


1. Introduction, Statement of the Problem

In recent years great progress in the perturbation theory
(PT) calculations and constructive use of the functional integral
repregentation in quantum field theory has led to a clear under-
standing of the apymptotic character of the PT series. lloreover,
epplicgtion of the steepest descent method to the functional
integral has given an explicit high order asymptotic behaviour of
PP coefficients directly related to the properties of the asympto-
tic expansion.

Because of the zero radius of convergence the PT series in
quantum theory can serve ag a source of the quantitative informa-
tion only in a very small region of the coupling constant. This
raipes the problem of "summation" of such series, i.e.,the problem
of'reconstructing a function from its asymptotic expansion.

A definite success in solving this problem has been achieved
in the case of alternating asymptotic series /1'8/. Most of
approaches used the Borel summation method o/ with different mo-
difications. However, in the case of nonalternating asymptotic
serieg the Borel method cannot be applied because of the singula-
ritiés on the integration contour and the divergence of the Lap-

.lace integral,

In the present paper a method for summation of apymptotic
series is proposed which is applied both to the glternating and
to the nonalternating series. In the case of alternating series
it reduces to a modified Borel transform. It appears that there
ig a principal difference between two cases, due to the presence
of an essential singularity of the sought function at the origin.
It should be emphasized from the very beginning that the problem
of reconstructing the function from its asymptotic expansion
possegses the functional arbitrariness, A unique solution is pos-
sible only when the analytical properties are known. But usually
they can only be supposed. The same problem concerms the substan-
tistion of the Borel method for the alternating series in QFT,
Our aim below is not to prove the uniqueness of the solution, but
to reconstruct the function satisfying all the given properties,
i.e. ,the given PT coefficients and asymptotice of high order beha-



viour. This asymptotics, obtained by the saddle~point method in a
functional integral, supposes the definite form of the discontinu-
ity of the function on the cut y i.e.,s0me analytical proper-
ties. Some other restictions are imposed also which are connected
with the physical nature of the problem.

The method is illustrated by two examples: the nonalternating
expansion of a model ordinary integral simulating the functional
integral in a theory with degenerate minimum and the ground state
energy evaluation in a double-well anharmonic oscillator. A great
deal of interest to the study of nonalternating asymptotic series
comes from the presence of such series in all the quantum prob-
lems with degenerate vacuum and, in particular, in the most popu-
lar today quantum field theory model - the Yang-Mills fields
theory.

2, Buler's Method and the Main Difference Between the Alter-
nating and Nonalternating Series
To demonstrate the difference between the alternating and
nonalternating series originated from the presence of an essential
singularity of the sought functzcn at the origin, let us consider
the Euler’s method of summation/ «This method is appliad when PT
series are known exactly, that is not s0 in real problems.

Example 1
Let the function F(ﬂ) be given by the expansion

F(S) ~Zr(k+b+1)a“g" ' (1
k=0
Then it satisfies the differential equation

a.ng' + albs)gF - F + T(b+1d=0 (2)

with the boundary condition

= . (3
F(g),g_”o- Mbed),

The solution of (2) ie
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If 3-94-0 we have
c.c0 , 0<0

FUg)»>T(bs+1) + )c-o a0

Hence eq.(3) means that
i) Q<0 (alternating series)

C=0 and F(a) ig defined uniquely.
ii) @ > 0 (nonslternsting series)

C is arbitrary and F(S) ia defined up to contributions
-vexp(- ) The arbitrariness can be fixed imposing an extra
condition for 3# 0 , for instence, fixing the asymptotics as

g»> .
Example 2
Let the function F( g) be given by the expansion
k
F¢( E(_Z.El..li}— a_k . 4)
3) kzso T{k+i)y" g

It satisfies the equation
4g*F" + 3gF' + 2F-4F'=0 (5)

with the boundary condition

F(p| =x 6)

9»+0

Equation (5) is reduced to the Bsssel equation with the imaginary
argument o One can choose two linear-independent solutions to
be It ( . ) « Then the general solution of eq.{5) will
o % ( Ziaig
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The requirement of finitemess of [ ( 8) as g-» +0 means:
i) @< 0 (alternating series)
Exponent e:x:p(-z-?;) should be compensated, i.e.,the combination
Cili+C I should contain only exp(-éfa—,') . This is
possible if C,-—Cz « Then eq.(6) uniquely fixes C,:-sz-{;!la-\.
ii) > 0 (nonalternating series)
Exponent exp(—i,‘,-) vanishes and gives no restriction on Cg
and C3 ., Prom eq.(6) (as well as from any condition at g=30)
we get the sum C,+C, = ’/{E « To fix the remaining arbitrari-
nege (of the type ea:p(-z'%i)) one should put an extra condition
for 3#0 as in the previous example.

The difference between the two cases i) and ii) in both
examples is due to the fact that the boundary condition was impo-
sed as §-»+0 . The situation will be just opposite if we
impose it as §-»- 0 . The limiting values of the functions for

>+ 0 do not coincide because of the essential singularity
of F(3) at ¢§=0 711/, mwo functions F(g) , real on the posi-
tive real semi-axis, defined by asymptotic expansions (1) or (4)
with @ >0 and Q<0 have different analytical properties and
cannot be deduced from each other by a simple analytical continu-
ation g-»- g .

In the case of nonalternating series the sought function con-
tains usually, apart from the PT contribution, the so-called

4
instanton contribution ~e-“_a— which is eliminated in the
alternating case by the boundary condition as 9-’ +0 .

In real problems the boundary condition (PT) at 3-- +0
means the frqe theory limit (the absence of interaction). The po-
pitivity of 9 provides the stability of the theory (stable
minimum or boundedness of the potential from below). This means
that th? boundary condition cannot be imposed at g:-o + This
fact leads to the arbitrariness in the sought function (s.) in
the nonaltermating case, that we shall see in the sumation proce-
dure proposed below,

It should be stressed that our aim is to reproduce the func-
tion sterting from its ssymptotic expansion on the real sxis. We



do not pretend to reproduce all its singularities (gathering cute,
etc.) in the whole complex plane. The presence of such singularis
ties, ap we can see by the example of anharmonic oscillator with
nondegenerate minimum, doee not exclude the possibility to use
the Borel summation method for reconstructing the ground state
energy on the real semi-axis.

3. Formulation of the Method, Exactly Solvable Case

The idea of the proposed method for nonalternating asymptotic
series exploits the presentation of the Euler [ -function differ-
ent from that used in the Borel transform'’: )

: -t
i 2-4
F(#)= 2ifinX(z-1) éc“:e 1) , . 2 isnot integerfa)

where contour C is shown in fig. 1.
The method of swmmation is the followings:
Let the function F (g) be defined by the asymptotic expansion

[~ -]
k b _k
—~ ~ | (9)
F(g) 2«03 Fe | R ekika

‘then, using (8) and proceeding in analogy with the Borel method,
we put

oo
k FK ‘, -—‘t K.‘.r—i
F(g) - ;(‘ g T(k+m) 2i St’nJl‘(n,A-d.) Sd't €t -
° ¢ (10)

00

: -t p-L k¢
= \dte (- — Z @) =
CS 1) 21 Sth M (pm-1) o ¥ Flcvp)

where M is noninteger.
If coefficient .Fx obeys condition (9), then for k 1arge

hiJ Another method us_in7 ahalogous . =function representation
is discussed in paper 12/.
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defineg the function with a singulerity at point 'f" a of the
type (i- aq’c)”""z
If &< 0 (alternating series) this singularity lies to the
left from the integreting region and integral (10) reduces to
that one of discontinuity on the cut arising from the multiplier
L—-{:)r‘ and equals

F(g)— Sd,te " 2_ (gt
K=K,
Hence we «ome to the Borel method for summation of alternating
series,

If O » 0 (nonalternating series), the singularity lies to
the right and two cuts are overlapped (see fig. 2). Thus, to find
the function F( ) we have to take into account the discontinui-
ties on both the cuts.

#e apply this procedure to w1t exactly-solvable example.

k

y A<0.

r(u+rn)

Example 3
Consider the simple integral
©0 2 r 2
~x(1-%¥x)
I(g)=ésdame 2 , (13
‘ -0

which is a O-dimensional analog of the functional integral in a
theory with the double-well potential. This integral has an asymp-



totic expansion of the form (4) with a=4, Then, according to (10):

00
-t -4 4 .k ]
= SN el I 2 m2ksR2>  (14)
l:( %) ch:b & ¢ty 21'&‘1131’()\!-1)“:0(8*)”'“1)r(K*r") ’

Using the representation [(2k+'2)= 1/5;-4"F(k+‘/‘,)r(u+3/u).
we find that the series obtained cen be easily summed for M= 1y
or rl= 3/1; « After some simple calculations we have

- -t -4 }4-1 1
_TOa-p gt NP =i’~(15)

F(ﬁ> 2;'&';1:(,4-1)(z_rr_d' Cety (4-498) , p 3,
Calculating discontinuities on the cuts from the points 'l;-:D and

t= 4/4}, we get

. L o0
= r-m 4 et p-t tpr ,‘.1}
F“i) T e ;os dte 1" (1-49t) -zc.,,rr.xd.’ce 1 t4gt-1)

Y
i3 4

e 4 4
The integrals obtained can be expressed via the Bessel functions
of the imaginary argument

s
P - BT [ T ) e ]

4 2

p= I,y
So, for the function F(g) given by the asymptotic expansion (4),
we have

_ T(OF(1-p> -& -4
- TR NT L (4)- g & M. ()

4
Ftg) = ‘H’—EC 83'1,%(3"@.

Comparing with eq.(7) we see that the whole result can be expres~
ged by the linear combination of two Infeld functione



F(g)= e ﬂ[CI‘(Bg) + (4- c)I__( ‘&)J- (16)

The arbitrariness of € 1in (16) corresponds to the arbitrariness
in the choice of parameter M in eq.(14). Our choice f4=1/4 or
3/4 is explained only by simplicity of summation. Independently
of the value of ¢ (or ) the function Fr(g)(16) is expanded
into the asymptotic series (4} with a=4, The arbitrariness, as in
the examples above, is proportional to exp(—}f.s). This is a mani-
festation of the ambiguities of nonalternating asymptotic series
pointed out earlier., In the alternating case (a<0) the series
(4) are summed uniquely. For eliminating this arbitrariness and
providing the correspondence of F(s) (16) with integral (13) we
have to use an additional information which is not connected with
the expansion of 1ntegral (13) in g + Por example, as g-~» oo
I(%)—’ i < ’/q)(llg) Y% . This condition uniquely fixes the
value of (: =1/2. As a result, we get

I(g&=—— e 32[I1(33)+I a; )] (17

So, when the PT series are exactly known, the proposed methogd
enables us to reconstruct the function given by the nonalternating
apymptotic series up to one paremeter originated from the choice
of M in eq.{10). This arbitrariness can be eliminated by some
extra condition.

4. Pormulation.of the Method. Approximate Scheme

Congider now the cape when only a limited number of coeffi-
cients and their high-order asymptotic behaviour (9) are known.
.This situation is typical of quantum theory. Asymptotic estimates
for high-order coefficients are obtmined with the use of the-
steepest descent method in the functional integral, where the
saddle point is a molution: of classical Euclidean equations of
motion with finite action ~ the so-called instantons 715-17/

T™e series (11) definea the function 4}(*) in a cirecle of
radius %41 s where it ip presented by a polynomial of some degree.
Por its analytical continuation to the whole integration region we



use the approach developed for summing alternating series by the
Borel method 2,4 « Namely, we perform the.conformal mapping -l:-pvfl
of the cut plane into the interior of the unit circle so that the
interval (D i/a.g) maps into the interval (0,1) and the cut

(a. ) ) maps into the boundary of this clrcle. ¥e choose the map-
plng W({) so that its singularity at += a? .oincides with
that of q:[{-) « These requirements are satis ied by the follow=-
ing mapping

i-(4-agt )d

1> wit)y= 1+ (tagi)s

where d& = 1,4-]:—2} and &-‘ means the fractional value of
the number.

Then, reexpanding series (11) into the series in the new va-
riable, we have

N
$(+) = 2__, 91:) m (gﬂxz_,wk'*ck . )

¥e have introduced here the new parameter )N witich, as we shall
see below, defines the asymptotics of the aought function th.) as
—-»©0 . In the case when we know the whole infinite series exact-
1y, the dependence of- A  disappears.
Substituting (18) into (10), we get
N
9{;)‘\ w* C (9

Fcqy= the ~pyt
- ) ) ) %,

For the evaluat1on of integral (19) we have to take into account
the discontinuities on both cuts. For 0<+t< /a. the discontinu-
ity is prov:Lded by the multiplier (-f)f‘ L only and equals 2§«
,(,,_1(,.-4)*" 1, Por [ <1<o0 we have the overlapping of two cuts.
In this area it is useful to represent W in the form

Y- 245N T ,
Wit)= @ € , where +ﬂ6 = <a9+'-n°‘-'(aa+n’*

by
26 RA(M-4)

| (a-g'k '1)d+ ( ag-t -.13-5 20sma (20)
- J ( Qa%-i)ﬁ(ag-l»-i)'t 263



Substltutlng (20) into (19), we flnd

Figy= xaalfe " (th,W Ce *

K=o

Sd’ce " (3+>Z° “ex Pl +80D] ()
KeKe hn T(/ll- 1)
“ﬁ

Performing the change of variables ? , we finally: get

g =ch5‘*§ Sd*e ey Z,C*

&‘u.e ag 41 1(_£§ ZC K-> Snmip-1y+ 9(':-)0]} (22)

K=K ° Hh w(/l'l-)
’

where
a IS ’
W___J.--(J.--l:)‘l , §= (+ 13:(.4: 1)_.‘ Gamra, ’
14 (4-4) (£ =1+ (£-1) + 2Gand
L 28T 3 950 4= im-b-2
-':39—&—1)“—&-1\"‘ , ¥<020,4 ip-b-21

Coefficients CK can easily by obtained from (18). We present
here the explicit expressions for the first four of them:

0 rqu) Ai\

Ci= ﬁ',‘.‘,(aLB-'\i%-ﬂ‘é'F(%\f



Co= fo 2 2\ { 3(L+d) s 2O, B2\t

Ty ad 2af foplad) &
+ F2 (_%_ "}
ﬁ,r(rﬂi\ (23)
c,= fFeo L""% A >.(>+L\ ML mz)
> rq“)(a.ﬂ = (243 > (1+% )+M )

(&) 2250- g+

3
( ) Az, F (aul)
Curylodd g
FI“ | % P pue2)
Bquation (22) is the main result of the present paper. For
3-9 0 it reproduces the initial asymptotic series independently
of the choice of ,{ and A\ . For g-»oo we have

Fcgy ——-’ % i +A)L(-> Ck )'erhc*aﬂ(,«-i)‘\""‘.l(z“
K=Ko
We present for comparison analogous formulas for the alternating
geries

F_C%): A l \.ue '“'HP‘ 73 ZC""’V (2

k=Re »
where V' = (_’_"’_Q‘_'.’-'- and coefficients (C, are the same as in
(23), For (+1¥+4 g -0
-—7 >
Py = g rc,umZ " o (20

K=Ko
Notice that in both the cases the infinite series é.f:’uck
is convergent only if we correctly choose the asymptotice of the
function as g-yoo + Provided we know the whole series it will
be chosen automatically. In our case we fix it either using some

additional information or trying to find it by some "inner" way.
One of such ways was proposed in paper 4 » where parameter M
was determined from the requirement of minimization of the modu-
lus of the relative srror



Autay= - Tuslp
N F,J (%)
where 'F;;C%) is obtained taking into account N terms of PT.
As far as A‘, is proportional to C” y this requirement means
the minimization of |CN| « In the case when the asymptotics is
chosen correctly (see exactly solvable example 4 below), the coe-
fficients (:x vanish beginning from some lr + This is a start-
ing point of the mentioned criterium for the determination of )\ .
The application of this criterium to the cases where asymptotics
is known gives very satisfactory results
#ith the correct choice of )\  the product

2k
FOpa» 2 &> Cx
K=Ko
is practically independent of M and for N-’W this weak de-

pendence disappeai‘s. That is why in the case of alternating
series eq.(25) does not contain arbitrariness. On the contrary,
in the case of nonglternating series, eq.(22) still containe such
an arbitrariness connected with the fractional part of ,M due
to the multiplier

[Coamr+ clavrcp-n&‘um\]

in eq.(24). This arbitrariness, as in the examples considered
above, can be eliminated by fixing, for instance, the coefficient
of the leading asymptotice of F'Ls) as Q-» 00 , Here we again
can see the important difference between the altermating and non-
alternating asymptotic expansions.

5. Application of the Method

Consider now application of eq.(22) for solving the problem
of reconstruction of the function given by the nonalternating
asymptotic expansion. In order to estimate the accuracy of the
mathod we choose the examples admitting so;utiona by other me-
thods,
Exanmple 4

The simplest touch-stone of eq.(22) is the exactly solvable
example 3 . It is of interest also because the integral (13) is
a zero-dimensional analog of the functional integral in a theory



with the double-well potentiml. Here we have am4, b=m-1. The appli-
cation of the mentioned criterium for choosing parameter )\ from
the requirement of minimization of Cg leads to the value )z-‘/,‘
which is the correct number. Parameter Ivt can be fixed from
the additional condition as -0 , for instance, fixing the
value of the coefficient of the leading asymptotics, as in exam~
ple & . This gives ,1--"/2 , that means that d= hu-i-l} =42
and coefficients Cy vanish for all k but 0. Cp =2.
Substituting these values of paremeters into (22), we have

Figy= @ g,,g i*e "H*l:*vo +S¢+e "3*"""

(27)
where ?" M}
fin¥yy ’

A= -y 2051 (28)

T T3 , P=4, 96 55
Taking into account (28) and 6049‘.-4% , we finally zet

F(Q-)‘ 242 3§.Lte "SJI.T._' S&qu—} (29)

4 5Iz.

As far as by changmg of variables the integral (13) can be redu-
ced to the form (29) the obtained formula correc tly reproduces
the sought function., -
Example 5

The problem of physical interest is the evaluetion of the
ground-state energy Eo[ )of the one-dmenslonal double-well
anharmonic oscillator V/(x)= % (L-J_ :::.) Eo“) is expanded
into the nonalternating asymptotic seriea. Thisg problem, on the
one hand, can be solved by standard quantum-mechanical tools with
the use of the Schr_t')'dinger equation, and on the other hand, it
can be formulated through the functional integral. The calculation
of the latter by the steepest descent method. gives the asymptotic
behaviour of high-order coefch1ents of BT

E.t3~ 28" Ew,



/18/

where

Eo=;_-, E,=-1, E,_:-II,S , By -44,5 | E, =-626,625,
' et ,

and as k-p oo §
EK-__’ - kl- 3

k- 00

o |

It follows that a=3, b=0, Using the same criterium to determine
XA, we get )\ £¢0,3040,04 with the help of four terms of PI.
This is in agreement with the value of X\ =1/3 following from
the dimensional counting.
Substituting these values of parameters into (22), we obtain
LR + N
{ - ~aely =Y, k-4
L I 3 (i} ]
Eotg)-=(535,. §d+e 34" 3 Ge W ¥
k=0 (30)

© _
-t < ~ .

+\«%e_°a Pt "Z Cn?“ : Anlmq-~z)r61x-4ls)lj

4 K=o Andip~1) ,

where o> {_)A-Z.S and coefficients CK are given by (23). To
fix the parameter ,4 we consider the asymptotics of Eo(a_) as
s'-,oo . W¥e have

N
4, K
Eotpd) — a" Fepe '/,)'M’Z(-s Cx (31
3-r00 2 ey
On the other hand, it is known 719/ that

E, (%3 5—;“ %4’5./2 b - 0,667986259 . (32)

This enables us to determine ,4 from the correspondence between
(31) and (32). As is supposed, the product [(pe%)Te~y%Cx in
(31) depends on ’1 very weakly and all the dependence is gover-
ned by c&al’(r-i) « This means that only the fractional part of,A

is significant, with en srbitrary integer part. We present the
values of ,1 obtained from the correspondence of (31) and (32)

"



for [’IJ =4 and 6, when peveral terms of PT in (31) are taken
into account:

N=2 N=3 N=4
{ ,u] 4 4 4
] 0.404219 0.420412 0.433036
Ip
[ r J 6 6 6
0.409556 0.418626 0.421308

ir

Beginning from N=4 the obtained values of { M are practically
independent of [r\l : (N=4 )

[r] 4 5 6 15 20 30

irl 0.433096 0.427516 0.421308 0.426332 1,426314 0.414163

Having fixed the value of we can construct the function Eo(a)
by eq.(30). The graphs of E,(,) for N=2,3 and 4 and also the
graph of the function obtained by the numerical solution of the
Schrodinger equation are plotted in fig.3.
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We pee that the curves obtained are rather close to the
sought function and become still closer with indreasing number
of the PT terms. The rate of convergence of the proposed procedu-
re ig defined by the rate of decreasing thes coefficients CK
#hich behave like Vk p-b-1 at large k' .

6. Conclusion

Thus, the proposed method enables us to recomstruct the
function starting from ita-nonalternating asymptotic series.
Rather good accuracy can bs reached with a relatively small
number of the PT terms. This is of gpecial importance in field
theoretical applications where PT calculations are extremely
difficult, )

An interesting feature of eq.(24) is that for integer )
the dependence on practically disappears. This enables us
to find the behaviour of the function as g—poo independently of
the value of r\ » This may also be very useful in field-theore-
tical problems.

The application of the proposed method to the Yang-Mills
theory for the e=trapolation of the Cell-Mann-Low function P(a)
into the region of large 3 ig the content of the nearest
investigations.
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