


I. INTRODUCTION

Mathematical concepts born in physics often prove their
fertility in two steps: first on a more or less formal level
and after that by finding a suitable mathematical framework
and examining the original idea rigorously. So the delta
function represents itself an extremely useful computational
tool, on the other hand, full power of this concept (which
certainly goes beyond Dirac's intention ) was not revealed
before formulation of the distribution theory. One can
therefore understand easily why there is so much temptation
in mathematical theory of Feynman integrals, or more exactly,
in various attempts to construct such a theory. A substantial
progress achieved in this field durlng recent years is . -
reported, e.g., in the monographs - 1.27" . and review. ‘papers /3 5/%

The efforts are mainly concentrated around the problem
of expressing dynamics by means of the path integrals. As
to the simplest case of a single spinless partlcle cor-

he
responding to the free Hamiltonian IIU=-——A. which interacts

with an eXternal field degcrlbed by a potential V., the cele-
brated Feynman result {(cf.® '7’ ‘¢hap. 3} states that the
wave function at a given time 't is given by **

(exp(- (g + V) ¢ ) u)(x)=l_f:exp(-ﬁ"—8(yn GO Ty, Lo

X

where « is a wave function at the initial time t=0,

¥ We pretend neither to an exhaustive exposition of the
path-integration problems nor to completeness of the -list .
of references -"at the present time it seems to be the task
rather for a monograph writer
* For the sake of simplicity we shall further always set
i =m=1.
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is the classical action along the path ¥ and I's is the
space of all paths ending in the point X * The central
problem is to give meaning to the formal expyression on the
rhs of eq. (1), or more generally, to

. t -
[oexp(— [ 13 (F a (o )Dy . (3)
F 2s 0

b4

where f is a complex-valued function on the path space I'x
and 8 is a real parameter. First possible way was proposed

by Feynman in his original paper.He replaces the set of all
paths by a subset of polygonal paths{velocity of the particle
is assumed to be constant in the time intervals (ti /n,t(i+1)/m),
ia0,1,...® —1), . in which case (3) can be defined natural-
ly as an integral over the corresponding finite-dimensional
_vector space of paths. The construction is completed by
taking the limit n-» «~.It is clear, that we need not assume
equidistant partitions of [0,t] only; every sequence of
partitions such that the subinterval lengths tend to zero
would serve as well. The most important property of this
definition is the following: for cylindrical functions

{which are, roughly speaking, those depending on "finite
number of variables" only) the relation

it . e . :
{:xp(ﬁfo ly(DIFd D) Iy (rg Doy _ N Py = {4)

*This is the standard quantum-mechanical convention. On
the other hand, people more inclined to the probability
theory often write the same formula using t?e space of
paths with fixed origins - of./8/ sec.X.11,/1/,p. 291 and
Note I added in proof.
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is valid, where 0=r0 <7 Cnkr=t., This relation interprets
in a so natural way that it seems to be reasonable to re-
quire validity of the analogous formula for every definition
of the functional integral (3}.

Let us notice that one of the constructions of the Wiener
measure starts just from the formula (4) with 8=-i (cf./?
or /87 sec.X%.11). In this case, however, nonexistence of the
Lebesgue~type meaip%? in an infinite-dimensional path space
(/1ﬂ Appendix A, chap. 1} does not hinder from treating
this functional integral in terms of the measure theory:
loosely speaking, singularities of the exponential term and
of @y cancel one another, and the formal expression

4 .
exp (-~ -é—fnlf,(r)f? dr)¥y  can be replaced by dw(y), where W is

the Wiener measure..On the' other hand, these considerations
‘do not apply.to the Feynman integral, where the exponential
term behaves in a different way. One might overcome this
difficulty by defining the F -integral as a limit (with &
arriving to the real axis from below), if appropriate path
space measures would exigt in the open lower complex half-
plane of s (this is essentially the proposal of Gelfand
and Yaglomfliﬁ Unfortunately, there are no such measures
as shown by Cameron’/1%/: a finite measure u{®), such that
integrals of all cylindrical functions w.r.t. u“) are expres-—
sed by the rhs of eq. (4}, exists iff § =-ic,, g=0.

The Wiener integral itself can be also used for treating
the F-integral: either the latter is determined directly
by some sort of analytic continuation of the former (an
extensive list of references concefning this matter is given
in ref./2/) or the problem under consideration is reformulated
(essentially again by analytic continuation} so that the
F-integrals are replaced by W -integrals. The. last mentioned
method represents a backbone of Euclidean approach to const-
ructive guantum field theory which developes so successfully
in recent years“gl4

The second group of definitions follows the original idea
of Feynman and determines the integrals (3) "sequentially”,



i.e., as a limit of some sequence of "finite-dimensional”
integrals (see again/2/ for further references). In this

way Nelson 9/ was first able to derive a rigorous version of
eq. (1) (the analogous relation for the heat equation,

the so-called Feynman-Kac formula, was deduced by Kac in
1951 - c£./8 T sec.X.11). In order to make use from the
'Lie-Trotter formula Nelson was forced to define the rhs of
eq. (1) in a way which differs slightly from the Feynman’s
heuristic proposal: the furnction exp(~ V(y(r))dr) was

replaced in the n-th approximative inéggral by the Rieman;'
n—1 c .

nian sum exp(~ % V(y(r )) (r 1._,_)), where 7 =jt/n." . In
= i j+ J N

this way-valideg of eq. (1} was established for potentials
V belonging to L2(R3)»+L=(R?). This result was further
discussed and extended (see, e.g.’ls/ for the case of
barmonic oscillator).Generally speaking,’the seguential
definitions (handled more or less rigorously) are the most
popular in physical literature.

Recently a new group of definitions has appeared which
makes use of Fourier transformation. First to. be mentioned
among them is that of DeWitt-Morette 16,17 ohich replaces
-the nonexisting Feynman measure by a "prodistribution”
determined by: its Fourier transform (equal to

exp(- L-W(x’x°)); here W is a bilinear form on the dual X

of the path space X, which is assumed to be a locally convex
Haussdorf space}. This method combined with the product
operator formalism can be applied to the calculations of
various path-integral expressions of physical interest/Lﬂ
More import?nt for us is the definition of Albeveric and
Hoegh-Xrohn 2.8/ It assumes the path space to be a Hilbert
space X, in the same time the class of "integrable" functions
is restricted to Fourier transforms of finite complex measures
on . The F -integral is at that price expressed by a simple
and elegant formula. In this framework a rigorous version

of eq. (1) can be derived for potentials which are Fourier
transfor7s of finite measures on the configuration space
(cf./z'8 - the mentioned relation is usually called
Feynman—-Ito formula, because the F -integral in the sense

of /#2/ coincides with the path integral defined by Tto/19/ in
probabllistic terms}.

The original definition of Albeverio and Hoegh-Krohn (AH)
does not make possible to “integrate" some physically impor-
tant functions, as for example the exponential function
corresponding to the harmonic-oscillator potential. It has -
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led these authors to the more general definition of F-integ-
ral w.r.t. a (not necessarily positive) quadratic form, in
which the exponential term entering in the "measure" can
contain a part corresponding to the potential energy as
well. An alternative way how to handle some non-bounded
potentials was proposed by Truman/18/, which extended the
original definition of ref./2/ by means of'polygonal-path )
approximations. He showed also that thesge finite-dimensional
approximations are expressed through integrals of exponent
of the exact classical action along the polygonal paths;
in this sense his approach is more close to the heuristic
considerations of Feynman than Nelson-type approximations*,
The same author has formulated also other appealing
idea/zlfby generalizing the definition of F -integral from
ref./20/ to the concept of Feynman maps. By this motion
a certain family of maps from a set of functions on the
path space H into € is understood, which is indexed by numbers
s from the lower complex halfplane; the cases s=1,~i refer
to the F-integral and W -integral, respectively. This
approach makes possible to treat both the important path
integrals on the same footing {for a certain class of
functions). Except of that it unifies in some sense the
sequential methods with those based on analytic continuation.
On the other hand, some objections can be stated. Firstly,
the finite-dimensional approximations used in the definition
of the F-maps in ref./21/ are not given by means of some
AH-type expressions, but via integrals andlogous tc the
rhs of eg. (4). Consequently, if the "integrated" function
is such that its cylindrical approximations: are not [, -
integrable (such situation occurs frequently and represents
ne pathclogy), then the approximations tc the F-map value
contain improper integrals.It certainly means no harm as far as
we know how to calculate them. However, principal values of
multidimensional integrals represent an extremely touchy
business (c¢f. a simple example in sec. 1.2 of ref’l’, which
shows that two quite reasonable choices of the limiting
procedure in a two-dimensional integral can give completely
different results) and we prefer to stay on the solid ground

*We need not worry within this framework, whether a change
of the Riemannian approximaticn to the action will not change
the value of the resulting path integral.



of the measure theory. Secondly, the definition under
consideration uses for approximative purposes only those
polygonal paths, which refer to equidistant parxtitions of
the given time interval, This seems to be a discriminative
assumption: it may happen that a function "integrable"
w.r.t. the given prescription would not ocecur to be "integ-
rable" in the approximation carried out using arbitrary
polygonal paths. This circumstance is stressed by absence
of the dominated convergence theorem for F-integrals

(gee below}, which could assure independence on the choice
of polygonal-path approximation.

The above considerations determine the main line of this
paper. We shall examine here the AH-type definition of
the F-maps; its "polygonal” extensions, properties and
applications are left to the next paper. First we review
for the fulther use results about the algebra of “Fresnel-.
integrable” functions /2:3:18/.  we hope that some more
complete or alternative proofs presented here could excuse
extensive character of this part. In particular, the
important assertion about injectivity of Fourier trans-
formation on M(X) is proved very briefly in ref./zﬂ especial-
ly the implication: if ly:(z,y)<ae}=0 for all xeH, ac R,
“then #(A}=0 for all closed convex A, is in no case obvious
for non-positive u. We present below other proof which uses
properties of promeasures extracted from ref. 22, In the
third section we define the F -maps and discuss their
properties. Some of them are connected closely to those
obtained in refle/, only presentation (and consequently,
some of the assumptions) differs. The other are new, as,
e€.9., the "Pubini theorem" for F -maps.

We present alsc a simple example illustrating that the
AH-integral does not fulfill the dominated convergence
theorem. This invalidates the theorem concerning the
classical limit of quantum mechanics deduced in ref. /18/
the proof of which is based on this very assumption *.
Fortunately, there are other methods how to treat thisg
problem - see refs, /2885 and references quoted therein.

¥ There 15 a weak form of the dominated convergence
theoremle/,however, its assumptions are such that they
hardly could be verified in the cases of physical interest.



2. TEE ALGEBRA J (30

Let H be a real separable Hilbert space of paths (to be
specified later) and W) the set of all complex Borel
measures on {  with Jpl({)< ». Here [p]| "is the total
variation of p:|pl(A)=supi 2 ]p(A ) ¥A i finite

‘system of disjoint Borel sets, UM =AL it is ‘a non-negative

measure on K. Any linear c.ombinkatlon of p,v€ N(H) belongs
again to M(H), since the definition of |u| implies easily
Napl (A =latlul(a), [u+vl(8) < lef(a)+ [#i(A) 7 for
all a€ € and any :4¢ %, the system of Borel sets inH. ILet
i}  be a sequence cW(H) such that le, —pm[(H) 50

with n,m-«. Using standard arguments oné can prove that
p(8) =limp (A} exists for each Borel A and that p

n-= oo
defined in this way belongs to M(H). Thus the space NH)
equipped with the norm [.|(K) is Banach.
We shall show further that M(M) can be equipped natural-
ly with an algebraic structure. To this purpose assume

first p,v € MH). The product measure p®yon(>H.Be®)is
defined. in the standard wa 2{ it is finite because
Jr @yl(}{x}{)_]m(}()[.,[(}{)(cf. , sec. III' .11, lemma 11}. Further

f: 3o € belongs to LG, p ov) iff [fl€LHxH, (g ¢ v])
and the “"complex Fubini theorem”" holds in this case (/28/
sec., IIT,11, th, 13).

f tlyy?)dp ev)(yy )= [ duy) f ty.y )dv(y )=

HoH X i ‘ (5)
= [ (y") fIl.y") duly).
X X '

Notice that in the mentioned theorem finiteness of g.v 1is
substantial in contrast to the usmal Fubini theorem where
both the measures are non-negative but may be ¢ -finite
(/%6/ gec. I1I1I.11, 728/ -gec. IX.2). .

Let us define convolution of p,v€MH): we denote

A-y=ly~y:y’€ A} and set .

(uvXB) = [ p(b=y) @& (y), AR, - (6)
Koo |

The following properties are easily derived:(i) pgxv is a
complex Borel measure: it holds u(A-y)=fx (") du(y )=
H “a-



= f X ()’+}’ Yau(y"), X, being the characteristic function
of A The Fubini theorem (5) then implies

(pev)(B)= | x, Oy idvem)y’). (N
HH

The mapping ¢ of ixK  onto itself,¢(y.y)=(y+y ", ¥y—¥" )

is continuous in the product topology of HxX and ¢! (AxH)=~
H{(y yY:yy € A} is Borel in Hx}{ for any Ae % (cf. BAppen-
dix A), thus the last integral makes sense. The set function
p*v: B5 C is obviously ¢ -additive and (x ,»)(9) =0.

{ii) The mapping (u,v)»p*v is clearly bilinear and
commutative: (p+ v){A) ={(vxpu)(A) follows from (7). We shall
verify its associativity. The relation 17) together with

the image meagure theorem {or change-of-variable theorem,
cf., e.g., ref. /26‘{ sec. III. 10, prop. 8) imply

(pev)(A) = [ x }{(y.y')d(ﬂ e )Yy M=

HxH Ax

= [ A2 v~y ),
axH

where ¢ 1is the mapping defined above. Then for any
fe L(K ,usv) we have

FENaux ) () = [ 1) dpe )™ v,y )
K

HxH
and using once more the image measure thecrem we get

[y alp* ) () = [ fay)d(p e v)(y.¥) =
X HoH

z}(y dp(y)}{f d(y’) fy+y").

In particular, we obtain

(r *(v * P1Y(H) =H‘f p{B=y) alv * p) (¥) -f{dv(y)}{fdp(y‘)p(a—

—y=y )= (pr ) By ) dp(y ) = ((prv) * p) (A)
X

for any A< %.



(iii) Finally, the inequality
L e v 130 <] O 0] (30 {9)

holds, which in particular shows that * maps MH) >MH) into
MH). 1t can be obtained with the help of the following
expression for total variation: |u|(A)=supl| [g(y)du(y) |:

/26/ A
g Borel, lg(y}g 1} (ref. %6 , sec. ITI.2; ref. 2V, § 29)..
The relation (8) implies.

| e@dlp=v)o) < [ fely+y)d(y)digl(y) <
H H K

< f dl#l(y)}{fig(y+y’)!dIV1(7’)$ | wl () e 3O
K

if |g(¥»is 1 so (9) is valid. Thus we arrive to the following
aggertion:

Proposition 1: The space MH)  equipped with the norm |.!(H)and
the product * is a commutative Banach algebra.

Up to now we have not made use of the Hilbert structﬁre
of . Assume now the set FH)=1f:f(y) =[e Y dp(y?),

€ MH) L where (...} is the inner product inH. Continuity
of (y,.) implies continuity of el®:) so the latter is
Borel measurable and f is well-defined for each pe M(H).
Further F(H{) is a vector space w.r.t. pointwise addition and
scalar multiplication.
We shall show that the B -algebra structure of M(]‘() can
be isomorphically transferred to ¥(}), The crucial point here
is to prove bijectivity of the mapping w»f; in view of
linearity it is sufficient to check that f =0 implies p, =0
In order to perform this we use the following assertions addop-
ted from’22/, chap. IX: '
{a) To every measure g on X there exists a promeasure [
on K associated withy The mapping us 7 from the set
of all (positive) bounded measures is injective (§6.1,.
prop. 1; it follows from the Prokhorov theorem).
(b) If g is the promeasure associated with a (positive)
bounded measure # and J denotes the Fourier transformation,
then Fu=Fg (§6.3).
(c) The mapping g» F 5 from the set of the promeasures on H
into the set of functions on X is injective (§6.3).



All these assertions are valid generally for measures
and promeasures on locally convex topological spaces.On Ithe
other hand, the concept of a measure in chap. IX of ref. 22/
differs from that used here (these measures are not set
functions but linear functionals on certain function spaces},
so one has to check that a bounded measure in the sense
of ref. %%/ corresponds injectively to every finite Borel
measure on separable H. This assertion is proved in
Appendix B; it resembles the uniqueness part of the Riesz-
Markov theorem, howewver, the space}( is not general local-
ly compact and the measures involved are complex.

Tf =0, then Jzu(r(ym(—y)) - 2—1‘i~(f(y) ~f(~y)) =0
for all y€X so

Jeos(y.y)du (7)) = [ sin(y,y")dp (y") =0.
K f K f

If g is real-valued and v complex, then [gdv=0 implies
fgdRev= {gdlmy=10, thus the above equalities give

S Y WRep ()= Y dlmp (v7) =0 (%)
H K '
for all yGH. We shall assume, e.g., the signed measure
p=Rep;the argument concerning Imp, would be the same, Let
P=py~P g be the Jordan decomposition of p. The positive
measures p,,p, have disjoint supports so that P ,i.pzunless
both these measures are zerc. In the first case the promea-
sures p; associated with p; are different due to (a), further
(b} and (c) together with linearity of the Fourier trans-
formation imply Fp=%p 1~Jpp,=Fp,~Fp, £ 0. This contradicts
to (=), thus p= Rep 0. Analogously bou =0 holds so p =0,
The abbreviation iy for the measure corresponding to
feF(H) makes therefore sense and we shall use it whenever
it will prove to be convenient. The above-mentioned statement
together with other properties of F(H) are .given by the
following ’
Proposition 2: The space F(H) is a functional Banach algebra
with unity w.r.t. the norm |L|| : ||l =[x |30,
Each f€F () is norm continuous and 0boun&ezél,
£l < Ifj}fjlljo . Ifn:C+ € 1is an entire function
and fef(H), then the composed mapping hef
belongs to $¢¥X) as well.
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Proof: The Fourier transformation ff; is linear and maps M(H)
bijectively onto JF(}), further this isomorphism is isometric,
|| (H)=11Ful|g, so the space F(H) is Banach. The convolution
is transformed by J into pointwise multiplication: the rela-
tions {5), (8) give

(F e 2)) () 3 Y Ny (y Yy =

= [ eV Y NG e ) (L y ) = (Fu) (D (Fr) ()
MoK '

for ally, » € M(H),yeK. Further the B ~algebra F(H} contains uni-
ty, because the Dirac measure g ,: p (0D =1 , pe(}(—-{O Iy=0
belongs to MH) ana (Fu, ¥3)=1 for allyeX. Since K is first
countable w.r.t. the norm topology {even second countable),
a function f:K+ C is continuous if it is sequentially con-
tinuous. Let y be the norm limit of a sequence {y_}c K,
then (y,y")= lim(y_,y") so that GXP(i(y,y’))——-iim exp(i(y_.y"))

] )
for all y'e€H. 1f teF(H) the dominated convergence theorem im-
plies

f(y)=}{f exp(ily,y" N dp (y)=lim [ exp(i()/n s)f'))d#f(}f")=
. e ‘

=1M?Hynl

Consequem[:li;, I is norm continuous. Further the inequalityl
1£G) i< fdlp |Gy*) gives ||f]] =Sglﬁlf(y)[slpfl(}(} =||f|| ;. Finally,

¥ , . f s
let h "be expressed by the series h(z)--g a z" with the infinite
oa n=0
radius of convergence, then hof=3 a f? . The sequence {a "]
=0 n=

0

o0 o0

is absolutely summable, X ||anf“E|05 b3 [anEHfHZ <x, and be-
n=0

T)om
cause F(H) is Banach, it is also summable, i.e., E_Oanfu
=
converges in || .HO— norm to some element of F(H) (c£../8/ ,

th. III.3).

3. THE FEYNMAN MAPS

Now we are in position te formulate the main definition.
Let us denote Cp={z€C: z £0,Imz< 0} and Co=fz: Imz <0}
To any s&€Cyp we define the mapping I :H(H) » € by

i 2
1= - a8
oD }{f exp(~ 2 lTrl™) du () (10)

and call it _Fs -map. In particular, 1{{)=I() is called
F -integral; this definition coincides precisely with the first

L3



| *
definition of the F -integral in ref.’2?/  Basic properties
of the F-maps are the following:

(i) 1 (f) is well-defined: the Hilbert space norm is conti-
nuous so g {()=exp(- ]] ]]2 is continuous too, and therefore

Borel measurable; further lg(n 1< exp (- ]!y|]2 Ims)<-1 implies
g,ELMH,u,) for each e FH). Moreover, 1) is a linear func-
tional, Wthh is obviously bounded, ||1_}|j=1, and normalized,
because to the unit function e the normalized {0iC supported
Dirac measure corresponds so that I s{&=1 On the other hand,
1() is not positive w.r.t. the natural involution in FH0
unless 8 is purely imaginary; it is clear from the relations
(11,12) bhelow.

(ii_) Let us take a finite-dimensional H=R" with the stan-
dard norm |}.| and express

1’(0 =(2eis) %y GXp(J- 12| £(x) dm(x) (11)
RO
for f:{(x) = fel(x'-V)dp {v) . n, € M(R™)Y, where m is the Le-

R
besgue measure on R". The integral (11) is assumed to exist
for all s€ CF, i.e., feL(RM.If s& €% then by Fubini theorem
one obtains

-n/2
1°(f) = (2mis) fd,u ¥) H il exp(-—-—-x +ix,y,)dxJ :
8 R 1 R og it

evaluating the last integral (/28/, 3.896.4) we get

1= f exp(- iyi® Yau () =1 (B. (12)
For real & one cannot apply the Fubini theorem directly, be-
cause {xylm exp(%—lx]ﬂi(x,y)) does not belong toL{R" an,mep.f ).

5

Thus we express I;(fj as follows

170 = lim (@risy™? exp(—é——IXlz)f(X)dm(x). (13)
5

a-+oa C

*other 1,(),s>0, may be called F -integrals as well. Their
properties are analogous to thoge of I4(), because they can
be obtained one from the other through changing the Hilbert
space norm by a non-zero multiplicative constant..

12



where C_={x!|x; |<al,j=1,2,...,n. Then

1 (f)=lim [ exp(-35-|y")K " (a)dp O,
& -3 00 Rn 2 B £
where

n . =-n/g . 2
K (v,a}=(2ris) " [ exp(d~|x+sy|”) dm(x).
8 Cq 2s

Concerning the last integral the following assertion is wvalid
(see Appendix C): there exists K‘} >0 to any non-zeros such
that IKg(y,a) {SK: for allaz 0 , yeR" and lim K';(y,a)nl. Using it
together with the dominated convergencea-i’:ololeorem, we arrive

again to the relation (127.

Remark: Considerations of Appendix C do not employ the
assumed integrability of f. Thus if the relation (13) is re-
garded as definition of I(f), then (12) is valid for all feF(RM.
This is essentially the way in which improper integrals appear
in the original F -map definition 2V 1et us remind here the
example quoted in the introduction, which shows how much these
considerations are sensitive to the limiting prescription: if
n=2 and { is the unit function on Rg, then I,(f) =1 as well
as I{(t) in the sense of (13). However, if the blowing-up
square C, is replaced by the circle lx:|x{<e}, then the cor-
respending expression equals lim(l—exp(-ié-a2)),i.e. , the principal
value does not exist at all. e

(iii) An assertion analogous to the Fubini theorem was de-
duced in ref.’®  for the F -integrals. It can be generalized
for the F -maps: let H decomposé into an orthogonal sum H; K
so that for all y=y1+y26}( we have l}szmllylHanyzﬂg If

teFH) 1) =f expAGuy Ndu(y”), we write au()=du(y .v,)
and define
Pyg(Al‘)Eﬁyz(!Alx}{g)» Py, B = eXp(i(yz,J’;) Gy’ .v})
- for eachyae}[g and Borelﬁlc}(l‘. The mapping Fy, (.} is clearly
o -additive, u, @)=0, |u, MI<IulAxHg)<|uld), ™ so u,,zeﬂﬂ(}(l);
further '

Hf g(yl)d#yz(yl ) =]{E(_y) by, . BO v =80))

for any gGL(J’(l,#yg).The Borel measure 'ﬁy2 on H is absolutely

continuous w.r.t. g, and therefore the last integral can be ex-
pressed by means of p and the Radon-Nikodym derivative:

13



/26/
¥y exp(i(y, .y, ) (¢f. " sec.III.10, cor.6). Thus we obtain

}(f g0y ) d#yz(yl)ijé'(y’) mp (i, vg N duly/,7)). (14)
1

In particular, this equality with g(yl')=exp(i(yl,y’1)) shows that
£, (,)Ef(_,yz) belongs to rf(}(l) for any fixed ¥y and
2

‘ "is 2
Tt Y=y S exp(= {1y [N, ().
5 Yo 1 }'2 1 2
Bpplying further (147" to g(yl)zexp(..lzﬁnyi[[ } one obtains

Loty 5d Rl 1P+ it ) @ty ).

This integral can be in the same way as above expressed as

_ ; Yy d Y,
Is(f},z)—}{f exp(l(yg.ye)) AN

where v, is %he complex Borel measure on }(2 determined by

the relation * - .

v W= [ ep(-1y 1Ry du(y ,y).
2 1 g -
Hxa
Hence the function hs;hs(y2)=ls(ry2) belongs to .f(}{z) and

L) = [ em-Ly, i) e ()= ,
2 {15)

- e (=2 1ly 1P S0y 1B dpty oy =1 000,

2

It is also clear that an order in which the "integrations™"
are performed is irrelevant.

Remark: The central argument of the presented proof (deduc-
tion of the relation (14)) is not based on the Fubini theorem
as stated in ref.’?® , because the measure p is not in general
a product measure on K, xHg (c£./8 sec. 1.4). In fact u¢ 1is
a product measure iff f factorizes, Hy) =1 {y ) ify)for all yie}(i ,
as can be easily seen.

(iv) A functionf: Ha € is called cylindrical or tame if
there exists a finite-dimensional projection P on X such
that foP =f, i.e.,{(Py)=Ry) for each ye H. The function f is
in such case said to have basis (to be based) in PH. The subset
of all cylindrical functions in F(}) is denoted #({). rFor
ref}‘(}{) the above results can be used: we decompose into ortho-
gonal sum of K =(1-P)H ,H_=PH and define 7 : f(y5)=H0,y)=f(Py),
yeH, then f(3) = "f(yg)=e1(y)'f(y2 where e, is the unit function
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on H . Now (i) and (iii) imply L (f,) =ISG(y2)el)=?(y2) I(e )

=?(y ) so that Is(f)zfs(}). Further if F@L(P}{,m),then according
to ?ii) I;(f) can be expressed in the form (11) and we obtain
therefore

l--2LdimPH . 2
I, () =(2wis) Jexp (=] Py|I®) £(Py) dm(P y);

16
pk 25 (1e)

here m is again the lLebesgue measure on PH.

{v) If a€ rR" and R is a linear orthogonal transformation

on H=R™ then ,
—-n./2 :
I (D =1(f) =(Rnis) [ exp (2] Rx+a}'2) f(Rx+a) dm(x)

RN 2s
for each fe FRMHML(R™ » because the Lebesgue measure is Euc-
lidean-invariant: m(RA+a)=m{A). This equality can be regritten
as

i 2
em(A-lalH1 (=10,
(17)
fqa (x)=eXp(—§;—-(x.R~L a)) f(Rx+2),

if o aE?(R“)nL(R“)too (this is an additional assumption if s
is nof-real and a0 because of the real exponent present in
this case). In the same way we obtain :

|detB| I (fg ) =I.(f),
(13
o,
£ ()= e (| Bx| "~ =11 % £(BD),

for any regular linear operator B on R" assuming that both
f,f ; belong to F(R") N L{R").

Remark: The relation (i8) shows that the second formula
from (P4), sec.? in’® is not valid even in the finite-dimen-
sional case; it holds for isometric T only - cf. (20) below.
There is the obvious confusion here with Proposition 4.3 of %/,
for the F -integrals w.r.t. a quadratic form the determinant
is included into normalization. : ’

{vi) We shall verify further that the property (17) is pre-
served in the infinite-dimengional case if s is real non-zero.
The deduction is based again on the image measure theorem.
Consider first the transitions: let f€F(H)and define f :f (y)=
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=eXp(-i-—()f,a))f(y+a) for a given a&H. It holds
f.0=f exp(_-ig-(%a) +ilyray ) du (") = [ exp(i(y,y ™) de (v),
H H

where s (8) = [ exp(i(a,y”)) du,(y )ifurther Heas b H  so
-1
At+as

()= S (-2 lyvas =t Prier)) du 67)=

iB 2
e, ~ ep(- =2 |lallH 1),

ew - llal®) 1,(1,) =1,00, LW=em(i(y,m)tra). (19

Analogously, ifU is a regular isometric operator onH and
feFH) ,then we have

) - 1 (U7 )) g, )= Gy ™) du, )

S0

_ is ~1 ,,2 # is e e
L0 =S om0 1) ey Yo (= =Zlly By ae vy,

i.e.,

- = (20)
1(,) = 1.(6), f,)=10(Uy). :

The last formula, however, holds for non-real s too as the
proof shows. Under some additional assumptions validity of
(19) can be also extended to non-real s. Finally, the Cameron-
Martin-type formula (18) generalizes to the infinite-dimensio-
nal case if a special class of operators B is considered. We
postpone these matters to the next paper.

{(vii) Let tE; | be a sequence of orthogonal projections on
such that s~1limE =1 The restriction fn:fr.En}{ of a given

D+ oo
feF(H) can be expressed as follows

f(Eny)=Hf exp(i(E, y.7") du, (") =

=}{f exp(i(En)"En ¥’y d”f(‘Fn y’,En r).

where 'Fn=1"'-En .In analogy with the proof of (iii) we introduce
the Borel measurep; on EX by Ho(B)=p(F, Hxp). Clearly
gndH(EnH), further the image measure theorem gives

f}(g(y;)d;un(y.._’,)= [ g(E y)ydp (F y* E y) (21)
Ep H
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for any Borelg: E}{+ C. In particular, for gy ) =exp (G(E, ¥, v7%)
we get f G?(Eﬂ}() Applying further the relation (21) to g(yz Y=

—exp(-——'ly ||?) we obtain . TN

L= L exp(— iy, 1% b, (,, )’“Iem( -ﬁ—HEny 1% deg ) .

EnH
i _ 1 _*J_S_' 4y 2
Finally, exp( 2 WHE) 11:mmexl:'( 3 llM{ijl ,)‘ due’to the
assumption so  the dominated convergence_ theorem y:.elds
lim .Is(r’ y =1 RO A o R T (22)

n-» e

(viii) As far we have dlscussed the £ dependence of I (f).
Let now in turn feF(H) be fixed. The standard condition under
which the integral (10} can be dlfferent;.ated w.r.t. the para-
meter s verifies easily- it holds

‘—;'m exp (- 2= >yl B 12yl exp(—nyn rms>
and the rhs belongs to LK, p‘.f y.-if Ims<0 so the function s»i (D)
is dlfferentlable in each ls: Ims<s <0l and

41 <f):—;}{15y5| exp (- i—HyH Yl () - | (23)

Consequently, the function s Is(f) is single-valued analytic
in the open lower halfplane €7 . Moreover, this function is
continuous in Cp due to the dom:.nated convergence theorem.
Finally, the relation
1im Is(f')=f(0)
80
s€C

(24)

F

holds; one can use it to define Ig()  if necessary.

Concluding this section we bring together the. obtained
results. The F_, -maps; def:.ned by (10} have the following
properties.

Theorem 1: (a)l ne 'is a normalized linear functional and
N II— for each s&C
(b) Let IE, 1 be a sequence of orthoprojections
on K whlch converges strongly to the unit ope-
rator.. If f€FH),then lim I JEoE )— 1 (r)

where (fo E_) ()= B

(¢} For cach fe )y - the function seIg{f) is
s:.ngle-—valued analytic in C; and cornt:.nuous J_nC
moreover, the relation (24) holds

'
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Theorem 2: Letf be a tame function, j‘ef}t(}{) Jbased in a sub-
space P, and let further f p P¥ belong to
L(PH ,m), m being the Lebesgue measure, then
I(f) is expressed by (16). In particular, for
a.finite-dimensional H=R" and f€F(R") n L(R™)
the relations (11}, (12) are valid. '

Theorem 3: Let.ﬂ degompose into an orthogonal sum,]{1 o H
- and 1€5H). We denote 1) =1(y,.y,). v,k , then
the functions f,, ()=f(.,»,) and (=1 (y, .}
- ve | 'y2 * Vi 2
belong to F(},) "and 5(}{2) for all Mye_e.}{g,lyl eX_,
respectively, further the functions ‘hs: J:s(yz)-fs(tyzl
and hg:h; (yl)zls(r;,if) belong to 3(}'{2) and f}“(}(l)
respectively, and Finally Isﬁ)zléhs) :Is(h;),

Theorem 4: (a) Lets be real non-zero, feF(})then 1.6
' transforms under translations of H according

to (19). Furthermore, for s&C p and U regular
isometric the relation (20) is valid. In particu-
lar, these relations express transformation
properties of the F-integral w.r.t.. Euclidean
motions of H. ‘ .
(b) 1f H=R" - and teFR™IL(R® ), the formula
expressing transformation preoperties under trans-
lations holds for se Cg as well -~ cf. (17).
Moreover, if f,f_€F(R® N L(R"), then I,¢f) trans-
forms under "chgnge of variables" mediated by
a regular operator B on R" according to (18).

4. CONCLUSIONS

Study of the F -maps started here will be continued in our
forthcoming paper. We shall specify there the path space and
extend the F-maps defined above by means of a general polygo-
nal-path approximation; further we shall discuss properties

and applications of the obtained extensions. '
' As the last item here we shall make a comment on one more
property of the F-integrals. Evaluation of an integral is of-
ten simplified if the integrated function represents a limit
of some sequence of functions, the integrals of which are
known. In fact, this method is one of the most used for the
"usual” integrals, where powerful sufficient conditions are
available for convergence of the corresponding sequence of
integrals, among them especially the dominated convergence
theorem. We have no such assertions for the F-integrals,
though there exists, e.g., a treatment of the classical limit
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of guantum mechanics based on the assumption of its validity
(see Introduction), to say nothing of the non-rigorous path-
integral calculations.

Wwe shall show that a dominated-convergence-type thecrem
is not valid for the F -integrals, even if the simplest finite-
dimensional case and substantially stronger assumption about
the function sequer{ce are considered. It is clear that we
must avoid situations when Ej{]@ﬁlt’n—f H0=0 formulating the

counterexample, otherwise Is(f) =lmI (£ ) would follow from
“Thecrem 1. nroe S 0

. ~3 i 2
Example: Let H=R and Hy .,ua(J)=(2a) Jf exp(-é—x )dx, where

Ja_=Jﬂ(-a,a). Obviously pge‘ﬁl(R ) for eac%l a>0 and the corres-
ponding functions [, are bounded by the unit functicn,

[f,(5) f<ip, ! (R)=1=e(x), which is "integrable" (cf. Proposition 2).
It holds

(2= exp(ixy)du,(¥) =

- (2&)"1 exp(--iz—xE) ? exp(i?a(xnpy)z}dy
-a

and according tec the ass%rtion proved in Appendix C there
exists a constant M=(2#) Kl1 such that ifa(x)ggM/za for all
xeR,a>0, i.e.,

lime&Hmo =0, {25)
a0
On the other hand, I(I'a )= fexp(-—l—xz)d{,ta(x):l for each a> (O,
and therefore R 2

lim If)=1 £ 0. (26}
g+ oo
Notice that the netif;} converges to the zero function ac-
cording to (25} not only pointwise (everywhere in R ), but
even uniformly, and yet { I(f, )} does not converge to 1(0).1In
the same time the relations (25), (26) show that the functio-
nal 1() is not bounded w.r.t. the uniform noxm |||l on FJ0.

BRPPENDIX A

Let r be the norm topology in H , rxr the product topology
in HxH, U, some basis of r, R(S8) the ¢ -algebra generated
by the system S5 ‘.52 the Borel system in HoH  twer.t. rxr )
and B9 F=R(FxB). We shall prove that $2=$ e & if H is
separable. :
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According to the definition B=R(1): we shall check first
%:fR(Ur)_Clearly R (f)J?(U, 3. H s separable and therefore se-
cond countable, thus eachAcy egquals U Ak ,AkE-Ur, but

k=1
R(U; ) is a o-algebra sorc Rw,) ana R RR @) = R(U,).
Analogously B,=R(U,, ), especially R=R(x7) because the pro-
duct topology is generated by rxr. The inclusion Bx®> rx s
implies 88 >% . There is a natural bijection between %
and Bx B={AxB Ac B } for any B€r with LJ (Aka)z(U Ak)xB
k

and (A, x B)—(A,xB)=(A 1~80xB so that AcR=%(¢) implies
AxBE?(pr) CBy, i.e., forciBg . Further Ax% is in the same
way isomorphic to B for any A€ % so that Be % implies
AxBeR(Axr), Thus fo%C?(fﬁx:)c ?(%2 ) :332 » and consequently
fﬁﬁﬁtﬁg.ﬂme inverse inclusion was obtained above, hence the
proof is finished.

APPENDIX B

Letp be a Borel measure on separable H, Ll (H) <. We de-
fine pu(A)=p(ANK) for any compact KCH  and Borel A. It makes
sense because H is Hausdorff so that K is closed { /29",sec.
I1.6, th.4) and therefore Borel, c:bnsequently ANK is Borel.
The set function #g 1is a Borel measure on K. On the other
hand, any continucus functiong onH is Borel measurable),
further g is bounded, i.e., p—measurable on any compact set
CH. The inequalities

mylel= Tedu <llgll L 1) < |1l _Jul Ky

show that pz}g.] is a continuous linear form on C[Kli.e.,

a meagure in the sense of’ %’;:hap.III, §1.3 (Radon measure -
cf.”, sec.1.D). The family ?,uK: K compact ¢ {3} fulfils
the following compatibility condition: if K, are compact,
KCL, then (pL)K(A)=#L(A NE)=u(AALN K=y (A) for any AcR, i.e.,
(ML)K=#K . Consequently, this family represents a premeasure
on K- "22tnap. 1x, §1.2, def.3. Moreover, according to §1.2,
def.5 and §1.1, def.2 of this chapter lpg: K compact ¢ H}
would represent a measure on K. if [u¢(H) <. Def.4 of §1.4 gi-
ves |p|* (H) = sy |#;;{ Ixgl, and since yg is continuous on K

, . * 2./
we obtain further IulK{xK]=|y|K[xK] =t |l g 7%, chap.1v,
§§1.1, 1.3, chap.v, §1.1) so that [;4|'(}5:-sup piK(L) =

L ) KT
= ;gﬂl#] (E)<| gl (H)<ee. Thus the - (bounded} measure {,uK: K com-

. /
pact CH1  in the sense of ref. %%/ corresponds to every (fi-
nite complex) Borel measure on H. ' '
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Furthermore, this correspondence is injective: the feasures
.
{jpg: K compact i form & vector space (/2% ,chap.IX.,
§1.2) and its zero element fulfils |p *Hy = sup |u 1% 1 x 1=0.
0 wf otk Xx

Any Borel measure f, to which this eiément‘ correspdnds ful-

fils therefore |po|(K)=0 for every compact KcH. Since H is

separable, every ball BoH can beembedded into & countable

union UK, of compact sets, say Hilbert bricks, so !uol('B) <
n .

_<_:W,;,L0L(U K,) < 1#0|(Kn):0, Further a separable H is second
n

n -
countable, then mimicking the last argument we obtain [pol(G)=0

for each open GC H,  especially lpol(H)=0,i.e:, ,u.0=0.

APPENDIX C b
Assume first the integral Cla,b)=J exp(ibtz) at * for a,b> 0.

Since the function z e exp(ibzg)is entiare, C(a,b) can be evaluated
by contour integration. A suitable closed contour follows the
real axis from O to a, then it makes a circular arc anticlock-
‘wise and returns to the origin along the half-lineiz:argz=n/4l
Consequently, we have ‘

n'/'4 . .
Ca,b)=—ia [ exp(im2e2‘¢)e'1¢d¢+ )
0 (*
+ exp(ﬂ-) Fexp(—btz)dt.
4 9

The first integral on the rhs (call it Iy ) can be estimated
as follows .

/4 . 32 /s
T 1< a [ lexp(iba®e 2id )ldfﬁﬂl—a(? + [ Ddexp(-paZsing) df
1 0 . 2 0 3“3/3 ‘ .

assuming a2 (=/ 2)_2/3 . Using further -sin 52_—1-52_1. a—:‘[2 for
ge(a~¥® n/2) we get 22

IJIIS—;—E-% +-’%a-*exp(-——lg-bavz ). : {*%)

The second rhs integral in {%) can be estimated easily as well
as C(a,b) for small a: we obtain ‘

A  agwa™®
ICGa.b) < ' ' (+)

3 . -2/3
Lg%, 1 %, 72 (- dbak &
2(b) ._+ 2a 7+ " exp( 2 ba }...a2(a/2) |
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S0 KanﬂI is for every b majorized by a constant independent
of a, The relation (**) further implies

-

ltm C(a,b) = exp(ZL)’ Fexp(nbtz)dtu(ﬁ—)y‘f (r+)
A 00 4 I 4b

Since C(a—b)~C(a,b), the relations (+),(++) are valid for b<0
as well. Assume now

Kl(y,a)=(27ris)—% fa exp(-—i——(x+sy)2') dx =
[ —a 25

= (2nis)-% ((Cla+ sy, -21-8—) +C(a—sy, —)).
2s

This expression is majorized according to (+) by a constant
Kg which depends on s only, further {(++) implies lim Kl(y,a) =1.
&

Finally the Fubini theorem implies K™(y,a) = ﬁ Kl (y i:r [=le]
K=& and bm K® (v,a) =1. s =1 871

d-»00
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