

объединенный институт ядериых исследований
 дубиа

V.A.Matveev, L.A.Slepchenko, A.N.Tavkhelidze

ANOMALOUS DIMENSION

QUARK COUNTING
AT LARGE TRANSFERRED MOMENTA IN QCD

Submitted to "Physics Letters B"

Recently a considerable progress has been made in studying the quantum chromodynamic corrections, that multiply the nominal point-like power asymptotics of the large energy and transferred momenta processes $/ 1,2 /$.

In this note we give a general formula called in the following the anomalous dimension quark counting rule. It determines the leading log's corrections to the canonic point-like asymptotics ${ }^{/ 3 /}$ of an arbitrary particle reaction at large transferred momenta in terms of active and passive quarks of hadrons participating in the relevant reaction.

For an element of differential inclusive cross-section we have

$$
\begin{equation*}
\mathrm{d} \sigma=\mathrm{d} \sigma_{0} \frac{(1-\mathrm{x})^{\mathrm{s}-1}}{\Gamma(\mathrm{~s})}\left[\left(\log \mathrm{Q}^{2}\right)^{\gamma(\mathrm{s})+\mathrm{r} \log (1-\mathrm{x})}\right]^{\mathrm{H}}, \tag{1}
\end{equation*}
$$

$\mathrm{d} \sigma_{0}$ is the corresponding point-like x -section, $\mathrm{r}=16 / 25$ (for $\left.n_{f}=4\right)$, and $s=2 n$ passive $=\sum_{i} 2\left(n_{1}-1\right)$ is the doubled total number of passive quarks (spectators) belonging to the participating in reaction hadrons; H is the total number of active quarks in hard scattering regime, which coincides with the total number of hadrons in reaction.

The quantity $\gamma(n)=-\frac{r}{4}\left[1-\frac{2}{n(n+1)}+4 \sum_{k=2}^{n} \frac{1}{k}\right]$ is the standard anomalous dimension (in one-loop approximation) corresponding to the nonsinglet part of the quark distribution (decay) function.

Let us consider now some illustrative examples of this formula $\left(Q^{2}, p_{T}^{2} \gg m^{2}\right)$:

Fig.1. Deep inelastic scattering $\mathrm{e}+\mathrm{A} \rightarrow \mathrm{e}+\ldots$;
$\mathrm{S}=\mathrm{A}=\mathscr{2}\left(\mathrm{n}_{\mathrm{A}}-1\right) ; \mathrm{H}=1$.

Fig. 2a. Inclusive jet production $A+B \rightarrow j+\ldots$ at large $p_{T} . S=A+B=2\left(n_{A}+n_{B}-2\right) ; H=2$.

Fig. 2b. Deep inelastic semi-inclusive hadron electroproduction $e+A \rightarrow C+\ldots ; S=A+C=2\left(n_{A}+n_{C}-2\right) ; H=2$.

Fig.2c. Prompt lepton prodiction $A+B \rightarrow \mu+\ldots$; $\mathrm{S}=\mathrm{A}+\mathrm{B}=2\left(\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}-2\right) ; \mathrm{H}=2$.

Fig. 3. Inclusive hadron production at large \mathbf{p}_{T} in $: A+B \rightarrow C+\ldots ; S+A+B+C=2\left(n_{A}+n_{B}+n_{C} C^{-3) ; ~} \mathrm{H}=3\right.$.

Note, in the case of the gluonic hard scatterers, the corresponding inclusive cross-sections can be obtained from eq. (1) by the following change: $S \rightarrow S+H, r \rightarrow r^{\prime}=36 / 25$

$$
\gamma(n) \rightarrow \gamma^{\prime}(n)=-\frac{r^{\prime}}{4}\left[\frac{1}{3}-\frac{4}{n(n-1)}-\frac{4}{(n+1)(n+2)}+4 \sum_{2}^{n} \frac{1}{k}\right]
$$

For example, the gluon jet production cross-section in hadron collisions at large $p_{T} A+B \rightarrow J_{G}+\ldots$ reads (cr. Fig. 2 a):

Fig. 4 . Inclusive gluon jet production $: A+B \rightarrow J_{G}+\ldots$; at large $Q_{T} ; S=A+B+1=2\left(n_{A}+n_{B}+1\right) ; H=2$.

In spite of the model independence of the presented anomalous dimension quark counting formula, the most simple illustration of eq. (1) provides its derivation in hard scattering model of the hadron constituents /4/.

Indeed, in the particular case of the inclusive jet produnction at large p_{T} in hadronic collision $A+B \rightarrow J+\ldots$ the hard scattering Ansatz reads

$$
\begin{align*}
E \frac{d \sigma}{d^{3} p}(A+B \rightarrow j e t+\ldots)= & \frac{1}{\pi} \underset{a, b, c, \ldots}{\sum} \iint d x_{a} d x_{b} F_{a / A}\left(x_{a}, Q^{2}\right) F_{b / B}\left(x_{b}, Q^{2}\right) \times \tag{2}\\
& \times d \hat{\sigma}(a b) / d \hat{t} \cdot \hat{s} \delta(\hat{s}+\hat{t}+\hat{u}),
\end{align*}
$$

where (see Fig.2a):

$$
\hat{s}=\left(p_{a}+p_{b}\right)^{2}=x_{a} x_{b} s ; \quad \hat{t}=\left(p_{a}-p_{c}\right)^{2} \approx x_{a} t ; \quad \hat{u}=\left(p_{b}-p_{c}\right)^{2}=x_{b} u
$$

and $\hat{d} \hat{\sigma}(\mathrm{ab}) / \mathrm{dt} \quad$ is the constituent hard scattering cross-section determined by the corresponding QCD Born diagrams.

This equation can be calculated by using as an input the quark distributions inside the hadrons A and B. Keeping in mind the $O C D$ result in the leading \log 's approximation $/ 5 /$

$$
\begin{equation*}
F_{a / A}\left(x_{a}, Q^{2}\right) \propto \frac{\left(1-x_{a}\right)^{\bar{A}-1}}{\Gamma(!\bar{A})} \exp c \xi, \quad \bar{A}=2\left(n_{A}-1\right)+r \xi \tag{3}
\end{equation*}
$$

where $\xi=\log \left(\log Q^{2} / \log Q_{0}^{2}\right), r=16 / 25$ and $c=r(\ln 2-1 / 2)$ and similaxly the $F_{b / B}$ function, we find

$$
\begin{align*}
& \mathrm{Ed} \sigma / \mathrm{d}^{3} \mathrm{p}(!\mathrm{A}+\mathrm{B} \rightarrow \mathrm{jet}+\ldots)=\alpha_{\mathrm{S}}^{2}\left(\mathrm{p}_{\mathrm{T}}^{2}\right) \cdot \mathrm{p}_{\mathrm{T}}^{-4} \cdot J\left(\mathrm{x}_{1} \mathrm{x}_{2} ; \mathrm{p}_{\mathrm{T}}^{2}\right), \\
& \mathrm{J}=\frac{\left(1-\mathrm{x}_{1}\right)^{\bar{A}-1}}{\Gamma(\bar{A})} \frac{\left(1-x_{2}\right)^{\bar{B}-1}}{\Gamma(\bar{B})} \int_{0}^{1} \int_{0}^{1} \frac{d u d v_{u} \bar{A}^{-1} v^{\bar{B}-1}}{\left[1-u\left(1-x_{1}\right)\right]^{2}\left[1-v\left(1-x_{2}\right)\right]^{2}} \times \\
& \times\left(1-\mathrm{x}_{1} \mathrm{x}_{2}\right) \delta\left[u v\left(1-\mathrm{x}_{1}-\mathrm{x}_{2}\right)-(1-u-v)\right], \tag{4}
\end{align*}
$$

where the used variables are

$$
\begin{aligned}
& x_{1}=-t / u+s=x_{R} \frac{\sin ^{2} \theta / 2}{1-x_{R} \cos ^{2} \theta / 2} \\
& x_{2}=-u / t+s=x_{R} \frac{\cos ^{2} \theta / 2}{1-x_{R} \sin ^{2} \theta / 2} \\
& x_{R}=-(u+t) / s=1-M^{2 / s} .
\end{aligned}
$$

Thus, for the x_{R} approaching 1 eqs. $(2,4)$ are determined by the initial constituent distributions near unity, and

$$
\begin{equation*}
J=\frac{\left(1-x_{R}\right)^{A+B-1}}{I(A+B)} \cdot \frac{\left[\left(\log Q^{2}\right)^{\gamma(A+B)+r \log (1-x)}\right]^{2}}{\left(\cos ^{2} \theta / 2\right)^{A} \cdot\left(\sin ^{2} \theta / 2\right)}, \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
\gamma(\mathrm{n})=-\mathrm{r} \psi(\mathrm{n}+1)+\mathrm{C}=-\frac{\mathrm{r}}{4}\left[1-\frac{2}{\mathrm{n}(\mathrm{n}+1)}+4 \sum_{2}^{\mathrm{n}} \frac{1}{\mathrm{k}}\right], \\
\mathrm{C}=\mathrm{r}(\ln 2-1 / 2) \simeq 0.12 \ldots \text { and } \quad \Psi(\mathrm{z}) \quad \text { digamma function. }
\end{gathered}
$$

Note, that near the phase-space boundary, where $\left(1-x_{R}\right) \propto$ $\propto O\left(\frac{m^{2}}{Q \&}\right)$ eq. (5) as well as the hard scattering formula (2) will be modified by the double-log factors (quaxk form factors) ${ }^{/ 2 /}$.

We should like to emphasize an interesting viewpoint on the outgoing hadron momentum fraction x_{R}-dependence of the invariant $: A+B \rightarrow J+\ldots$ cross section. This dependence enters the cross section like the structure distribution function of the big dihadron compound system $(A+B)=D$, which collects the constituents of the initial hadrons A and B,

$$
F_{a+b / A+B} \quad\left(x_{R}\right) \propto \frac{\left(1-x_{R}\right)^{A+B-1}}{\Gamma\left[2\left(n_{A}+n_{B}-2\right)\right]}
$$

and corresponds to the picking out the pair of active quarks a. $\frac{b}{F}$ with resulting momentum fraction x_{R}.

Finally, we stress that the main result can be expressed by the formula in which the logarithmic exponents are determined by the anomalous dimensions of the moments of constituent distribution and decay functions of the participating hadrons. The number of the corresponding moments (indices of $\gamma(\mathrm{n}))$) are related to the number of valence quarks constituting these hadrons (see the Table).

k	$\begin{gathered} \text { Process } \\ : \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}_{\ddagger} \ldots ; \mathrm{Q}=\mathrm{e}^{ \pm}, \mu^{ \pm}, 1^{ \pm} \pm \end{gathered}$	$\gamma(\mathrm{s}), \mathrm{s}=2 \mathrm{k}$	$\mathrm{H} \cdot \gamma(\mathrm{s})$
	$\ell+\pi \rightarrow \ell+\cdots$	$y[2(2-1)]$	$1 \cdot \gamma(2)$
	$\ell+\ell \rightarrow \pi+$	$\gamma[2(2-1)]$	$1 \cdot y(2)$
2.	$\ell+\mathrm{p} \rightarrow \ell+\ldots$	$y[2(3-1)]$	$1 \cdot \gamma(4)$
	$\ell+\pi \rightarrow \ell+\pi+\cdots$	$\gamma[2(4-2)]$	$2 \cdot \gamma(4)$
i3.	$\ell+\mathrm{p} \rightarrow \ell+\pi+\cdots$	$\gamma[2(5-2)]$	$2 \cdot \gamma(6)$
	$\pi+\mathrm{p} \rightarrow$ jet $, \ell, \ell \bar{\ell}+\ldots$	$\gamma[2(5-2)]$	$2 \cdot \gamma(6)$
	$\ell+p \rightarrow \ell+p+\cdots$	$\gamma[2(6-2)]$	$2 \cdot \gamma(8)$
	$\mathrm{p}+\mathrm{p} \rightarrow$ jet, $\mathrm{P}, \ell \bar{\ell}+\ldots$	$\gamma[2(6-2)]$	$2 \cdot \gamma(8)$
	$\pi+\mathrm{p} \rightarrow \pi+\ldots$	$\gamma[2(7-3)]$	$3 \cdot 2(8)$
5.	$\mathrm{p}+\mathrm{p} \rightarrow \pi+\ldots$	$\gamma[2(8-3)]$	$3 \cdot \chi(10)$
	$\pi+\mathrm{p} \rightarrow \pi+\pi+\ldots$	$y[2(9-4)]$	$4 \cdot 7(10)$
6.	$\mathrm{p}+\mathrm{p} \rightarrow \mathrm{p}+\cdots$	$\gamma[2(9-73)]$	$3 \cdot \chi(12)$
	$\pi+\mathrm{p} \rightarrow \pi+\mathrm{p}+\cdots$	$\gamma[\mathscr{2}(10-4)]$	$4 \cdot \chi(12)$
	$\mathrm{p}+\mathrm{p} \rightarrow \pi+\pi+\cdots$	$\gamma[2(10-4)]$	$4 \cdot \gamma(12)$
	etc.		

The more detailed justification of the presented counting rules and their relation with the hard scattering mechanism in QCD as well as asymptotic exclusive-inclusive connection will be presented elsewhere.

The authors are very indebted to Drs. V.G.Kadyshevsky, A. N. Kvinikhidze, R.M.Muradyan, A.V.Radyushkin and A.N.Sissakian for very useful discussions.

REFERENCES

1. Llewellyn Smith C. Rapporteur talk at the $X X$ Int.Conf. on High Energy Physics, Madison, 1980.
2. Politzer H.D. Phys.Rep., 1974, 14C, p.129; Dokshitzer Yu.L., D'yakonov D.I., Troyan S.I. Phys.Rep., 1980, 58, p. 271.
3. Matveev V.A., Muradyan R.M., Tavkhelidze A.N. Lett. Nuovo Cim., 1973, 7, p.719; Brodsky S.J., Farrar G. Phys.Rev.Lett., 1973, 31, p. 1153.
4. Berman S., Bjorken J., Kogut J. Phys.Rev., 1971, D4, p. 3388.
5. Gross D., Wilczek F. Phys.Rev., 1973, D8, p.3633; 1974, D9, p.980; Georgi H., Politzer H.D. Phys.Rev., 1974, D9, p.416: Parisi G. Phys.Lett., 1973, 43B, p.207; 1974, 50B, p. 367.
