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1. Introduction. Statement of the Problem 
In recent years great progress in the perturbation theory 

(PT) calculations and constructive use of the functional integral 
representation in quantum field theory has led to a clear under
standing of the asymptotic character of the PT series. Moreover, 
application of the steepest descent method to the functional 
integral has given an explicit high order asymptotic behaviour of 
PT coefficients directly related to the properties of the asympto
tic expansion. 

Because of the zero radius of convergence the PI series in 
quantum theory can serve as a source of the quantitative informa
tion only in a very small region of the coupling constant. This 
raises the problem of "summation" of such series, i.e.,the problem 
of" reconstructing a function from its asymptotic expansion. 

A definite success in solving this problem has been achieved 
/1 -8/ in the case of alternating asymptotic series ' '. Most of 

approaches used the Borel summation method '°' with different mo
difications. However, in the case of nonalternating asymptotic 
series the Borel method cannot be applied because of the singula
rities on the integration contour and the divergence of the Lap
lace integral. 

In the present paper a method for summation of asymptotic 
series is proposed which is applied both to the alternating and 
to the nonalternating series. In the case of alternating series 
it reduces to a modified Borel transform. It appears that there 
is a principal difference between two cases, due to the presence 
of an essential singularity of the sought function at the origin. 
It should be emphasized from the very beginning that the problem 
of reconstructing the function from its asymptotic expansion 
possesses the functional arbitrariness, A unique solution is pos
sible only when the analytical properties are known. But usually 
they can only be supposed. The same problem concerns the substan
tiation of the Borel method for the alternating series in QFT. 
Our aim below is not to prove the uniqueness of the solution, but 
to reconstruct the function satisfying all the given properties, 
i.e.,the given FT coefficients and asymptotics of high order beha-
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viour. This asymptotics, obtained by the saddle-point method in a 
functional integral, supposes the definite form of the diecontinu-

/11/ 
ity of the function on the cut , i.e.,some analytical proper
ties. Some other restictions are imposed also which are connected 
with the physical nature of the problem. 

The method is illustrated by two examples: the nonaltemating 
expansion of a model ordinary integral simulating the functional 
integral in a theory with degenerate minimum and the ground state 
energy evaluation in a double-well enharmonic oscillator. A great 
deal of interest to the study of nonalternating asymptotic series 
comes from the presence of such series in all the quantum prob
lems with degenerate vacuum and, in particular, in the most popu
lar today quantum field theory model - the Yang-Mills fields 
theory. 

2. Euler's Method and the Main Difference Between the Alter
nating and Nonalternating Series 

To demonstrate the difference between the alternating and 
nonalternating series originated from the presence of an essential 
singularity of the sought function at the origin, let ua consider 
the Euler's method of summation' '.This method is applied when FT 
series are known exactly, that is not so in real problems. 
Example 1 

Let the function гСЧ") be given by the expansion 

(1) 
oo 

" k-o 
Then it satisfies the differential equation 

a g V + a tb+i )gF - F + ГСЬ+О* О (г) 

with the boundary condition 

(3) 

The solution of (2) is 
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Р^-^уь-^У'е^ 
• с а - ь - 1

е - « 3 
or 

If Q-b-t-0 we have 1 С- OO , a- <0 

Hence eq.(3) means that 
i) 0/<0 (alternating series) 
C= 0 and F(9)is defined uniquely. 

ii)Q->0 (nonalternating series) 
contributions 

impoeing ap extra 
condition"for 9Ф0 , for instance, fixing the asymptotics as 

Let the function F ( 4 ) be given by the expansion 

С is arbitrary and F{9) ie defined up to 
«vexpl'aa)* №e arbitrariness can be fixed imj 

isfiee the equation 

with the boundary condition 

F c * , l 1 — . " f f • «> 
Equation (5) la reduced to the Beeael equation with the imaginary 
argument ' '. One can chooae two linear-independent eolutiona to 
be T ^ l (idjTaN * T h e n * h e e» 0* 1* 1 aolution of eq.(5) will 
he * be 
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The requirement of finitenese of тС^Л as Q-*+0 means: 
i) a < 0 (alternating series) 

Exponent ехр("25д) should be compensated, i.e., the combination 
C i l l + C t3_A, should contain only WCpf-J^ja) • This is 
possible if C ; * - C 2 « Then eq.(6) uniquely fixes С,»-С гг-рЬ . 

ii) CC> 0 (nonalternating series) 
Exponent 63Cp(-2aa^ vanishes and gives no restriction on Ci 
and С2 . From eq.(6) (as well as from any condition at *}-+<?) 
we get the sum C,+Cz= */{ci • To fix the remaining arbitrari
ness (of the type exp^-Joa) ) one should put an extra condition 
for Q + 0 as in the previous example. 
The difference between the two cases i) and ii) in both 

examples is due to the fact that the boundary condition was impo
sed as fl->+0 . The situation will be just opposite if we 
impose it as %-*~0 . The limiting values of the functions for 
Q -* ± 0 do not coincide becauee of the essential singularity 

of F(Q) at Q=0 ' '. Two functions F($) , real on the posi
tive real semi-axis, defined by asymptotic expansions (1) or (4) 
with &>0 and 0i<0 have different analytical properties and 
cannot be deduced from each other by a simple analytical continu
ation 9"»-£ • 

In the case of nonalternating series the sought function con
tains usually, apart from the FT contribution, the so-called 

_ J_ 
instanton contribution ""6~ f tJ which is eliminated in the 
alternating case by the boundary condition as $"* + 0 . 

In real problems the boundary condition (FT) at O » t 0 
means the free theory limit (the absence of interaction). The po-
eitivity of Q provides the stability of the theory (stable 
minimum or boundedness of the potential from below). This means 
that the boundary condition cannot be imposed at Q*-0 . This 
fact leads to the arbitrariness in the sought function F(i) in 
the nonalternating case, that we shall see in the summation proce
dure proposed below. 

It should be stressed that our aim is to reproduce the func
tion starting from its asymptotic expansion on the real axis. We 
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do not pretend to reproduce all its singularities (gathering cuts, 
etc.) in the whole complex plane. The presence of such singulari
ties, as we can see by the example of anharmonic oscillator with 
nondegenerate minimum, does not exclude the possibility to use 
the Borel summation method for reconstructing the ground state 
energy on the real semi-axis. 

3. Formulation of the Method. Exactly Solvable Case 
The idea of the proposed method for nonalternating asymptotic 

series exploits the presentation of the Euler Г -function differ
ent from that used in the Borel transform * t 

П * } * JiSfoTli-f) J * 6 t""*) , 2 is not integer, 
С 

where contour С is shown in fig. 1. 
The method of summation is the following: 

Let the function F ( 4 ) b e defined by the asymptotic expansion 
00 

Then, using (8) and proceeding in analogy with the Borel method, 
we put 

° C (10) 
00 

where ft is noninteger. 
If coefficient ,FK obeys condition (St), then for k large 

*' Another method ueing analogous Г -function representation 7io/ /127 
ie diecueeed in paper ' ' 
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that means that the series 

Ф<*> - !/**>'fife сю 
k-K. 

defines the function with a singularity at point *t = гГо o f t n e 

type U - a ^ - b - 2 M. * 
If Cl< О (alternating series) this singularity lies to the 

left from the integrating region and integral (10) reduces to 
that one of discontinuity on the cut arising from the multiplier 

and equals 
CO 00 

c-iy" 1 

F^-i^e-v- 4^»;^,, •*• ПК + |Л) (12) 
О lis К, 

Hence we ''.orae to the Borel method for summation of alternating 
series. 

If ft> О (nonalternating series), the singularity lies to 
the right and two cuts are overlapped (see fig. 2). Thus, to find 
the function F ^ Q ) we have to take into account the discontinui
ties on both the cuts. 

We apply this procedure to uv. exactly-solvable example. 
Example 3 

Consider the simple integral 

- x 2 d • fix}1 

(13) 

which is a 0-dimeneional analog of the functional integral in a 
theory with the double-well potential. This integral has an asymp-
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totio expansion of the form {4} with a«4. 'i'hen, according to (10)s 

Using the representation ГС2к + Уг)= Угйг'^ПК+ЧмУПК+Ьч) , 
we find that the series obtained can be easily summed for M= ty 
or и = */( • After some simple calculations we have 

Calculating discontinuities on the cuts from the pointe 4~0 and 
i= %л , «e get 

The integrals obtained can be expressed via the Bessel functions 
of the imaginary argument ' " ' 

So, for the function F f j } given by the asymptotic expansion (4), 
we have 4 

Comparing with eq.(7) we see that the whole result can be expres
sed by the linear combination of two Infeld functions 
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The arbitrariness of С in (16) corresponds to the arbitrariness 
in the choice of parameter M in eq.(l4). Our choice M=1/4 or 
3/4 is explained only by simplicity of summation. Independently 
of the value of С (or M ) the function F(q)(16) is expanded 
into the asymptotic series (4) with a*>4. The arbitrariness, as in 
the examples above, is proportional to 6Хр(~Мй)* This is a mani
festation of the ambiguities of nonalternating asymptotic series 
pointed out earlier. In the alternating case (a<0) the series 
(4) are summed uniquely. For eliminating this arbitrariness and 
providing the correspondence of F"£fl) (16) with integral (13) we 
have to use an additional information which is not connected with 
the expansion of integral (13) in 9 . For example, as л-*to 
T'ft^~* %[Г(%)(А%Уh ' This condition uniquely fixes the 

value of С »1/2. As a result, we get 

So, when the FT series are exactly known, the proposed method 
enables us to reconstruct the function given by the nonalternating 
asymptotic series up to one parameter originated from the choice 
of M in eq.dO). This arbitrariness can be eliminated by some 
extra condition. 

4. Formulation-of the Method. Approximate Scheme 
Consider now the case when only a limited number of coeffi

cients and their high-order asymptotic behaviour (9) are known. 
. This situation is typical of quantum theory. Asymptotic estimates 
for high-order coefficients are obtained with the use of the-
steepest descent method in the functional integral, where the 
saddle point is a solution; of classical Euclidean equations of 
motion with finite action - the во-called instantons ''5-17/^ 

The series (11) defines the function ф(-£) in a circle of 
radius /dq , where it is presented by a polynomial of some degree. 
Por its analytical continuation to the whole integration region we 
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use the approach developed for summing alternating series by the 
Borel method' , 4'. Namely, we perform the.conformal mapping -fc-#VGr 
of the cut plane into the interior of the unit circle so that the 
interval (O, /fte) maps into the interval (0,1) and the cut 
(jK,00) maps into the boundary of this circle. <Ve choose the map
ping WC-f) во that its singularity at -fcss. '/aa r oincides with 
that of ф^-t^ . These requirements are satisfied by the follow
ing mapping 

where d s } м - Ь _ 2 ( and I... I means the fractional value of 
the number. 

Then, reexpanding series (11) into the series in the new va
riable, we have 

vVe have introduced here the new parameter X wUich, as we shall 
see below, defines the asymptoticв of the sought function Fi4) as 
Q-P&o . In the case when we know the whole infinite series exact
ly, the dependence of X disappears. 

Substituting (18) into (10), we get 

С ' ls*Ko 
For the evaluation of integral (19) we have to take into account 
the discontinuities on both cuts. For 0<~k< /ла the discontinu
ity is provided by the multiplier (-•£}?*"*• only and equals 2i~ 
J»*«.3f(&4-i)-t',"t • For A-<"fc<oo w e have the overlapping of two cuts. 
In this area it is useful to represent \tt in the form 

W r t ) - ? в . where -bg 0 = «d-tV^frf*-^* ' 

И 
I ~—2 ' 
(a^-lV+(a^-ib +2<ЦПА 
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Substituting (20) into (19). we find 

0 K>K 0 

Performing the change of variables i -> — j : , we finally, get 
1 _±. , v_4i 

^ " J v "— K-X 

(22) 

where , —-, 

Coefficients Сц can easily by obtained from (18). We present 
here the explicit expressions for the first four of them: 

с = Ь. /М х 

с-^(АУли^(^М, 
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ТърСр^П**' J , (23) 

3!d 3 

Equation (22) is the main result of the present paper. For 
^-> 0 it reproduces the initial asymptotic series independently 
of the choice of M and X • For 0-*oO we have 

^"* 0 d K*«Co 
We present for comparison analogous formulas for the alternating 
series 

where V*" "*"** ~ and coefficients C|e, are the same as in 
(23). For &•+>* + A «->*> 

* V 

Notice that in both the cases the infinite series &~/f~*^' К 
is convergent only if we correctly choose the asymptotics of the 
function as Q-tOO . Provided we know the whole series it will 
be chosen automatically. In our case we fix it either using some 
additional infomation or trying to find it by some "inner" way. 
One of such ways was proposed in paper ' , where parameter Л 
was determined from the requirement of minimization of the modu
lus of the relative error 
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where fv^i -) is obtained taking into account Ы terms of PT. 
As far as Д у is proportional to С// , this requirement means 
the minimization of \Cf) \ . In the case when the asymptotics is 
chosen correctly (see.exactly solvable example 4 below), the coe
fficients Сц vanish beginning from some К , This is a start
ing point of the mentioned criterium for the determination of X . 
The application of this criterium to the cases where asymptotics 
is known gives very satisfactory results ' . 

With the correct choice of X * n e product 
N 

rc^y^X,b^c* -K 
K*K© 

is practically independent of ^Л and for N-fOQ this weak de
pendence disappears* That is why in the case of alternating 
series eq.(25) does not contain arbitrariness. On the contrary, 
in the case of nonalternating series, eq.(22) still contains such 
an arbitrariness connected with the fractional part of /И due 
to the multiplier 

[C**T> + ЫйТГСуи-1><6'и1ГА] 
in eq.(24). This arbitrariness, as in the examples considered 
above, can be eliminated by fixing, for instance, the coefficient 
of the leading asyaptotics of F£ft) a e %-* °° • Here we again 
can see the important difference between the alternating and non-
alternating asymptotic expansions. 

5. Application of the Method 
Consider now application of eq.(22) for solving the problem 

of reconstruction of the function given by the nonalternating 
asymptotic expansion. In order to estimate the accuracy of the 
method we choose the examples admitting solutions by other me
thods. 
Example 4 

The simplest touch-stone of eq.(22) is the exactly solvable 
example 5 . It is of interest also because the integral (13) is 
a zero-dimensional analog of the functional integral In a theory 
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with the double-well potential. Here we have a»4, b«-1. The appli
cation of the mentioned criterium for choosing parameter Л from 
the requirement of minimization of C.% leads to the value Л»-*Л, 
which is the correct number. Parameter M can be fixed from 
the additional condition as 0-»CO , for instance, fixing the 
value of the coefficient of the leading asymptotics, ав in exam
ple 3 . This gives H-tyz > t n a t aeans that A « [/44-1-2 } = tyz 
and coefficients C K vanish for all fc" but 0. Cp =2. 

Substituting theee values of parameters into (22), we have 

(27) 

(28) 

"here V *.%. J, 
Taking into account (28) and Comfit жUli±A , we finally get 

As far as by changing of variables the integral (13) can be redu
ced to the form (29) the obtained formula correctly reproduces 
the sought function. ' . 
Example 5 

The problem of physical interest is the evaluation of the 
ground-state energy E0t$) o i the one-dimensional double-well 
enharmonic oscillator "\f"Cxy ^ (1-V4X} • fo^fti i s e * P a n d e ; J 

into the nonalternating asymptotic series. This problem, on the 
one hand, can be solved by standard quantum-mechanical tools with 
the use of the Schrodinger equation, and on the other hand, it 
can be formulated through the functional integral. The calculation 
of the latter by the steepest descent method gives the asymptotic 
behaviour of high-order coefficients of PT 
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where / 1 8 / 

' tic., 
and as fc —? OO 

Б , - » -Кг'-з к | - • 
К-too л 

It follows that a=3i b=0. Using the same criterium to determine 
,\ , we get \ <a 0,30+0,04 with the help of four terms of PT. 

This is in agreement with the value of X =1/3 following from 
the dimensional co-intingc 

Substituting these values of parameters into (22), we obtain 

c-'4 

i & л-и«/1-«> J, 

K = 0 (30) 

where «4.» i / * ~ 2 j and coef f ic ients Сц. а г е 8 i v e n by (23) . To 
f i x the parameter iM we consider the asymptotics of fbf<L) as 

0 ^ 0 0 • >Ve have 

On the other hand, it is known ''"' that 

E°^V> Г ^ М ^ / 2 V i ' ° / 6 6 * 9 4 6 2 5 9 • <32) 
Ibis enables us to determine M from the correspondence between 
(31) and (32). As is supposed, the product Г(р+%'Ь^.е-^1С* in 
(3D depends on M very weakly and all the dependence is gover
ned by ch*W{/»-i\ . This means that only the fractional part of M 

is significant, with an arbitrary integer part. We present the 
values of M obtained from the correspondence of (31) and (32) 
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for [J*J «4 and 6, when several terms of PT in (31) are taken 
into account: 

N-2 N-3 N=4 

Ы 
4 

0.404219 
4 

0.420412 
4 

0.433096 

6 
0.409556 

6 
0.418626 

6 
0.421308 

Beginning from № 4 the obtained values of J M Z are pra 
independent of Г к 1 : (N*4 ) 

ctically 

£/•3 15 20 30 

iri 0.433096 0.427516 0.421308 0.426332 0,426314 0.414163 

Having fixed the value of M we can construct the function Д,£<Л 
by eq.(30). The graphs of fofo) f o r ? 1 ж 2»3 and 4 and also the 
graph of the function,obtained by the numerical solution of the 
Schrodinger equation,are plotted in fig.3. 
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We see that the curves obtained are rather close to the 
sought function and become still cloeer with increasing number 
of the РТ terms. The rate of convergence of the proposed procedu
re is defined by the rate of decreasing the coefficients C)e 
which behave like vJeP"' ,~ 1 a* large к 

6. Conclusion 
Thus, the proposed method enables us to reconstruct the 

function starting from itsnonalternating asymptotic series. 
Rather good accuracy can bs reached with a relatively small 
number of the FT terms. This is of special importance in field 
theoretical applications where FT calculations are extremely 
difficult. 

An interesting feature of eq.(24) is that for integer X 
the dependence on M practically disappears. This enables us 
to find the behaviour of the function as Q-*°° independently of 
the value of м . This may also be very useful in field-theore
tical problems. 

The application of the proposed method to the Yang-Mills 
theory for the extrapolation of the Cell-Mann-Low function &£§) 
into the region of large Q is the content of the nearest 
investigations. 
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