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INTRODUCTION 

The quasifree knockout reactions have a distinguished role 
in the investigation of clustering aspects of nuclear struc­
ture. The incident particle can be rescattered by a cluster 
in the nucleus and can give the cluster as a whole a momentum 
sufficient for knocking it out of the nucleus. The high 
probabilities of the quasielastic knockout of deuterons or 
alphas have suggested the presence of a large number of 
preformed clusters in nuclei. 

According to this picture it is generally accepted that 
only those nucleons of the target A contribute significantly 
to the cross section of theA(a,ab)B quasifree scattering 
whose relative motion and spin-isospin wave function is 
identical to those of the emitted cluster b'l' . Calculating 
an overlap integral we project the clusters b from the 
target A and in the final formula of the A(a,ab) В cross 
section there appears the product of a free ab-»ab scat­
tering cross section and the effective number of clusters 
in the target A . 

Since the first step of the development of the theory it 
has been emphasized that the "noncluster" components of the 
target wave function, for example in exchange processes, can 
give large contributions to the quasifree processes 'E/. The 
knockout processes due to the rearrangment of the virtual 
cluster in the nucleus in the course of its knockout may have 
an important role, too / s /. 

All in all the existence of "preformed" alphas in nuclei 
seems to be a well established concept / 4 /, but there are 
objections against the idea of "preformed" deuterons in 
nuclei . One of the serious objections can be obtained from 
the evaluation of the quasifree knockout reactions on nucleus 
eLi. The distorted wave impulse approximation (DWIA) analysis of 
different eLi(a,a'd)*He processes using d-o cluster wave 
function has given different effective numbers of deuteron in 
the p-shell, in a wide spectrum of values from 0.3 to 
1.75 / e- 7 /. The accepted theoretical value is at 0.5-0.6 . 
The explanation has been sought in terms of contraction of 
deuteron cluster depending on the momentum value P of the 
residual nucleus . The calculation of the rms value 
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of the pn cluster in nucleus 
Li using the three-body wave 

function''W/ shows a drastic 
shrinkage of the pn cluster 
radius strongly depending on 
p/11/ 

It seems to be an acceptable 
conclusion that the concept of 
the "preformed" deuteron clus-

Fig.1. The OPE triangle ter is crude in some cases. If 
diagram for the pd-»pd the exchange processes are 
scattering. important then the cross sec­

tion of the a<pn> -• ad scat­
tering (<pn> is the p-n sub­

system inside the nucleus) depends on the internal motion of 
the <pn> cluster only and not on the similiarity with the 
deuteron defined by an overlap integral of type /<A* (^)Ф<рп0 d£ 
We have to note that the knowlegde of the mechanism of the 
a <pn>-> ad process is generally poor and the formalism of 
the A(a,ad) В reaction based directly on the &<pn>-» ad 
amplitudes can be very complicated''18. 

In the present paper we discuss a model for the descrip­
tion of the A(p,p'd)B quasifree large angle scattering at 
intermediate energies. For the amplitude of the elementary 
process p<pn>-»pd we have applied the triangle mechanism 
o f / 1 8 / . Using the DWIA analysis we can give the final -A(p,p 'd)B 
cross section in a relatively simple form. 

THE p <pn> -» pd AMPLITUDE 

As the p<pn>-* pd amplitude can not be studied directly 
on the structure of the p<pn> •* pd amplitude we can get 
information by studying the free pd->pd scattering. There 
are different models for the pd large angle scattering at 
intermediate energies 13-1'!' , which describe well the dif­
ferential cross sections. All of them contain in some form 
the A 3 a resonance which is created in the NN collisions 
at incident energie T 0 ~ 620 MeV with the w;Ldth Г- 120 MeV. 
The calculated polarizations within the triangle diagram of 
Craigie and Wilkin (see fig.1) give a good agreement with the 
experiments for the vector polarization in the 500-700 MeV / 1 8 / 

and for the tensor polarization in the 400-1000 MeV region/19/. 
In addition, the triangle model is the simplest and so 

this model is convinient for our further investigation. The 
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pd differential cross section due to the one-pion-exchange 
(OPE) diagram in fig.l is proportional to the pp-»drr+ cross 
section which can be taken from the experiment. There are 
different versions of the triangle model and we have chosen 
the method o f / 1 4 / , as their work describes the dpn vertex in 
terms of nonrelativlstic deuteron wave functions. This model 
does not contain free parameters. 

The pd-. pd amplitude due to the OPE diagram depends on 
the initial ф dg(0 deuteron wave function with components 

I = 0 or £ = 2 in the following form'«'И" : 

a f~/ <6rf(r)e"vr (Uyr)ilCpr)dr, /1/ 

r*-T*Q + TJaf +лг/(1+Тг/т), / l a / 

P =P g(l+ T
8/m)~ /lb/ 

where m and n are the nucleon and pion masses,respectively, 
T e is the kinetic energy of the final proton in the labora­
tory system, p s= (2mT 2+T g ) ,jj(x) is a spherical Bessel func­
tion. In the isobar region y~ 0.75 fm-* and p- 1.5 fin-1 . 
This means that the a; amplitude depends on the short range 
part of the deuteron wave function only, the most sensitive 
region is about 1 fro. 

The basic approximation in derivation of af is the peak­
ing approximation, that is, the pp-»dir+ amplitudes and 
other slowly variable factors in the N -. N rr vertex are re­
placed by their value at zero pn relative momentum in the 
deuteron. The peaking approximation is quite accurate for the 
в-wave component but the d-wave contribution is strongly 
supressed if we have an accurate treatment . 

Accepting the OPE model for the free pd large angle scat­
tering we can extend it to the p<pn>-»pd reaction, in the 
case of the <np, t = o> two nucleon cluster ( t is the iso-
spin quantum number) the generalization means simply the 
exchange of the ^d((f) function in (1) to the #<nn>£ (f) 
function. The extension for <pa ,t-l, v > systems ( v is the 
isospin projection quantum number) can be done considering 
the isospin invariance/s . 

Extending the formalism for higher I orbital momenta we 
find that the main feature of the a; amplitudes is the 
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dominance of »Q . First the sensitivity of the amplitude on 
the short range part of the wave function prefers the com­
ponents with lower t due to the repulsing effect of the 
centrifugal potential 8 0 . Secondly in the accurate treatment 
of the OPE diagram the t £ 0 components are supressed ' M / . 

The differential cross section of the p <pn,t = 0 > ->pd 
reaction can be written with a small change of the pd-. pd 
cross section given in paper / 8 0 / . 

d gp<pn>*pd 8 o e , . E , + B 8 p p |p| 3 d a p p - d f f +
f 2 

а П ф 2 4n E% » p d|d| 2 d n Q 0 ( 2 ) 

• А'<'р Л'"рК 
with 

t0-f Ф iOe~yt (l+yr)j (pr)dr (2a) 
0 <pn>0 1 

0e/4n * 14.8. F(k8) is the Ferrari-Selleri factor / 8 1 / 

which takes into account the off-mass shell nature of the 
pion. E g = T E + m , A 8(s d ."_..) is defined by the 
equation (2). The four momentum quadrats в , s , 1p| , |d| , 
k 8 ,u can be expressed as follows: 

(3a) 

(3b) 

(3c) 

*\-A ~**%fh ( 3 d ) 
PP 

k 8--i.m 8
+m 8-i-B p a + |p|8(l-coB*) = - m d T g , (3e) 

u -m* + 2 k 8 . (3f) 
pd 

s p d = ( P 0

+ d Q )* . 

8 
PP 

(s 
Pd 

-m i 8 ) /2 

| p | " - • * • PP" 
- m 2 , 

l«l"- 1 
"48 n , « » P P -
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where m. is the deuteron mass, p 0 and d Q are the four 
momenta of the proton and the deuteron in the initial state, 
respectively. For the sake of simplicity the binding energy 
of the <pn> system is assumed to be equal to that of the 
deuteron. The pp-»dix differential cross section taken at 
the angle в corresponds to the cos® fixed prescription/15/ 

the relation between the cm. angle Ф in the pd scattering 
and совв is as follows 

cose, as* [ k 2
 + -L(spp -rf - к»)И (. -rfd - k V -4»«k V*/|p| . (4) 

THE DWIA CROSS SECTION 

In the following discussion we follow closely the paper / J / 

for cluster knockout. The generalization to the p<pn>-»pd 
elementary process is relatively simple. 

A. Formulation 

We use the impulse approximation within the framework of 
a three particle system. The A(p,p'd)B reaction is 
described by the scheme 

p+(B +<pn>)-» B+p+d , (5) 

where the target nucleus is considered as a complex of 
particles В and the <pn> subsystem. 

The laboratory differential cross section for the three 
particle final state in the range dC , d£ , , d£ . see / 8 8 /. 

V** *B 
^fcxif-XE, )£(£?, - 2 k , ) . (6) 

particle and the target, к , and E 4 are the momentum and 
total energy of the appropriate particle. The T i f amplitude, 
provided that the exchange terns due to the antisymmetriza-
tion between the incident proton and the residual nucleus В 
are neglected, has the following form: 

T|(.[A(A-!)/a]M<t($«<tf>|t|( 1»р<рп> Ф ( А )* ( р ) >- < 7 ) 
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The - serves as a reminder that the wave functions are 
antisymmetrized with respect to the interchange of any two 
nucleons. »p<pn> is the antisymmetrizer between the 
incident proton and the <pn> cluster. 

The target wave function Ф(Х) can be expanded in terms of 
the residual nucleus В . The expansion coefficient is 

JB"B TB NB J A M A T A N A 

where ' t (projection M E ), T t (projection N a )^are the 
angular momentum and isospin quantum numbers, к a.nd P 
represent the relative momentum between proton and neutron 
and the relative momentum of В with respect of the <pn> 
center-of-mass, respectively, and other necessary quantum 
numbers are denoted by a . The Ф* в

м,„ (£,?) function is 
defined by the equation (8) and can be expanded as follows: 

• « ' и , , < * ' P ) - t * a - f « n . l J - X l » L A | « ) Y L A (P)Y f ( k ) x 

°l AB < 9 ) 

LA X s m / a J L j f t K 

where xsm i s the two nucleon spin function. Using the 
expansion c o e f f i c i e n t (8) and provided that t l f i s assumed 
not to act upon the in terna l coordinates of the res idual 
nucleus В we can in tegrate over these var iab le s : 

T l f = [ A ( A - l ) / 2 ] W 2 ( y y H T A N A ) ( J B M B J M | J A M A ) x 

° _ d o ) 
x < a Ач(~\ ф Ф ( d ) | t „ | e ч ( + ) < £ Л В (k,P)9i >. 

where ч ^ and >)|,pd describe the relative motion of mass 
centers of particles in the entrance and exit channels, 
respectively.nl , ,md and m are spin projection quantum 
numbers. 
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Introducing the impulse appioximation we can replace t J f 

by the two body operator of the free p<pn> -»pd reaction 
process tf . We introduce the additional assumption that the 
amplitude of the elementary process varies sufficiently 
slowly with the momenta so its arguments may be replaced by 
their asymptotic values. This procedure leads to the zero 
range expression in the matrix element and T 1 { has the fol­
lowing form 

T, =[A(A-1)/2]M 2 (T RN„t v|T N )(J M pJM|J.M.)x JMtv B B * A B B А Л 
(11) 

x/dk<kp. V i > d | t f |к р И р P k x ^ ^ w V V l O ' L , <*•*>>. 

Now we take into account the dominance of the £ = О and 
t = о component''20'' in the p<pn>-» pd process. As the radial 
wave functions with t = О have their maximum at к = 0, by 
calculating the zero range matrix element at к = о we can 
take it out of the integral. Using formulae (9) we can write 

Т 1 Г = [А(А-1)/2]*2 (JgMgJMI^M^CLAlmlJMJT*^ x 
LA (12) 
x<k ,m ,k m It Ik m ф„, (k,P)m> p' p' d d' f ' p p ̂ aJL* 

T AB (8я)' 3 (-) |fi(? ? ) h % A B ( k = 0 p ) y ( p } > 

eJLA , A B ( k = f l p ) 'epd P d PA aJL LA U J ' 
aJL 

By taking the spin s tructure of the pd -»pd amplitude from 
in the c a l c u l a t i o n of IT if I s we can sum up on the spin 
pro jec t ion quantum number straightforwardly. For the A(p,p'd)B 
laboratory differential cross, section we can obtain the fol­
lowing expression. 

&> e V k f l 1 A8(s м ) 
АЛ JT ,ййл

 p d k„ ENN E„ k к * **'« 
p P d P i +^_(i-±P_ooeeD d + - p - c o B e . ) (14) 

E B

 k d P d k d

 M 

xA(A-l) /2 1 t „ f* D A B , ¥ t , 
JL 



where 

f_Tf = / е - > ' г ( 1 + у г ) ^ А

т

В

т ( r , P ) J i ( p r ) d r ( 1 5 ) 

aJL 0

J r

a j L 1 

n

A B ' 1 v T AB T AB* 
a d , J L ~ 2 T 7 i л a J L / v a ' J L A ( 1 6 ) 

2 г '/; with E N N = (ra^+P ) . The definition of the relativistic 
phase space factor is from / a 3^. Note that if the additional 
quantum numbers a are not needed the cross section formula 
(14) is greatly simplified. 

AB B. Evaluation of the amplitude Т„.п,л 

The initial and final scattering states for the three-body 
system are generated using the H (=H f=H-V d Hamiltonian. 
We write the Hamiltonian in the entrance channel as 

where л a is the internal Hamiltonian of particle a , the 
â/8 represents the interaction between particles a and fi 
and the relative kinetic energy operator T a« corresponding 
to the relative coordinate r n is written as ( h=l , c=l ); 

T 0 = - — ^ . (18) afi '*P 
where iiap is the reduced mass of a and j8 . The V p B inter­
action operator is a function of the r p B coordinate and not 
of ? д and it needs carefull treatment / s i / . In order to 
write the initial wave function in the product form we can 
accept the approximation that the elementary interaction V p ( i 

is sufficiently short ranged so that the distortions do not 
change significantly over this range. One, therefore, needs 
the entrance and exit channel functions in the vicinity of 
?pd = 0. As 

•» шв-» m d -» 
PA m . pB m+m„ pd A d В 
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where m A and га в are the target and residual nucleus masses, 
respectively, we can use the following approximation: 

V P B < ?

P B > = V P B ^ V > (20, 
в 

.another poss ib i l i ty i s the use of the VpA(r p A ) potential with 
both real and imaginary well depths reduced by a factor 
m B / m A / 1 / -

In the exit channel for the Hamiltonian we have 
f pB pB d(pB) dB d В 

where Т л, „. corresponds to the Jacobian coordinate d(pB) 

? . ?__!Л ?Р +'Ув, ( 2 2 ) 

d(pB) d m + m D 

В 
The (21) form is different from the usual expression K 4 , 
where 

V V H, --T „ + V n B + T„„ + V...+ —E B__d? + -л + н f pB pB dB dB ID d В (̂ 3) 
В 

This expression contains the У о ВУдв' тв coupling term. Its 
effect in the usual coplanar-like geometry is very small but 
in our case where the final proton and deuteron move in 
opposite direction it may be very important. 

In expression (22) the V d B interaction depends on the t _ 
coordinate and the appropriate kinetic energy T d ( p B) is 
written in terms of the (22) rd(pB) coordinate. Using like 
in the entrance channel the short range nature of the V d 

interaction we have the following expression: 

VdB ( tdB>= W - ^ d C p B ) * - (24) 
В 

Solving the Schrodinger equation with the Hamiltonians (17) 
and (22) for the initial and final states, respectively,we 
obtain: 

< i = * < + ) ( k ; A - ? p A > - ( 2 5 > 

C = * ( " Ч в ' ?
PB > * ( _ Г кО>В) '?d(pB) >• (26) 
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where the k^ , k p B , к д(рв) momenta are calculated from the 
asymptotic laboratory momenta t Д ,, fc* according to the 
formulae: p p 

l>A m+m, P (27) 

K*x=K' (k„ _ к л )• (28) 
P3 P ni+m B P d 

= t 2 к (29) 
d(pB) a m+m. + ron

 p 

d В 
Substituting for f(+) and IJ in Eq. (13) and integrating over" г we obtain1"* p 

pa 
T A B (a,)3

 / xf-)ff g ) x(-)' (f _айи 

aJLA ^ A B ( k = 0p) pB P B d(pB) d(pB) 2 
aJL ' (30) 

x X
( + )(k ,aR)x<p*B(k=0.R)Y .( R)dR, pA pA 1 aJL LA 

where we have used formulae (22) and relation 

pB dB pd ' 

(31) pA m + m dB pd 
d В 

a i = m B / ( m d + m B ) , a& = т в / ( п . р + т в ) . 

The distorted waves Xa(K,?) are calculated according to 
the eikonal approximation/26'' . We rewrite xa($-,*) as 

Х а ( к . ? ) = О й Г г ) е л Г - - ^ ; й . (32) 

The distortion factors Da(r) are then given in a coordinate 
system with the origin in the center-of-mass of the residual 
nucleus В . Using formulae (20),(24) we get 

-la.—B& f V „(R+ek )de 
D (a R) = e l k

P A ~ p B P* , (33a) 
pA 1 
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-i-r^-JV (R+sk )ds 
D (R)=e "рВО Р В РВ ( 3 3 b) 
pB V 

-'°P Е Д ( Р В > fV (R + si )ds 
D (<z„R) = e d ( P B ) . (33c) 
d(PB)v 2 

where E„ are the total energies corresponding to the momenta 
k a . The V n(r) , V , (r) potentials are the proton-nucleus 
central, complex optical potentials calculated from the 
isospin averaged forward nucleon-nucleon scattering 
amplitudes at the kinetic energies corresponding to the 
momenta E p B , к„'в» respectively, following the method of 
ref/ 2 e / . The form of the deuteron-nucleus optical potential 
VdB(r) can be constructed from the nucleon-nucleus optical 
potentials by the usual folding procedure/'27/ . For the final 
formulae of the amplitude T A B we get 

ajLA 
-»-» 

T A B = 1 /e' P RD*(R)D* (aft)D (a ft) x 
n J L A ( 2 ^ ) 3 / ^ A B (k=0,P) p B A W 2 p A l < 3 4 > 

a JL 

x ^ B ( k . 0 . R ) T L A ( E ) d R 
where we have made use of the (27)-(29) and (32) relations. 

THE ANALYSIS OF THE 6Li(p,p'd) 4He QUASIFREE SCATTERING 

The Li(p,p'd)Tte quasifree large-angle scattering was 
investigated in a kinematically complete experiment at 
670 MeV incident energie . The forward deuteron angle was 
chosen to be 6.5° the backward proton angle region was taken 
from -140 to -152° in the laboratory system. The overall 
energy resolution was -17 MeV which made possible the 
separation of events leading to the ground state of 
residual nucleus from the events leading to excited states. 
The analysis of experiment gives the impossible effective 
number of deuterons in the p -shell Neff = 1.08 +_ 0.1 which 
means tne failure of the model constructed in terms of the 
overlap integral. 
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The relatively simple 
structure of the nucleus Li 
gives a good opportunity for 
the application of our model. 
The ground state of eLi can be 
regarded as an я-р- п three-
body system, if we neglect the 
structure of the a-particle. 
For the description of the 
a-p — n system we have used a 
three-body wave function of 
ref/ 1 0 / . They have solved the" 
Faddeev equations using for the 
n-p and N-p interactions sepa­
rable potentials.The n-j) interac­
tion is taken to be ,3S.,and the 
potential to be of a st andard 
Yamaguchi form. 

The thrae-body wave function 
normalized^to unity has the ^ 
form 0(k,P) , where IT and P 
represent the relative momentum 
between proton and neutron and 
the relative momentum of 4He 
with respect to the p-n center 
of mass, respectively. Now in 
the cross section the index a 
is not needed and the main 
contribution is given by the 
J = 1, L = О component. 

The proton - 'He optical potential for the distortion 
factors are calculated assuming Gaussian form for the density 
function of 4He . 

The eLi(p,p'd)4He differential cross section at incident 
proton energy 670 MeV at forward deuteron angle 6.5° and 
backward proton angle 6 p = -147° as a function of the back­
ward proton kinetic energy T p is presented in fig.2. It can 
be seen that the calculated cross section (solid line) is 
about twice as much as the experimental values of xef./sa/ . 
We notice that the calculation without distortion, in plane 
wave approximation gives a cross section with a 30% higher 
values. Taking into account the relatively small effect of 
the distortion the approximations made in its calculation do 
not influence essentially the calculated cross section. The 
contribution of the L= 2 component is less than 1 per cent. 

Fig.2. The eLi(p,p'd)4He 
differential cross section 
at T p= 670 MeV, 8 d= 6.5°, 
0 ,= -147° due to the 
three-body wave function 
Rai, Lehman and Ghovanlou 
(solid line) and including 
short range correlations 
(dotted line). Experimental 
points are taken from / 2 8 / . 
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Fig.3. The eLi(p,p'd)4He 
proton angular distribution at 
T p = 670 MeV, 6 d - 6.5°due to 
the three-body wave function 
including correlations. Ex­
perimental points are taken 
from'И". 

The difference between 
the experimental and 
theoretical values can be 
explained in the following 
manner. The simple Yamaguchi 
factor which represents the 
proton-neutron interaction 
does not contain the 
repulsive core appearing in 
the nucleon-nucleon inter­
action. The short range 
repulsion can be taken into 
account by including into 
the (4(f, P) wave function 
the following correlation 
function 7 2 9 /: 

f(r)=0, r<r 
(35) 

f(r) = l-e -ftr/r -1) '^', 
If we chose the parametriza-
tion r c = 0.4 fm, P = 1.5 
then the calculated cross 

section (dotted line) decreases by half and we have a satis­
factory agreement with the experiment. The above values of 
parameters rc and 0 correspond to a hard core in the 
deuteron wave function. 

The angular distribution of the backward protons averaged 
over the proton energies we presented in Fig.3. For the 
calculation we have used the three-body wave function multi­
plied by the correlation function with the above parameters 
rc and /3 . we have a satisfactory agreement with the ex­
perimental angular distribution. 

SUMMARY 

In the theory of theA(p,p'd)B quasifree scattering 
we have to study carefully the character of the p<pn> -» pd 
elementary process as the exchange and other effects depending 
directly on the inner structure of the < pn > cluster may have 
an important role. In the latter case the concept of the 
effective number of deuterons in the target nucleus is useless 
and misleading. 
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In the case of the A(p, p'd)B quasifree large angle 
scattering at intermediate incident energies thep<pn>-.pd 
elementary process can be described by the triangle mechanism 
of Craigie and Wilkin. The p<pn>-« pd amplitude depends only 
on the short range part of the <pn> wave function. The DWIA 
cross section can be formulated in a relatively simple form, 
the distortion is calculated in eikonal approximation. The 
possibilities of the model are demonstrated in the analysis 
of the eLi(p.p'd)4He scattering. 

Taking into account the strong absorption of the deuteron 
and proton in the final state the method can be applied for 
the study of P-n pairs on the surface of the nucleus. The 
model can be easily extended for the investigation of the <nn> 
and <pp> pairs / й 0 . As the main contribution to the cross 
section is due to the nucleon pairs with I = 0 relative 
orbital momentum where the two nucleons are very close to 
each other, the experiments can give useful information on 
the pairing effects on the surface of the nuclei. 

I would like to thank V.V.Balashov, J.Его, B.Z.Kopeliovich 
and L.I.Lapidus for stimulating discussions. 
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