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Reoentl;r performed /l/ oaloulat1ons of renormal1zat1on

-group (RG) parameters for P~a.> and r~ (3-) functions in J-loop 

approximations for QCD •open the door• of systematical account of 

J-loop radiative corrections for observed processes of quantum 

chromodynamics. For this aim it is neoessar:r first of all to make 

more precise the formula for :invariant (i.e. running). QCD coupling 

constant 9:, and define new (enlarged) energy variable region 

in which the behartour of ~ can be considered as established 

reliabl;r. 

In what follows we consider t~s question and also discuss 

the popular problem of •the choice of the mass scale• taking 

into account new more accurate equations. 
We shall use the following notation for QCD expansion 

parameter 

The RG equation for invariant coupling constant ~ 

three known terms in the r.h.e.: 
now .bas 

i1 = P-'5) O<-r~~·-r.~:.,.~{·-r~·Ci+t3HfJ, (1) 

where t = t..(Q'/r•) > 4 f• = H- (2/3) n. ' :16(3._ = 102- (J%)n, 

6'· 2857 S033 32S 2 
, r3 = T - is"" n. + 

54 
n. n. - number o:r 

flavours. 
ror n-4 we hare 

f3 : 2.0lj'3 £ = 1..S~O , c = 3.0¥7. 



where 

and 

The quadrature of Eq. (1) written down in the form 

<£>{5J = ~L' 

~ 
'P (~) ~ 1 dx/fUX.J 

represents the transcendental equation for ~ 

In the 2-loop appro:x:lmat!Lon, With a certain oho1oe of 
approximation of the integrand in the r.h.s. of (4), one oan 
obtain two versions of Eq. (3): 

()) 

(4) 

(5) 

(6) 

or 

Quite analogously at the J-loop level we have at least 
two different forms, e.g.: 

As far as the !~oop approximation 

2 

(7) 

(6) 

(9) 

(10) 



turns out to be ver7 crude, usuall7 one uses the 2-loop approXima

tion in the form 

(11) 

This expression which we shall refer to as "popular• con

tuns the correction t. Lj(.. to Eq. (10). It can be considered 

as an approximate solution of 2-loop Eq. (6). It should be noted, 

however, that from the solution of Eq. (6) the popular formula 

differs by the shift of argument 

a (L-6) "'q (1..) 
q21 ~2,pop 

(12) 

In Fig.l the solutions of Eqs. (6)-(9) are drawn for the 

region of L where the 2-loop solutions differ from the )-loop 

ones. The curve of popular solut1.on (11) 1.s also exposed. HowEfV'er, 

the ourre for S"2, pep 1.e shifted horizontally by the a111ount A 

which is not taken. from Eq. (12) but defined from the condition 

of the best o.oinc1.dence of g
2

_,pcp with J-loop solutions in 

the range :3 < L < lo. Its numei'ical value is equal to o.JJ. :ror 

coDTinience the mass scale also :1s given, with Q vari.able rela

ted to L. as 
(13) 

the numerical A TalUe being taken from the deep inelastic 

experiments 121 fitted bT Eq. (11) in the framework of minimal 

subtraction M S reno:rmal.ization procedure. lfhie numerical 

Talue has an uncerta1nt7 at laaet tv 10* that must be taken 

into account using the g1Ten mass soale. 

J.B can be seen from the f:f.gure, the 2-loop solutions Q (L.1
) 

, a21 
and Q (1.. = L +O.JJ) are c.lose to eaoh other and to 

<t22 

~~, por ( L) in the region j ;S 0.2, L;;: 2, In this 

region the discrepancii!B A~ as well as Tariati.ons of the 

1m-erae tunot1ons AQC~) do not exceed 1~. The boUDd&r7 of 

this region 1.s marked b7 the zigEag l1.ne in the figure. Meanwhile 

J-loop form.uJ.as have the same degree of aoourac7 up to the Talues 

~ ! o.J, L ~ l.. 2 ( marked in the figure by the double zigzag 

3 



0.1. 

1.0 
0.3 

0.8 

0.2 0.6 

01. 
0.1 

~-1~.0~---1.~5 ____ 2~.0 ____ ~2.~5~~3~.0~--~L 
L_~--~--~----~----~--~--Q 

2.5 0.8 1 GeV 12 2.0 1.5 
Fig .1. Beharlour of QCD rllllJlj.D& ooupUD& constant J = "'s /or 

in the "midd1e• eneru reg:ton. Dashed curves represent T&rious 
2-aoop approximat~ons. Solid lines piotqre J-loop approximations. 
Single zigzag line denotes the boWJdary of region in which 

2-loop approximations contain errors less than lQIK. • Double 
z:1gzag line marks analogous boun.dar;r for J-loop approximation. 
Horizontal energy- scale for Q s {Qi corresponds to aass scale 
A = o.5 Gev. 

l:i.ne). The estimate o:t J-loop a.oouraoy is made aooordi.ng to 
differences between ourTes (8) and {9) and is of a conditional 
nature. However, the obserTat1on that in the region of a simple 
z1gzag 2.;..1ool! ounes differ one froa another by the same allloWit 
as they differ from the _J-J.oop cUrve enables us to conjecture 
th&t the estimate (~') 1& rel1ablo. 

~us, the actual progress obt~ed b7 the aooount of >-loop 
corrections consists of rising by 1., the ·upper limit of runnin& 

ooupl1D& oonstant ~=iii.. (QJ /:11 from 
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at 

to 

at "''" { t.J z L2. ·' 
and d1.Jiinish1ng the lower boundary of energy scale from 

lnin~{ Q} "'L 3 GeV to lnin f Q} - 0.9 GeV 
3 t 

(14) 

(15) 

(16) 

liatural.l;r, the oorrespondi.ng enlargement o.~ the energ,y region 

for matrix elements depends on some additional properties of 

perturbation expansion ooef.fioients. The last ones depend on 

the type of renormalization procedure and on the choice of the 

mass scale A • As far as d1fterent renormalization schemes 

a.re equiTalent to each other up to the ,shift of the mass scale it 

is reasonable to reduce the problem of •renormalization-presorip

tion dependence• to the Wmass scale dependence• • In other 

words, instead of choosing between different renormalization 

schemes it is sufficient to look for the optimal mass scale unit 

Jt for a g1Ten physical prooes~ (or for a set of processes) 

in the framework of arbitrary (but fixed) renormalisation procedu

re. 
The change of mass scale corresponds to a shift of loga

rithmi.o variable L which oan be described by the transforma

tion ot ~ : 

. J- ).'d.'- ).~ I 

3(l,~>l "ffCLJ~?.Jr•i J;!; = ~ •?.f<j1+2f'8 1f'3! 

HenCe, for su:t'fioiently small ') one has 

~ (~ .. ;. J ~ %j(LJ- Af{CL.J + Af[71f-1]:fCL)-
(17) 

- Af[~'f'- [;,f +c] ~4CLJ +.,, 

People often uae t~s transformation in order to reduce the 

ooeffio1ents at higher power of ol.s/"1i in the perturbation 

expansion of matrix elements. Here one must bear 1n mind that 

1n the r.h.s. of Eq. (17) the effective expansion parameter 
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(besidu the f -funotion parameters BJ , elf • ) is the 

product Ap.g • Bence the condition for validity of transforma-
tion (17) is tho following 

Note here th&t_:he widely used in literature transition 

from MS &oheme to M~ scheme corresponding to the change of 

the mass scale by 2. 66 times ( ). =- 1.95) "nearlT sat1sf1es• 

to the criterion (18). So, for Q::. J GeV when g = 0.1 one 

gets Ap-3::: 0.4. This means that under the transf'oxmat1on 

3 M.s ~ 8 Ms the higher order terms being usually neglected 

( ..... '3 3 in the r.h.s. of Eq. (17)) are of relative size 

0.1 - o. 2, that defines the error of running ooupling transfor

mation. Meanwhile the corresponding transformation of matrix 

elements under some circumstances can ,-ield muoh l.arger errors. 

For illustration consider the well-known expression for the rate 
of paraquarkon1um decay 

(19) 

Aooord~g to current folklore, the trans~tion from JMs 
to f ;;s lti.mproTes the convergence• of perturbation expans~on. 
However, this trans~tion not only reduces the numerical 

coeffio~ent of rad~at1Te correction but also considerably 

enlarges the ~ng ooupl~ng g • So, for Q•J GeV one _has 

3"'" • o.o6, ~ M"s • 0.10 and numer1oal Taluoo :fMs (!JMs) 
and r- (q- ) differ one from another almost b7 throe (I) tiaea, 

:!Ms oM<> 
and even for Q = 9 GeV J;s is half as much again as f M.s , 

In the first oase the absolute and relatiTe Talue of the rad1at1Te 

correction in J MS ( which •oonTerges faster•) is l.arger than 

~n JMs Both effects are conditioned by neglected terms ,., 3 Lr. 

Thus, for a serious analysis of the poasib111t7 of conTer

gence iaprortng in matrix el.ellents, it is neo'es&&l7 to oaloul.ate 

next-order terms. The success of philosophy of detemin:lng 

•appropriate coupling• ( ~.e. suitable mass scale) for a g1Ten 
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physical process will essentially depend on the prox1mity of 
the next order c.oeffioients to the correspondi.ng expansion 
coefficients of •appropriate• running coupling (or its power). 
lor our illustration the 3't term in f.Ms according to Eq. 
(17) should have a coefficient close to + 168. If it is really 
so, then ( presumably can be represented as J"M;s 

, 
JMs [~(LJ1 ~r~ (L-3.4)]: 

i.e. , '3 ( L- 3 · ~) will here play a role of the •appropriate 
coupling•. 

We see that the net effect of large positive coefficient 
at first QCD radiative correction under some conditions oan 
produce the specific •renormalization red shift" (RRS) of the 
running coupling constant energy argument, i.e.,•red shift 
enhancement • of ~ 

Now, in turn, another trouble connected with a possible 
large value of the enhanced (appropriate) ~ could arise. In 
our llluatration for the case ( cC ) the 1ogar1thm-sh1ft 
by .3.4 corresponds to the shift from J GeV to 500 MeV and the 
shifted ff turns out to be in the region of strong coupling. 
It 1s to be noted that the transition from the total to one quark 
energy does not cure this trouble. Hence, the procedure of 
•convergence improving• under the considered conditions resembles 
that one of •sweeping dust under the carpatr 

We can conclude now that the behaviour of the running coup
ling constant 1n the region where 3-loop contributions into 

fl'~ 1 are essential ( i,e, 1n the region 1 ,; L ~ 2 ) 
besides the pure theoretical interest may happen to be of the 
Phts1oal importance. We mind here not so much matrix elements 
for processes at energies Q. """' 1 GeV (their analysis 1s also 
complicated due to mass corrections) as theoretical understand
ing of such processes at higher energies ( J - 20 GeV) 
perturbation expansion of which oonta1n large positive coeff1-
o1ents. The paraquarkonium deoaT rate, nucleon structure 
functions, matrix elements of qq ,scatterlng With large 
transverse momenta, as wel1 as, probab1y, 3-jets e+e·- -ann:t.
h11at1ona fall under this oategorT• For all these processes 
the calculation of higher-order contributions is of importance. 

If it w11l be_d1aoovered that appropriate running couplings 
due to the RRS mechanism do oorrespond to energies close to 

7 



1 GeV then, ~t may happen that nonperturbat~Te 1nstanton 
contributions into the ~ behaviour ana, as a consequence, 
~nto observed matrix elements are also important. 

I am indebted to N.B.Skatihkov and K.G.Chetyrkin for useful 
disoussions. 
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