


Recently performed 71/ caleculations of renormalization—
~group (HG) parameters for Ft ) and rd{ ) funotlons in 3-loop
approximations for QCD "open the door® of systematical account of
3-loop radiative corrections for observed processes of quantum
chromodynamlcs. For this aim it 1s necessary first of all to make
more precise the formula for Llmvariant (l.e. running)  QCD coupling
constant § and define new (enlarged) energy variamble reglon
in which t%e behaviour of g can be considered as established
rellably.

In what follows we consider this question and also disouss
the popular problem of "the choice of the mass scale® taking
into account new more accurate equations. ‘

We shall use the following notation for QCD expaension
parameter 2

The RG equation for invariant coupling congtant § now has
three known terms 1n the r.h.s.:
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For n=4 we have

g =2.083 » 3= 4,840 , ¢=3047. (2)



The gquadrature of Eq. (1) written down in the form

p3r = gL, )
where 3
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and .
L=t +f,0(§)/f; = fn (Qz/flz(;v-.g)) , (3>

reprosents the transcendsntal equation for ég .

In the 2~loop approximation, with a certain choice of
approximation of the integramd in the r.h.s. of (4), one can
obtaln two versions of Eq. (3):
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Quite analogously at the 3=loop level we have at least
two different forms, e.g.:
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As far as the I-locp approximation
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‘turns out to be very crude, usually one uses the 2-loop approxima-
tion in the form

(L) = = LN (1)
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This expression which we shall refer to as "popular® con-
tains the correction LL/L, to Eq. (10), It can be considered
as an approximste solutlon of 2-loop Eq. (6)+ It should be noted,

however, thet from the solution of Eq. (6) the popular formula
differs by the shift of argument

g, (b-a)=g, () s=blp/p , Lwi. G

In Fig.l the solutlons of Eqs. (6)-(2) ave drawn for the
region of . where the 2-loop solutions differ from the 3-loop
ones. The ocurve of popular solutlen (11) 1s also exposed. However,
the ourve for _2’ 18 shifted horlzontally by the amount A
which is not taken from Eq. (12) but defined from the conditlon
of the beat colncidence of @, .. with J=loop solutions in
the range 3 < L < 10, Its numegdf:al value 18 equal to 0.33. For
coninience the mass scale also 1s given, with Q variable rela~

ted to Llas

d2,pep

=0.Q%a* , A=0S56w-d (13)

the numerlical .A value being taken from the deep inelastio
experiments 72/ fitted by Eqe (11) in the framework of mindmal
subtraction Mé renormalization procedurs., This numerical
value has an uncertainty at lsast ~ 10% that must be taken
into account using the given mass soale.

As can be seen from the figure, the 2~loop solutiona g (L)

and 3 (L' = L +0.33) are close to eack other and to
32 pop (L) in the region 4 £ 0.2, LZ 2. In this
region the discrepancies Ag, as well as variations of the

inverse functions AQ(G) do not exceed 10%., The boundary of

this reglon is marked by the zigzag line in the figure. Meanwhile
3-doop formulas have the same degree of acouracy up to the valuss
‘3',2 0.3, L= 1.2 { matked in the figure by the double migaag
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Fig.l. Behaviour of QCD running coupling constant g: oS S
in the "mliddle® energy reglon. Dashed ourves represent various
2-loop approximatlons. Sclld lines piloiure 3-loop approximations.
Single zigzag line denotes the boundary of reglon in which
2-loop approximations contaln errors leas than 10% ., Double
zigzag line marks analogous boundary for 3-loop approximation,
Horizontal energy scale for Q= \/(:)__2 corresponds to mass soale
A = 0.5 GeV,

iine). The estimate .of 3-loop accuracy 1s made according to
differences between ourves (8) and (9) and is of a conditional
nature. However, the observation that in the region of a simple
z1gzag 2-loop ourves differ one from another by the same amount
as they differ frvm the 3-loop ourve enables us to conJeoturs
that the estimate (1%5) is reliable.

Thus, the aotual progress obtained by the account of 3-1001:
correotions conslsts of rising by 1.5 the 'upper limit of running
coupling oonstant §=3{s (@) /7 from
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to

[

'max.\;{i} ~ 0.3 at ?m'na{’-}

1.2 as)
and diminishing the Lower boundary of ensergy scale from

m(nZ{Q} >»14.3 GeV to mmé [Q} ~ 0.9 GeV (16)

Katurally, the oori-esponﬂing enlargement of the energy region
for matrix elements depernds on some additional properties of
perturbation expansion coefflolents. The last oues depend on
the type of remormalization procedure and on the choice of the
mass scale A « As Tar as differont renormaiization schemes
are equlvalent to each ntheﬁ: up to the ‘shift of the mass scale it
is reasonable to reduce the problem of “renormalizatlon-presorip-
tion dependence® to the "mass scale dependence® ., In other
words, instead of chooaing between different renormalization
sohemes 3t is sufficlent to look for the optimal mass scale unit

A fora given physical prooess {or for a set of processes)
in the framework of arbitrary (but fixed) renormalization procedu—
T8,

The change of mass scale correspends to a shift of loga-—
rithmic variable L which ocan be described by the transforma--
tion of g :
_ - . dg z‘l’»- _ ~ nz. R
g(L+) =g(b)+1f*% FE=3 PTG

Hence, for sufficiently small 7 one has
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an

Poople ofter use this transformation in orxder to reduce the
ooefficients at higher power of &/7r 1n the perturbdation
expansion of matrix elements, 'Here one must bear in mind that
in the r.h.s. of Eq. (17) the effectlve expansion parameter



(vesides the { -function parameters @3 ’ ca." } 18 the
produoct )\p— + Heace the condition for valldity of transfortige
tion (17) 1is the following

Qfsg(b) << i, (18)

Note here that the widely used in literature transition
from MS scheme to 'ifé scheme corresponding to the change of
the mass scale by 2.66 times {( A = 1,95) "nearly satisfies®
to the criterion (18). So, for & = 3 Ge¥ when §= 0.1 one
gets }\F, = 0.4, This means that under the transformation
Gms > ias the higher order terms being usually negleoted
( ~ &3 1in the r4hes, 0of Eq. (17)) are of relative size
0.1 - 0.2, that defines the error of running ooupling tranafore
mation, Meznwhile the corresponding transformation of matrix
elements under some circumstances can yield much larger errors.
For illustration consider the well-known expression for the rate
of pa.ra.quarkonium decay

- = g“(4+22.i49 ) .
F(‘H-'%%) - c}[ﬁ)]; '-['Ms d 3 (19
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According to ourrsent folklore, the transition from .‘)tMS
to { e *improves the convergence® of perturbation expansion.
However, this transition not only reduces the numerical
coeffiolent of radiative oorrection but also considerably
enlarges the runfing coupling g + S0y for Qum3 GeV one_ha.a
Tps = 006, J = 0.10 and numerical values f,, (g, .)
and F- (3 i) differ one from another almost by three (1) times,
and even for Q = 9 Ge¥  fo is half as much again as f s
In the first ocase the absolute and relative vaiue of the radiagtive
correctlon 4in }M—s ( walch "oonverges faster™) 1s larger than
in :;MS . Both effects are oonditloned by neglected torms ~84,

Thus, for a serious analysis of the possibility of conver-
gence Improving in matrix elements, it 1s necessary to caloulate
next=order terms. The success of philosophy of determining
wgppropriate coupling® { 1.e. sultabdle mass scale) for a given



physiocal process will essantially depend on the proximity of
the next order coeffioients to the corresponding expansion
coafficients of “appropriate® running coupling (or 1ts powsr).
For our 1llustration the g9 term 1in JF&E according to Eq.
(17) should have a coefficient close to + 168, If 1t 1s reslly
so,then fﬂﬁ presumably can be represented ag

J('JWS [gtL)] g[g(L-s.a_)ﬁ

1.2, , g-(L-‘ 3.4) will here play a role of the Wapproprlate
coupling®,

We see that the net effect of large positive coefficient
at first QCD radlative correotion under some conditlons can
produce the specifio "renormalization red shift" {RRS) of the
running coupling constant energy argument, i.e.,"red shift
enhancement® of g .

Now, in turn, another trouble conneoted with a possible
large value of the enhanced (appropriate) g could arise. In
our illustration for the case ( ¢ ) the logarithm—shift
by 344 corresponds to the shift from 3 GeV to 500 MeV and the
shifted ¢ turns out to be in the reglon of strong coupling.
It L1sto bé noted that the iransition from the total to ome quark
energy does not oure this trouble. Heance, the procedure of
®oonvergence improving® under the considered conditlons resembles
that one of “aweeplng dust under the carpsatl

We oan conclude now that the behaviour of the running ooup-
1ing constant in the reglon where 3-loop contridbutlions into

p(g) are essentlal ( 1.8, in the region 1 <[, < 2)
besides the pure theoretlcal interest may happen te be of the
vhysical lmportance., We mind here not so much matrix elements
for processes at energles CQ ~ 1 GeV (their analysis 1s also
complicated due to mass correctlons) as theorstiocal understand-
ing of such prooesdes at higher energles { 3 - 20 GeV)
perturbation expansion of whiob contaln large positive coeffi=-
slents. Ths paragquarkonium deocay rate, nuoleon structure
functions, matrix elements of qF scattering with large
transverse momenta, as well as, probably, 3~jets e'¢” -—annl-
bilations fall under this ocatsgory. For all these processes
the oalculation of higher—order ocontributions is of laportance,

If it w1 be\disoovared that appropriate runring ocouplings
dua to the RRS mechaniasm do oorrespond io energles close to

7



1l GeV then, it may happen that nonperturbative instanton
contributions into the g behaviour and, as a consequenocea,
into obaserved matrix elements are also important. ’

I am indebted to N.B.Skachkov and K,G.Chetyrkin for usgful
discussions. ' ’
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