the multi-loop corrections. So, now we 
want to discuss the structure of E(x,y,fl,Q) in higher orders 
of PT. 

*A detailed discussion of this problem will be given else­
where. 
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In particular, the ~-dependence of E can be derived from 
eq. (3.11) using the fact that the product ¢ s .E s ¢ (see 
eq, (!. I)) does not depend on I'. Note that in deriving eq. (3. II) 
we haVe alSo taken into account the RG-logs, i.e., the depen-. 
dence of a 8 on _JJ. R · If this dependence is ignored, then 

2 
2 as fl 2 2 

¢(x,l' )[ -expi-CFlnxln-2 +0(a )i¢(x,J'
0
). (4.1) 

x-D 2rr /1-o 8 

a Q2 
This means that the !-loop term Cp-8-ln(xy) ln - from 

· 2rr 2 
eq. (3. 5) exponentia-tes in higher orders. Thus, t1fe choice 

p.
2 

= fiyQ
2 

reduces the higher-order corrections only if. the 
1-lo.op term (a

8
CF!n2(xy)) /.h from eq, (3.5) also expo-

nent1ates. 
A similar problem arises also in the analysis of T(q,p), 

the forward Compton amplitude (as is well-known, T( q,p) can 
be related to the deep inelastic cross-section). For T(q,p) 
one has a representation similar to eq. (1.1): 

- 2 1 dx 
T(P,q) "T(w,Q )- J -.E(xw,Q,J',J' ,g)f(X,J',J' ,g). 

0 X R R 
(4. 2) 

We recall that q 2 ~-Q 2 , w- 2( Pq ) I Q2 and the region [w[ < 1 
is analysed. In the lowest order E=(l-X0 )- 1 The region xw~l 
in this case is an analogue of the region x. y -0 for pion 
form factor. In the next-to-leading order the main contribu­
tion, equal to 

1 as 2 
2-- -C (ln 

l-xcu 417 F 
.(4.3) 

is given for Xw- 1 by the diagrams shown in fig.3a,b (Feyn­
man gauge is implied, as usual). From the results of a recent 

b) 

Fig.3 



paper 1211,it follows that this contribution exponentiates in 
higher orders. To simplify the analysis, the authors of ref!211 
have used the axial gauge (see, e.g., ref. 1101 ). In this gauge, 
the most singular 'terms (in particular, that given by eq. 
(4.3)) appear only in the generalized ladder graphs (fig.3c). 

It is easy to note that the contributions (4.3) and (3.9) 
as well as the diagrams where they appear (fig.3a,b and·diag­
rams 9,10 of Table I, respectively) have a similar structure. 
Furthermore, a straightforward calculation shows that in the 
axial gauge the terms having structure of eq. (3.9) appear 
only in the ladder diagrams 1,2 (Table I) and just with the 
right colour factor CF. Thus, there exists a full analogy bet­
ween the two problems. This practically guarantees the expo­
nentiation of the O(a

5
ln2(xy)) -term and, hence, the decrease 

of higher order corrections if the choice tt2= V"iY c;l is made. 

However, even for 112 ... yxyQ2 the 1-loop contribution con­
tains less singular terms O(a:1nx/(xy)) , O(a 21ny/(xy)) . s • which give 0(1/r)-contribution into B. Of course, tak1ng 

2 - 2 
fL = ay'xyQ with an appropriately chosen a it is possible to 
remove from B the term 0(1/r) also. But it should be remem­
bered that the 2-loop correction to anomalous dimensions of 
the composite operators (the O(a,(/'2)) )-tem in eq. (3..11) 
gives a con·tribution of the same order into· F

77 (Q). Further­
more, lt is well-known that both the 1-loop co'rrections into 
E and the 2-loop correction to anomalous dimensions dep_end 
on the chosen renormalization scheme (see ref. 1141 ). This 
dependence disappears only if one takes into account both cor­
rections simultaneously. Note that in eq. (3.11) the O(a 

5
(p.2 )}­

correction term stays in the exponent. This suggest that the 
O(a lnxy) -factor in E should also exponentiate. Otherwise 
. $ 
1t 1s very hard to understand how the scheme dependence is can-
celled. 

5. SUMMARY AND CONCLUSIONS 

Surnma!izing this paper, we may conclude that our analysis 
of the 1-loop correction shows that the .large corrections to 
F77 (Q) are mainly due to an unproper choice of the parameters 11 
and flR." The 1-loop correction is considerably reduced if we, 
make the physically most natural choice JL2, 11~ ~<k2>, where 
<k2 >is a typical virtualness inside the SO-subprocess. A pre~ 
liminary analysis of the general structure of the perturba­
tive expansion indicates that this choice reduces the higher­
order corrections as well. A very important problem is to 
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complete this analysis, i.e., to show that all lnx, In y -fac­
tors really exponentiate in higher orders. As a first step one 
must sum up the double logs (a

8
In2xy)N . Due to the re­

sults of ref : 211 the.re is no doubt about the exponentiation 
of theSe terms into the Sudakov exponent. However, a conside­
rable effort probably shOuld be made, to generalize this re­
sult for all non-leading logarithms. 

After the removal of the most singular 0 ~tn2 xy)/(xy)) 
term from the 1-loop correction ·to the SD-amplitude E(X,y) 

(this is achieved by taking p.2=V xy Q 2 ) , there remain 

O(L ln(xy)) -terms in E 1(x,y). These less singular terms xy 
give a contribution into F 

17
(Q) of the same order as the 2-

loop corrections to anomalous dimensions of the corresponding 
composite operators. Thus, a problem of primary importance 
is the calculation of these corrections. 

The analysis ·performed in the present paper shows also that 
for accessible momentum transfer·s the average virtualness of 
the exchanged gluon is very small compared to the typical had­
ronic scale M- 0. 5 GeV. In other words, for Q2 S 100 GeV 2 
the pion form factor is not a truly short-distance problem 
and to understand the behaviour of F17 (Q) for moderately 
large G2 (in particular, to clarify the true nature of the quark 
counting rules proposed in refs / 22·231 ) one should deve-
lop methods of taking into account the effects usually referred 
to as ,power (or higher-twist) corrections. 

The. authors are indebted to A.V.Efremov, V.A.Meshcheryakov 
and D.V.Shirkov for interest in this work and stimulating dis­
cussions. 
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