

объединенныи ииститут ядериых
 исследовании

 дубна

 дубна}

$$
12-80
$$

$8 / 12-80$
E2-80-609

D.V.Shirkov

3-LOOP APPROXIMATION

FOR RUNNING COUPLING CONSTANT
IN QUANTUM CHROMODYNAMICS

Submitted to "Physics Letters"

Recently performed $/ 1 /$ calculations of renormalization--group (RG) parameters for $\beta(g)$ and $\gamma_{i}(g)$ functions in 3-100p approximations for QCD "open the door" of systematical account of 3-Ioop radiative corrections for observed processes of quantum chromodynamics. For this aim it is necessary first of all to make more precise the formula for invariant (ie. running). QCD coupling constant \bar{q} and define new (enlarged) energy variable region in which the behaviour of \bar{g} can be considered as established reliably.

In what follows we consider this question and also discuss the popular problem of "the choice of the mass scale" taking into account new more accurate equations.

We shall use the following notation for QCD expansion parameter

$$
g=\frac{\alpha_{s}}{\pi}=\frac{g_{x M}^{2}}{4 \pi^{2}}
$$

The RG equation for invariant ocuping constant \bar{g} now has three known terms in the r.h.s.:

$$
\begin{equation*}
\frac{d \bar{g}}{d l}=\beta(\bar{g}) \simeq-\beta_{1} \bar{g}^{2}-\beta_{2} \bar{g}^{3}-\beta_{3} \bar{g}^{4} \equiv-\beta \bar{g}^{2}\left(1+b \bar{g}+c \bar{g}^{2}\right) \tag{1}
\end{equation*}
$$

where $l=\ln \left(Q^{2} / m^{2}\right), 4 \beta_{1}=11-(2 / 3) n, 16 \beta_{2}=102-(38 / 3) n$,

$$
64 \beta_{3}=\frac{2857}{2}-\frac{5033}{18} n+\frac{325}{54} n^{2} \quad, n \text { - number of }
$$

flavours.
For na we have

$$
\begin{equation*}
\beta=2.083 \quad, \quad b=1.540 \quad, \quad c=3.047 \tag{2}
\end{equation*}
$$

The quadrature of Eq. (1) written down in the form

$$
\begin{equation*}
\varphi(\bar{g})=\beta L \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(g)=\int^{g} d x / \beta(x) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
L=l+\varphi(g) / \beta \equiv \ln \left(Q^{2} / \Lambda^{2}(\mu, g)\right) \tag{5}
\end{equation*}
$$

represents the transcendental equation for \bar{g}.
In the $2-$ loop approximation, with a certain choice of approximation of the integrand in the r.h.s. of (4), one can obtain two versions of Eq. (3):

$$
\begin{equation*}
\psi\left(\bar{g}_{21}\right)=\beta L \quad, \psi(g)=1 / g+b \ln g, \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi\left(\bar{g}_{22}\right)-b \ln \left(1+\ell \bar{g}_{22}\right)=\beta L \tag{7}
\end{equation*}
$$

Quite analogously at the 3-loop level we have at least two different forms, egg.:

$$
\begin{equation*}
\psi(\bar{g})+\left(c-b^{2}\right) \bar{g}=\beta L \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& \psi(\bar{g})+\frac{2 c-b^{2}}{K}\left\{\operatorname{arctg} \frac{b+2 c \bar{g}}{K}-\operatorname{arctg} \frac{b}{K}\right\}- \\
& -\frac{b}{2} \ln \left(1+b \bar{g}+c \bar{g}^{2}\right)=\beta L \quad, K=\left(4 c-b^{2}\right)^{1 / 2} \tag{9}
\end{align*}
$$

As far as the I-loop approximation

$$
\begin{equation*}
\frac{1}{\bar{g}}=\beta L \tag{10}
\end{equation*}
$$

turns out to be very crude, usually one uses the 2-loop approximalion in the form

$$
\begin{equation*}
\bar{g}_{2, p c p}(L)=\frac{1}{\beta L}-\frac{b L L}{(\beta L)^{2}} \tag{11}
\end{equation*}
$$

This expression which we shall refer to es "popular* contans the correction $\ln L / L$ to Eq. (10). It can be considered as an approximate solution of 2-loop Eq. (6). It should be noted, however, that from the solution of Eq. (6) the popular formula differs by the shift of argument

$$
\begin{equation*}
\bar{g}_{2 t}(L-\Delta)=\bar{g}_{2, p \circ p}(L) \quad, \Delta=b \ln \beta / \beta, L \gg 1 \tag{12}
\end{equation*}
$$

In Fig. I the solutions of Eqs. (6)-(9) are drawn for the region of L where the 2-100p solutions differ from the 3-100p ones. The curve of popular solution (ll) is also exposed. However, the curve for $\bar{g}_{2, p}$ is shifted horizontally by the amount Δ which is not taken from Eq. (12) but defined from the condition of the best coincidence of \bar{g}_{2}, pep with 3-100p solutions in the range $3<L<10$. Its numerical value is equal to 0.33 . For convinience the mass scale also 13 given, with 0 variable relam ted to Lu as

$$
\begin{equation*}
L=\ln Q^{2} / \Lambda^{2}, \quad \Lambda=0.5 \mathrm{GeN}=\Lambda_{\overline{\mathrm{MS}}} \tag{13}
\end{equation*}
$$

the numerical Λ value being taken Prom the deep inelastic experiments $/ 2 /$ fitted by Bq . (11) in the framework of minimal subtraction $\overline{M S}$ renormalization procedure. This numerical value has on uncertainty at last $\sim 10 \%$ that must be taicen into account using the given mass scale.

As can be seen from the figure, the 2-loop solutions $\bar{g}_{2 i}\left(L^{\prime}\right)$ and $\quad \bar{g}_{22}\left(L^{\prime}=L+0.33\right)$ are close to each other and to
$\bar{g}_{2, p o p}(L) \quad$ in the region $\bar{g}_{\alpha} 0.2, L \geq 2$. In this region the discrepancies $\Delta \bar{g}$ as well as variations of the inverse functions $\Delta Q(\bar{g})$ do not exceed 10%. The boundary of this region is marked by the zigzag In ne in the figure. Meanwhile 3-100p formulas have the same degree of accuracy up to the values $\bar{g} \leqslant 0.3, L \geqslant 1.2$ (marked in the figure by the double gigagg

F1g. 1 . Behaviour of QCD running coupling constant $\bar{g}=\alpha_{5} / \pi$ in the maiddle" energy region. Dashed ourves represent various 2-loop approximations. Solid lines pioture 3-10op approximations. Single zigzag line denotes the boundary of region in which 2-1oop approximations contain errors less than 10%. Double zigzag line marks analogous boundary for 3-loop approximation. Horizontal energy scale for $Q \equiv \sqrt{Q^{2}}$ corresponds to mass soale $\Lambda=0.5 \mathrm{GeV}$.

Iine). The estimate of 3-100p acouracy is made acoording to differences between curves (8) and (9) and is of a oonditional nature. However, the observation that in the region of a simple zigzag 2-loop ourves differ one from another by the same amount as they differ from the 3 -loop ourre enables us to oonjecture that the estimate (15) is reliabie.

Thus, the actual progress obtained by the account of 3-loop correotions consists of rising by 1.5 the upper limit of running ooupling oonstant $\bar{g}=\bar{\alpha}_{s}(Q) / \pi$ from

$$
\begin{equation*}
\max _{2}\{\bar{g}\} \simeq 0.2 \quad \text { at } \quad \min 2\{L\} \simeq 2 \tag{14}
\end{equation*}
$$

to

$$
\begin{equation*}
\max _{3}\{\bar{g}\} \simeq 0.3 \quad \text { at } \quad \min _{3}\{L\} \simeq 1.2 \tag{15}
\end{equation*}
$$

and dimintshing the lower boundary of energy scale from

$$
\begin{equation*}
\min _{2}\{Q\} \simeq 1.3 \mathrm{GeV} \quad \text { to } \min _{3}\{Q\} \sim 0.9 \mathrm{GeV} \tag{16}
\end{equation*}
$$

Daturally, the oorresponding enlargement of the ezergy region for matrix elements depends on some additional properties of perturbation expension coeffiolents. The last ones depend on the type of renormalization procedure and on the choice of the mass scale Λ. As far as different renormalization schemes are equivalent to each other up to the shift of the mass scale it is reasonable to reduce the problem of "renormalization-presoription dependence" to the mass scale dependence". In other words, instead of choosing between different renormalization sohemes it is sufficient to look for the optimal mass scale unit
Λ for a given physical prooess (or for a set of processes) in the fromework of arbitrary (but fixed) renormalization procedure.

The change of mass scale oorresponds to a shift of logarithmio variable $L \quad$ which oan be described by the transformam tion of \bar{g} :

$$
\bar{g}(L+\lambda) \simeq \bar{g}(L)+\lambda \frac{d \bar{g}}{d L}+\frac{\lambda^{2}}{2} \frac{d^{2} \tilde{g}}{d L^{2}}=\bar{g}+\lambda \beta(\bar{g})+\frac{\lambda^{2}}{2} \beta(\bar{g}) \beta^{\prime}(\bar{g})
$$

Hence, for sufficiently small λ one has

$$
\begin{align*}
\bar{g}(L+\lambda) & \simeq \bar{g}(L)-\lambda \beta \bar{g}^{2}(L)+\lambda \beta[\lambda \beta-b] \bar{g}^{3}(L)- \tag{17}\\
& -\lambda \beta\left[\lambda^{2} \beta^{2}-\frac{5}{2} \lambda \beta+C\right] \bar{g}^{4}(L)+\ldots
\end{align*}
$$

People often use this transformation in order to reduce the ooefficients at higher power of α_{s} / π in the perturbation expansion of matrix elements. Here one must bear in mind that in the r.h.s. of Eq. (17) the effective expansion parameter
(besides the β-function parameters $\mathrm{bg}, \mathrm{cg}^{2}$) is the product $\lambda \beta \bar{g}$. Hence the condition for validity of transformam pion (17) is the following

$$
\begin{equation*}
\lambda \beta \bar{g}(L) \ll 1 . \tag{18}
\end{equation*}
$$

Note here that the widely used in literature transition from MS scheme to $\overrightarrow{M S}$ scheme corresponding to the change of the mass scale by 2.66 times $(\lambda=1.95)$ "nearly satisfies" to the criterion (18). So, for $Q=3 \mathrm{GeV}$ when $\bar{g}=0.1$ one gets $\lambda \beta g \simeq 0.4$. This means that under the transformation $g_{M s} \rightarrow g_{M S}$ the higher order terms being usually neglected ($\sim g^{3}$ in the r.h.s. of Eq. (17)) are of relative size $0.1-0.2$, that defines the error of running coupling transfixmation. Meanwhile the corresponding transformation of matrix elements under some circumstances can field much larger errors. For illustration consider the well-known expression for the rate of paraquarkonium decay

$$
\frac{\Gamma(q \bar{q} \rightarrow g g)}{\Gamma(q q \rightarrow \gamma \gamma)}=c f\left[\frac{\alpha_{s}(Q)}{\pi}\right] ; \begin{align*}
& f_{M S}=g^{2}(1+22.14 g) \tag{19}\\
& f_{M S}=g^{2}(1+14.0 g)
\end{align*}
$$

According to current folklore, the transition from fMs to $f \overline{M S}$ "Improves the convergence" of perturbation expansion. However, this transition not only reduces the numerical coefficient of radiative correction but also considerably enlarges the running coupling $\overline{\bar{g}}$. So, for $Q=3 \mathrm{GeV}$ one has $\bar{g}_{M S}=0.06, \bar{g}_{\overline{M S}}=0.10$ and numerical values $f_{M S}\left(\bar{g}_{M S}\right)$ and $f_{M S}\left(\bar{g}_{M_{0}}\right)$ differ one from another almost by three (i) times, and even for $0=9 \mathrm{GeV} \quad f_{M S} 1 s$ half as much again as $f_{M S}$. In the first arse the absolute and relative value of the radiative correction in $f \overline{M s}$ (which "converges faster) is larger than in $f_{M S}$. Both effects are conditioned by neglected terms $\sim g^{4}$.

Thus, for a serious analysis of the possibility of confergene improving in matrix elements, it is necessary to calculate next-order terms. The success of philosophy of determining "appropriate coupling" (1,e. suitable mass scale) for a given
physical process will essentially depend on the proximity of the next order coeffiolents to the corresponding expansion coefficients of "appropriate" running coupling (or its power). For our illustration the g^{4} term in $f_{\overline{M S}}$ according to Eq . (17) should have a coefficient close to +168 . If it is really so, then $f_{\overline{M S}}$ presumably can be represented as

$$
f_{\overline{M S}}[\vec{g}(L)]=[\vec{g}(L-3.4)]^{2}
$$

1.e., $\bar{g}(L-3.4)$ will here play a role of the mappropriate ooupling".

We see that the net effect of large positive coefficient at first $Q C D$ radiative correotion under some conditions can produce the specifio "renormalization red shift" (RRS) of the running coupling oonstant energy argument, i.e.,"red shift enhancement" of

Now, in turn, another trouble conneoted with a possible large value of the enhanced (appropriate) \bar{g} could arise. In our illustration for the case ($c \bar{c}$) the logarithm-shift by 3.4 corresponds to the shift from 3 GeV to 500 MeV and the shifted \bar{g} turns out to be in the region of strong coupling. It is to be noted that the transition from the total to one quark energy does not cure this trouble. Heace, the procedure of "oonvergence improving" under the considered conditions resembles that one of "sweeping dust under the carpat

We can conclude now that the behaviour of the running ooupling constant in the region where 3-100p contributions into
$\beta(g)$ are essential (1.e. in the region $1 \leqslant L \leqslant 2$) besides the pure theoretioal interest may happen to be of the physical importance. We mind here not so much matrix elements for processes at energies $Q \sim 1 \mathrm{GeV}$ (their analysis is also complicated due to mass correotions) as theoretical understand1ng of such processes at higher energies ($3-20 \mathrm{GeV}$) perturbation expansion of whioh contain large positive coefficients. The paraquarkonium deoay rate, nucleon structure functions, matrix elements of $q \bar{q}$ scattering with large transterse momenta, as well as, probably, 3 -jets $e^{+} e^{-}$-annihilations fall under this oategory. For all these prooesses the oalculation of higher-order oontributions is of importance.

If it will be discovered that appropriate running oouplings due to the RaS mechanism do oorrespond to energies olose to

1 GeV then, it may happen that nonperturbative instanton contributions into the \bar{g} behariour and, as a consequenoe, into observed matrix elements are also important.

I am indebted to N. B. Skachkor and K.G.Chetyrkin for useful discussions.

References

1. O.V.Tarasov et al., Phys.Lett., 93B (1980), 429.
2. J. Elilis, CERN Preprint $\mathrm{TH}-2744$ (1979).
