


1. INTRODUCTION

The local light-cone expansion is an important tool for
the treatment of deep inelastic scattering. For scalar
theories it has been shown that the so-called nonlocal
light-cone expansion‘"/ exists as an operator identity,
whereas the traditional local light-cone expansion 2/ exists
on a dense subset of the Fock space only . S0 1t depends
strongly on the properties of the target bound states if
such expansions make sense., Taking into account that the
nonlocal 1light-cone expansions can be applied in all cases,
it is interesting to study the relations between both
expansions. This gives an independent justification of the
application of the local light-cone expansions in deep
inelastic scattering finally. For practical applications
both types of expansions are needed for forward scattering
only. This restriction gives essential simplifications
concerning all quantities as light-cone operators, light-
cone coefficients, anomalous dimensions, and renormalization
group equations. For example the light cone coefficients
seen in forward scattering are linear combinations of the
complete set of the light-cone coefficients. It is pointed
out that the effective renormalization group equation for
the nonlocal light-cone coefficients is equivalent to the
Altarelli-Parisi equation. It is interesting that this
equation was originally derived 4’ on the basis of physical
assumptions and ideas whereas the important non-local 1light-
cone expansion was constructed later 1/ This work uses the
results of the investigations/185/ on light-cone expan-
sions. All notation and convention used there and in the
paper %/ aye applied. For simplicity all calculations are
done in scalar field theory. We claim that the essential
features seen here turn over to gauge theories.



2. RELATIONS BETWEEN THE NONLOCAL
AND LOCAL LIGHT-CONE EXPANSIONS

The basic quantity investigated in light-cone expansions
is the renormalized product of two current operators
R(i(2)i(0) E o (8) vhereby Eg(s)=emp [£ipdx  (The T-
product symbol is omitted always). In perturbation theory it
is possible to represent this operator product with the help
of coefficient functions Fy and normal products of the free
field operator ¢

K (0)i(0)Eg(8)) =221 T { dq y... dgy Fg(x XG5, 414G, ug) A g... B(q p):.
(2.1)

With these notation the nonlocal 1light-cone expansion
reads /1
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and the nonlocal light-ray operators are determined by
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The indices (,k,... or the multi-indices (m),(r),(n) are
nonnegative integers, lm}=2m‘, the coefficients Ck-lmlvlrl
are constants defined in’l/, n denotes a constant vector

740 and X =—12—(x11”-fr(xrl))+-7'3',3—((@)e—x“rz")"i is a

light-1like vector corresponding to x . R denotes a modified
R operation’1:3 whereby the graphs or subgraphs containing
the operator vertex O are subtracted with the help of a
special subtraction operator N#*/1.5/
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The positive integer a can be chosen arbitrarily. It
determines the smallness of the remainder Q% near

x?-0 (@* __(xg)"'g"]'l) . All formulas correspond to scalar

¢4 -theory, nearly the same formulae are true for ¢3 -
theory 8/, The corresponding expressions for the loca(&) light-
cone expansion are a-t
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From these formulae there follow at once relations between
local and nonlocal guantities.

Operators:
f
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Coefficients functions:
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The exact renormalization group equaticns are identical for
loth expansions, they follow directly from the renormaliza-
tion group equations for the x -proper coefficient functions
F :;—pmp /1,8/

9 - ; £ = .12
(p +Samgiﬁ +2)~‘I )Fl(r)(m) (x ,n’) C, (2.12)
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On the other harnd the ecffective renormalization group
equations are different. They correspond to the traditional
renorualization group equations /% for the 1ight-cone
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coefficlents which are derived indirectly taking into account
renormalization group e%xations for the light-cone operators

Ogemymy or Ouf(mymy(m
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Both equations can be connected by a Mellin transform.
Omitting unessential details we have to transform an equation
of the type E F,0,, =0 into an equation of the type
fdxF(K)D(x A) =0, vhereby F_  is related to F‘(x) by
1
eqs. (2,10),(2.11) F -i fdx&"Fx), , Fla)= T f dn(ix) Fn‘
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To check these relations the explicit definition of the
anomalous dimersions is needed. The anomalous dimensions are
defined as derivatives of Z-factors whereby in our case the
explicit pu® -dependence of the operators O has to be taken
into account. To get more explicit expressions we start with
the renormalization condition for the operators O contained
in the definition of the subtraction operator M* 88/

A ) >1 1pl 3
2 0.2, ¢)=X* S — [dq,..dapHy" T (XG0 1OV :B(0,) o ing )
2 ] 1 1 1
(2.20)
To simplify the notation, the complete set of operators o)
is ordered to a row and Z acts as a matrix in this space,

HIP  and HEM T are the 1pl -parts of the renormalized
and unrenormafized coefficient functions of the operators O

R(OE, () =l=i;l—‘!-qul...dq,Hl(x.q,.....qg|6) 1(a,)e $(a
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Differentiation of eq.(2.20) with respect to FB gives
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we obtain
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This relation can be written for the local (discrete) and
nonlocal (continuous) case explicitly

Y, 2 n +
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Quite similar calculations leading to eqgs.(2.16),(2.17) show
that both expressions (2.24),(2.25) are connected by eqs.
(2. 18) {(2.19). Thereby_i}: must be taken into account that
R(OE (s)) Am) and R(OE,(9)), (x) satisfy eqgs.(2.8),(2.9)
too. 'I'his is guaranteed because of the property of the
applied transformations.

3. MINIMAL LIGHT-CONE EXPANSION
IN THE CASE OF FORWARD SCATTERING

For the first investigations of deep inelastic scattering
the most important operators of the light-cone expansion have
been taken into account only’7/. The minimal non-trivial
choice of the light-cone expansion for the &% theory
corregponds to a = 2. In this case we have

Local case:

R E ~ F, 2 2)R E . .
(4R JO) Bo(®) = nfng g5 RDIRO, , Eq(9) 3.1)



nl ng

(3q,) (X

Onn =qu1dQ2_—‘—__qE)_ :¢(ql) ¢(q2): (3.2)
e nlr o,

-0 (3.3)

qiqj='lij

Sd (@ )t 2_yE prern,s
=g ) F (x.mi.qiqj)lxq

L dxq dxg, 2

172

Nonlocal case:

1 1 -
R(j(x)j(O)Eo(s))xaio ({ dxl(_)fdKEF(xz,xl,x2)R(O(K1,K2)E0(s)),

(3.:1)
Ik, Fq, tikyEq
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N F;-prop (ijq1 .i'qz.qiqj) ‘qiqjg”\j .
There appear only terms which contain at most two field
operators. Complicated 9,9 and j5-dependence has been
dropped out.

At this place we have to add some general remarks. The
crucial point for the proof of the light-cone expansion is
the choice of the subtraction operators M which enable the
construction of the light-cone expansion and allow a conver-
gence proof. The first subtraction operators of this type
have been given by S5.A.Anikin and O.I.Zavialov ’!/. Slightly
changed operators have been considered later /5/. It is very
important that the choice of a subtraction operator leads to
a special form of the light-cone expansion and determines
finally the renormalization procedure for the light-cone
operators. Up to now we have chosen the subtraction operator
(2.4'). With regard to the application of the light-cone
expansion to forward scattering processes we choose as sub-
traction operator now (2.4') with & = 2 and different
subtraction points, however,

f=1 q2=0, f =2 qf=q§=p2<0, q1q2=—,12. (3.7)
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This leads to a similar minimal light-cone expansion. The
difference to the expressions (3.1)-(3.6) consists in another
definition of the light-cone coefficients

1,9 " 9 "8 xprop g '
F (x2) = (L) (—%) °F (x*.xq.,9.9.)
By ) 2! aqu alqz ? q' l-'lx.ql=xq2=0 !
2
a=qZ-n
9,9p=-n"
(3.8)
F(xz'lex T | d¥q, diq e—(lxlquﬂngxqg))<
2 g2 1 2
(3.9)

FYPP (x2 %q, ,9,9,) | g2 Bamq q_=p2"
xF, ( 93357 g2=al=-q 0,70

Let us turn tu the case of forward scattering. Then the
matrix elements <p|Rj(x) j(0) Ey(s) |p> of eqs.(3.1) and (3.4)
have to be formed.

We consider the nonlocal light-cone expansion at first.
If we look at_eq. (3.4) then it is obvious that the matrix
elements <p!R0(xi)Eo(s)|p> have to be investigated. For
free field theory such matrix elements

1, - 1, bt
<pl0i 1,Kg)\p>=_qu1dq2e("‘+(“1+“2)'i“"‘(“l ap ) X <pl:(a, ) ) :lp>

K =X =K

Ky=ryt % 172
do not depend on the variable &, because of momentum con-
servation q;+4,=0. This result remains true for inter-

acting fields also. For this reason the coefficient functions
of the renormalized operator

ROGe, s (@) = X Iy fdq 1. da H1 (R, ey, 1) (0 8 )
(3.10)
must be studied for £4q;=0. These functions are Green func-

tions amputated with bare propagators at the external legs

H (¥xy,%g, Q1,0 § o) =<EGxy) Gl play ... p(q ) > TP
Translation invariance of these functions reads

Ho(Xx +y, Xkpty, Q)i Q) =H (XK ,Xkp,Q 00, 0) eXD(-iyZq,) .
Setting y=—%§(xl+xz) we get

1=~ - JO
Hs("Ex(Kl_K 2). ';jx("z"‘ Qe )=H (Bxy B, 9y, .0, )e .



Here it 1s seen, that for Eql =0 the functions H, do not
depend on «,. This result can be used to simplify the non-~
local light-cone expansion for forward scattering. Performing

the «, integration in eq.(3.4) and denoting

2 = 2
C(z ,rf._)_2_fd:<+ F(x .xl.xz) (3.11)

as new light-cone coefficient for forward scattering, then
the expansion (3.4) takes the simple form

<p|Rj()j(0) E (s} lp>= fdx_C(x 2« )<p|RO(x p*JEg (P>, (3.12)

It is remarkable that we are left with one integration
parameter only.

For the local light-cone expansion similar statements are
true. Quite analogously the forward matrix elements of the
free field operator

() 'Eq)
ng Dy+Ng —1 ng Xxq X
1 CVTF) <plo,  lp>=(-d) quldqz——!—qs—<p|:¢(q1)¢(qg):lp>
ny iz (n,+n !
. Rptn
((q]_—qe)x) 2

~(ng+ny)
= faa,%, (o, +ny)!
1778’

<pl:g(ay)s(ag:lp>-2

depend on Bi+Lp only because of 9;+4p=0. In general the
coefficient functions of the renormalized operator

= s 1 = . .
R(o“l“aE"(s).) =83:0 — /44y 49 H, l11,,e(x,q,,....qé,).qS(ql)..-<i>(qs).
(3.13)
multiplied by (—l)ne ( n‘::g y—1 depend only on n,+n, for

Zq;=0. This can be seen from the connections between
local and nonlocal. light-cone expansions. From eq.(2.8) fol-
lows the relation for the coefficiert functions

(3.14)
Because of the «, independence of the nonlocal coefficient
9J o dJ

functions at Xq =0 we have = = so that
i 9, dixg dix_

10.



U2 ny+ng -1 1 9t 3
_ H 8 PR ) H XK, Q;) .
-1 “( ny ), n;n.o,a qi)éq,:n (ny+ny)t dix_ Frxeg qizlq,=o,xj-o

This allows us to rewrite the local light-cone expansion
{(3.1) for the case of forward scattering in ihe form

<p|R{(x) KOE ()lp>= % C G2 =1 2™ "2y T <pIRO.  E(8)[p>tPn 4n_.n
P oI N ny nyng 0 e
(3.15)
The new coefficient functions are
5.3 (M (x®) 8 (3.16)
CN(x ) = -0 -1 n, n,np n1+n2.N' .

nl—

Again we are left with one summation index only as it is
known from the application in deep inelastic scattering.

4. RENORMALIZATION GROUP EQUATIONS FOR FORWARD SCATTERING

As we have seen the restriction to forward scattering
leads to a lot of simplifications. The light-cone expansion
has only one summation (integration) index, the light-cone
coefficients are sums (integrals) over the original quan-
tities, the matrix elements of series of operators are iden-
tical (independence of certain variables). Such simplifica-
tions have been used from the very beginning by the treat-
ment of deep inelastic scattering’?/. For example in the
light-cone expansion there are used the operators Y IDF2DF3¢'
but the operators yyy Fzﬁﬂa'/" vr Wy DugD p gt need not
be considered separately. However, for non-forward scat-
tering also these operators have to be taken into account
and the renormalization procedure becomes more complicated.
Because of the close connection between renormalization
procedure and anomalous dimensions this is also true for the
anomalous dimensions.

If we confine ourselves strictly to forward scattering,
i.e., all operators O have no momentum flow through the
operator vertex, then instead of the operators Ofx,,x,) and
O(ng,ng) it is possible to use

+- ()%
Olx.)=fdq dq,e © ! %¢(q1)¢(q2):8(q1+q2),

"



((a, qg) »"

Oy= faadq, th(a)(ag) : S(q i+ g9 (4.1)

from the beginning. Performing the complete renormalization
procedurz under this restriction then quite similar calcula-
tions (to egs.(2.20)-(2.26)) lead to the ancmalous dimensions
seen in forward scattering

S Fle_, 2,00 2) ==2y, 0 )+(2,¢2 m2)R.(0E @), (4.2

-~ a -
lf,"uu'onﬁ‘z”aou“‘(z#eaﬂg NBROE () - {4.3)

In general the anomalous dimensions for the minimal light-
cone expansion are defined by the equations

fdx dx ylk, k0" K )—-2y20(x oK )+(2ﬂ2—-——m2)R(OE‘b(s))(x1(<2
(4.4)

=-2y,0_ ..;(2"2'5%?’"2)5(0‘30("))“1:.2 . (4.5)

In an Appendix we will show that these anomalous dimensions
are simply connected with the anomalous dimensions seen in
forward scattering
-1 N— N’ n'-N’
(N7 cf™ Rt

.
1 n, =0

( 'l)y(nl.N—ni).(nl,N-nl) PnONN " (4.6)

Jau]ylu sanlsn2) = 27k ,67), 4.7

These relations allow important simplifications of the
renormalization group equations.

Let us consider the nonlocal 1light-cone expansion at
first. The renormalization group equation (2.14) reads

fdx dx lp-—“-—+8-:;-—lz+ﬁ—+2}:‘]8(x — V8 legmrg) - o

—ylx, k" lF‘(x"’,n1 'Ke) =0
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for the minimal light cone expansion, Because of eq.(4.7) it
is possible to integrate this eguation over «x’ for forward
scattering +

fdx_[[y-ai+8-£;§+ B-agg-+2yj]5(x_—x;) - Ple_ 2 NC(x2 x_}--0.(4.9)

The resulting equation has just the form of the Altarelli-
Farisi equation. In other words: the Altarelli-Parisi
cequation 1is a renormalization group equation for the 1light-
cone coefficients of the ronlocal light-cone expansion

specialized to forward scattering.
For completeness we consider Lhe discrete ca<e too. The

complete renormalization group equation (2.15) reads Lere

I s 9 ‘3 12 —y 2y .
150 n:‘;o !w M +6 8g+2yl)5(n)(“') Yoy )!Fn o (x2) =0, (4.10)

The restriction to forward qcattering allows the summation
over p; with the weight ( »)( nh . Together with
egs. (3.1€),(4.6) it is obtained

9,598 _,pl -5 2y .11
(ya# +& m2+ﬁag 4-2)'j 'R)CN(") 0. ( )

This is the usually applied renormalization group equation
for the light~cone coefficients in the case of forward ccat-
tering. Of course it can Le checked that both equations (4.9),
(4.11) are comnected by simple Mellin transforms (see alco
eg. (a.5)) as it was used by Rlterelli and Farisi.

* APPENDIX
Felations Fetween Anomalous Dimensions

At first we will show relations hetween ancmalous dimen-
sions in general and aromalous dimensions seen in the forwvard
scattering. ln the nonlocal case ihe anomalous dimensions
are given Ly eqgs. (4.4),(4.?). Using the subtraction operator
(2.4),(3.7) cxplicitly we get

fdx 1d:<2y(:~:,n’)0('<1 ,'(.2) =-¢y20(r<l 'Ky ) %

R (a.1)

+ 2080 fdq dq, N (Fox ), Ferge g, )] TICHTICINN

EME 1 2 1 '3y p @ e 1 £
" 9G4, a gH
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wWith the help of the identity

Hz(i-l:,-i'r( ,q

1 o, —lEKi-tzoKkg
1 )=-(—27)?de1 dlzfdl(ldl(ze

. K (xq,)+ik5Eq
. e 1M - ¥ ]
XHE(‘KI-XKEHI‘ )‘

lqi=ll

the last term of eq.(a.l) takes the form

&LZ—Idz dz

l 1.
S LA H (xx1 le q )} fdx’dx - zexb(x
du (211) of=af -qlqgf,‘ , Eq e,

This leads to an explicit expression for the anomalous

dimension
y(x,x')=—2y B(K -x')a(x —K;) +
(a.2)
a dzldzz Izlxl 1zgKg
2“2 L2 (2")2 15( xx :m’?,q1 1 g

29,72y “f‘"z' "9 qg_'lg '
A similar calculation using the operators Olk_) (4.1) leads

to a formula for the anomalous dimensions seen_in forward
scactering

)7(': ,x’)=-2y Slx_-x’)+

1“_ 5 $ (a.3)
2-—-— H(x——-x X .q.")) .
A (2") 20 727 Ttk 9=k Ta =2
To show the connection between both equations (a.2),(a.3) we
introduce the variables Kys K and integrate over «{

1 ,
, , ’ 3 dz,de Zp, " piaTRIN
Jax]yle, x*)=~dy 8l _—x D2l 2[@‘): &L —2—2-)0
1z 1 -
ng(-z—x(x++x_), 5 & ~x_) q, )I'iq‘=zl .

2o—gq q =p®
9y ="9q,0,"F

The function §(z +zg) enables the application of translation
invariance

1 =~ 1~
Hg(-z-x(x++r<_), -Ex(x+—x_),ql)
{ -~ ~
=e—§(‘ql+“2)“+ﬂ (L3« .--él—lx a0l -
22 quﬂll s 11 22
2gBac wp?
q1 q2 qlqz ®
(entire functions in xq‘ ). After the Ly, ~integration we get
finally
14



Jar ]yl k) ==ty Bl _ -x") +

Az, =izl 1. 1.
e 9 1.7 L -=me_,qpl. .
+4u 6u2f 2n g2 - 2 Xgy =Xq g=2,
] (a tag=0, q?_,ye (a.d)
=2y(k_,x’)-

Similarly to eqgs.(2.18),(2.19) it can be proved that the

anomalous dimensions ¥yy- and ¥lk_,x. ) are connected by
standard Mellin transform

~ PTIPRY .
V" NI!( 9 fdx_(lk._) ylk_x2) IK:=0
(a.5}
~ p N 1 PR e
Vi _ox2)=Z(x_) —&'—de s’ Yun’
< R S
with ¥, x_)=—y(r—-) we have
XK -
y“N,_ n NN,-fdr!' y(r)a (a.6)
On this basis we show the relations between y, and Yy
in the following way. The starting point is the relations
9 P19 " ha e Pl E
s dx ! de” (ic!) i) Vi, k%) .
fo e " n I(aix rerk TPt Lt I HloxMN g

Then we calculate:

Y et (N
2ot (N, iy e =
ni=0 n, n1n2;nlN ny

R S ,) b yl L d ye
n'l-o alKl nst aikz

e’ () ."é . -
x fdefdeg (k7)) " (kp) " yls k), o =

a " 1 d "e PPN M. (¢ ’
RIS (R A — ix —— (K -
n 1(au ) 1 (asz) Jar( -) J 2 7 = )l,lg-o

1 1 Ps
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So we obtain finally

-1 N-n,N°  nfN N
) n) D 1S (! Cp2)7a me prntal + @07

L
=0
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