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In 1973-78 a series of new experiments on elastic scat

tering provided rich experimental information, that raises 

a number of new questions: absence of the second diffraction 

minimum at \t\- 3-15 Gev 2, the energy dependence of the 

slope of differential cross sections at small It\ , etc. 

At present there exists a wide spectrum of models proposed 

for description of elastic hadron scattering. Many of them 

can reproduce main features of hadron-hadron scattering 13- 61 

Among the latter, we should like to point out the models 

based on the hypothesis of composite structure of interacting 

hadrons and on the Glauber representation for scattering 

amplitude 14- 61 . 
Most of eikonal models can be divided into two classes. 

The first class uses the hypothesis of geometrical scaling 171 

which states that the whole energy dependence of proton

proton scattering amplitude may be included in the effective 

proton radius growing with energy. Then the eikonal phase can 

be represented in the form: 

x(b,s)= x(b/R(s)). ( 1) 

On the other hand, the hypothesis of factorized eikonal 181 

is often considered according to -which the energy dependence 

of the eikonal phase is factorized into a factor f( s) and in 

this case the eikonal phase is rewritten as 

x(s,b)=f(s)·X0 (b), (2) 

X 0 (b) being related to the hadronic matter distribution of 

the incident particles. 

Since at present these hypotheses are not yet proved 

theoretically, attempts have been made to find the form of 

the eikonal phase experimentally and to establish its energy 

dependence 19 -111 • 

"However, because of uncertainty in the experimental 

information one can arrive both at the dependence (2) 

specific to the hypothesis of factorized eikona1 191 and at 

(1) confirming the hypothesis of geometricnl scaling/8!. 

Apparently, one should admit work 1101 to be more correct 

which uses a larger numerical material and takes into account 

the real part of scattering amplitude. Besides, results of 

the last article are confirmed to some extent in ref / 111 • 
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As is shown, the scattering amplitude should satisfy 
general principles of quantum field theory like analyticity, 
unitarity, etc. Based on the analytical properties for scat
tering amplitude a model of the eikonal type was construc
ted113/. This model leads to the only diffraction minimum and 
with the minimuni number of free parameters {3 parameters) 
reproduces quantitatively all prseerties of the proton-proton 
scattering in the energy range V s :.?: 23.5 GeV and 0 5. I t I :S: 
:S:15 GeV 2. In the framework of this model a modified expres
sion of the geometrical scaling was constrUcted at large 
momentum transfers/14/ that is consistent with recent 
experimental data. 

Since the model 1 13/ does allow a quantitative description 
for the behaviour of differential cross sections of proton
proton scattering, it can serve as a tool for the inves
tigation of the form of the energy dependence of eikonal 
phase. 

In this work, on the basis of model 1131 a comparative 
analysis is made for two hypotheses: geometrical scaling and 
factorized eikonal. It is shown that the hypothesis of 
geometrical scaling, with u 00 t -Ins is in better agreement 
with the modern experimental situation. 

Let us consider the high energy scattering of two spinless 
Particles with equal mass at small angles in the framework of the Logunov-Tavkhelidze quasipotential approach/15/. Usin~ 
the smoothness hypothesis for the local quasipotential 116 , 
one can obtain the scattering amplitude as a power series in Vs 1171 and its leading term has the eikonal form 

where the eikonal phase x(p, s) is connected with the 
quasipotential 

x(p,s) ~1... JV(yp2 + z2, s)dz. 
s 

It Can be Shown 1181 , th t 'f th tt . l't d a ~ e sea er1ng amp ~ u e 
satisfies dispersion relations, the quasipotential can be 
represented as a superposition of Yukawa potentials 

V(r,•) 
""" e -11 r 
[dp.--p(p. ,8). 
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~· The form of eikonal 
phase in the representation of 
impact parameter. 
--- the eikonal phase 

the central part of 
eikonal phase 
peripheral part of the 
eikonal phase 

One possible kind of 'these 
quasipotentials was sug
gested in ref .1 19/ . 

With these requirements, 

we may take the main term 

of the eikonal phase in 
the form: 

x (p,s) ~ io (p,s) 
0 0 

(6) 

where the parameters h.~. b 

that corresponds to the 
effective constant, effec

tive mass, and effective 
radius can change slowly 
with energy. Taking into 

account, besides elastic 
rescattering, also some 

possible inelastic effects 

with the particle beams 

in intermediate states, 
one comes to the eikonal 
phase in the form: 

-y~(p,S)' 

(7) 

which can reproduce quantitatively all properties of the 

proton-proton scattering in the high energy range and wide 

momentum transfer range 11 3,14/ . 

For deeper understanding of the mechanism of interaction 

of hadrons it is useful to consider the form of eikonal phase 

(7) in the impact-parameter representation in more detail. 

Analysis of its form permits the conclusion that it can be 

decomposed into some central part, possibly, corresponding to 

the hadron core, and a rather smaller in magnitude peripheral 

part of interaction. Then, the central part of phase may be 

represented in a Gaussian form with radius R- 3.3 Gev- 1 and 

the peripheral part has a maximum at p- 6. 3 Gev-1 and falls 

exponentially at large impact parameters (Fig.l). 
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Now let us consider the energy dependence of the eikonal phase. For the case of geometrical scaling this dependence is as follows: h = const, f1=f1
0 /K , h=b 0 ·K 

. \! K~(l+a(lns-Ifll, 

and in the range of asymptotic high energy a tot -Ins . The eikonal phase obtained allows a quantitative description for the modern experimental data on elastic proton-proton scattering (Fig.2))(2/X2 being equal to 1.21 (for x2 = 541, x2 = 449, the number of free parameters equals 3). 
For further consideration it is to be noted that in ref. 113/ a satisfactory: description was obtained without norm coefficients, which take into account the systematic errors at different experiments ( x2 I)( 2 = 1. 45) . 
Thus, the above considered model reproduces quantitatively experimental data under the assumption of geomet·~ rical scaling for the scattering amplitude. Using another energy dependence of free parameters with the same experi-

mental data, the 
> .10' ., hypothesis of factorized 

eikonal can be examined . 
In this case the eikonal 
phase should be of the 
following form: 
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Fig.2. Calculated dif
ferential cross sections 
at ys ~ 52.8 GeV and 
Vs ~ 27.4 GeV. Data 
from paper by E.Nagy 
et al. /Ja/ and C.Canette 
et at/21
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where p. and b are no 
longer dependent on s 
and h{s) is chosen in 
the form 

Fig.3. Energy dependence of norm 
coefficients approximated by ten 
independent experiments 

for factorized eikonal 
for geometrical scaling 

Both the phases 
coincide in magnitude 
for a certain energy, 
that is, at this 
energy the description 
of experimental data 

in both cases is the same. Consequently, the whole dif
ference in the description of the complete set of experimen
tal data comes from the phase energy-dependence. 

Besides the above considered case of geometrical scaling 
with a = 0.075 the experimental data were analysed for 
three cases of the factorized eikonal: 

a) - with the fixed a 1 = 0.06, close to the choice of 
a = 0.075 in our previous case; 

b) - with a 1 free, that is with four free parameters; 
c) - also with four free parameters and, in addition, 

with bounds of norm coefficients for every individual 
experiment up to 20%. · 

The results are shown in the Table 

Form of s x2 lx 2 n -free limit 
dependence parameters Mo {:JN Ni 

Geometrical 
1.2 3 0.97 0.014 < 8% scaling 

Factorized a 3.0 3 1.2 -0.057 < 8% 
eikonal b 2. 15 4 I. 76 -0.059 < 8% 

c 1.4 4 2. I -0.069 <20% 
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Fig.4. Energy dependence of the 
eikonal phase Ax=i\x(s 1 ,b)-i\x(s,.b) 
Vs2 = 40 GeV, v' s 1 = 62 GeV 

for factorized eikonal 
for geometrical scaling. 

It is seen from the 
Table that in case 
a)X2fx2 = 3, that 
is much worse as com
pared to the geomet
rical scaling case • 
Sufficiently good 
quantitative descrip
tion is attained only 
in case c). However, 
in this case, the 
norm coefficients are 
strongly dependent on 
energy. This depen
dence can be approxi
mated as: 

Parameters obtained by analysing ten individual experiments, 
and M0 • {:3N are shown in the Table for all above considered 
cases. The corresponding curves are compared in Pig.3 .. one 
can see from Fig.3 and the Table that the norm coefficients 
give no energy dependence while using the hypothesis of 
geometrical scaling whereas for the factorized eikonal the 
norm coefficients change essentially the energy dependence of 
differential cross section. As a result, it is clear that 
satisfactory quantitative description for this latter case 
was achieved only at the expense of the energy dependence in 
the norm coefficients. Figure 4 shows the difference of 
phases "'x"x(s 1,b)-x(s 2 ,b) for the hypotheses of factori
zed eikonal and of geometrical scaling. vs2 was chosen to be 
equal to 40 GeV, at this energy the phases coincide practi
cally in magnitude, V s1 equal to 62. 1 GeV is the maximal 
energy reached at ISR in CERN. From Fig.4 one can see that 
the maximum of ~X is at about 0.8 fm for the case of geomet
rical scaling. The form of fj. X thus obtained is close to that 
found in ref. 11 11 • 

Thus, analysis presented permits, by an example of one 
model, the conclusion that the hypothesis of geometrical 
scaling, with the supposition a -Ins is in better agreement 

tot 
with the ultrahigh energy exper~mental data presently 
available. 

Note here, that the form of the slope of differential 
proton-proton cross sections, predicted by the model, in the 
range of small angles 
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The slope B(t)~ ..Ji..(Jn(.da..)) 
dt dt 

prediction by model/13/ 
for vs = 23.4 GeV 
experimental data from 
ref. 1201 for ys= 19.4 GeV. 

B(t) = ..<L.(ln ( ..si.<L.)) 
dt dt 

is in qualitative 
agreement with the 
recent experimental 
results of FNAL 1201 at 
EL = 200 GeV (Fig. 5). 

Some difference of the 
obtained slope from 
experimental data is 
due to the approxima
tions: the spin 
effects and terms 1/VS 
in the scattering 
amplitude were not 
calculated. These 
terms seem to be im
portant at energies 
-../l!S... 20 GeV. Never
theless, the form of 
the slope justifies 
the model at small 
momentum transfers. 
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cussions. 

REFERENCES 

1. a) Bohm A. et al. Aachen-CERN-Geneve-Harvard-Torino
Collaboration. Phys.Lett., 1974, 49B, p.491. 
b) Nagy E. et al. CERN-Geneve-Switzerland-Hamburg
Heidelberg-Annecy-Wien. Nucl.Phys., 1979, B150, p.221. 

2. Canetti S. et al. Cornell-Mc-Gill-Moscow-Collaboration. 
Phys.Rev.Lett., 1978, 41, p.924. 

3. Tsarev V.A. Rapporteur 1 S Talk at the XIX Int.Conf. on High 
Energy Phys., Tokyo, 1978. 

4. Wakaizumi S., Tanimoto M. Phys.Lett., 1977, 70B, p.55; 
Progress of Theor.Phys., 1978, 60, No 4, p.1040. 

5. Bialas A. et al. Acta Phy~.Pol., 1977, B8, p.855. 

7 



6. Goloskokov S.V. et al. JINR, E2-12565, Dubna, 1979. 
7. Dias de Deus J. Nucl.Phys., 1973, B59, p.231. 

Buras A.I., Dias de Deus I. Nucl.Phys., 1974, B71, p.481. 
8. Hayot F., Sukhatme V.P. Phys.Rev., 1974, 010, p.2183. 
9. Chou T.T. Nucl.Phys., 1978, 8139, p.260. 

10. Amaldi U., Schubert H.R. CERN-EP/79-155. 
11. Franca H.M., Hama Y. Phys.Rev., 1979, D19, p.3261. 
12. Brouzan J.B., Kane G.G., Sukhatme U.P. Phys.Lett., 1974, 

498, p. 272. 
Gerdt V.P., Inozemtsev V.I., Meshcheryakov V.A. Yad.Fiz., 
1976, 24, v.1, p.176. 

13. Goloskokov S. V. , Kuleshov S.P., Seljugin o.v. Yad.Fiz., 
1980, 31. p.741. 

14. Goloskokov s. V. , Kuleshov S.P., Seljugin o.v. JINR, 
E2-12923, Dubna, 1979. 

15. Logunov A.A., Tavkhelidze A.N. Nuovo C imen to. , 1963, 29, 
p. 380. 

16. Alliluyev S.P., Gershtein s.s., Logunov A.A. Phys.Lett., 
1965, 18, p.195. 

17. Garsevanishvili V.R. et al. TMF, 1971, 6, p.36. 
18. Filippov A.T. In: Winter School on Theoretical Physics, 

in JINR, Dubna, 1964, v.2, p.80. 
19. Mestvirishvili M.A., Rcheulishvili G.L. TMF, 1971, 8, 

p.206. 
20. Schiz et al. Fermilab-Pub.79/81-EXP. 

8 

Received by Publishing·oepartment 
on September 12 1980. 


