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1. There are two classes of physical phenomena, which may 
be reduced to the equations possessing soliton and soliton-
like solutions. They differ in their problems as well as in 
the interpretation of the results, although they come 
together at the classical level. 

The problems of studying nonlinear wave phenomena in ireal 
continuous media are of the first class and field theoretic 
problems are of the second one. 

In the first case the investigation used to go through the 
following stages: it starts at the classical or quantum 
discrete level, then with some degree of rigour, the study 
proceeds to the classical or quasi-classical continuum limit, 
that defines the form of the resulting equations. As the 
final result of such a transformation, we have the soliton or 
quasi-soliton classical solitons (to which through an inverse 
transformation may, in principle, be given a quantum meaning). 

In the second case the models under investigation are con
structed with the help of a Lagrangian formalism and 
allowance for certain requirements come from the general 
physical conceptions and laws (invariance under the Poincare 
group, global or gauge internal symmetries some of which may 
be broken and so on). In this case classical wave equations 
appear at the initial stage and their solutions become the 
basis for constructing "real" quantum objects including that 
of a soliton type (extended particles)* . Here unlike con
ventional atomic physics, the quantum soliton properties are 
determined by classical solutions as h-»0 • All this 
defines the form of the second class of equations. 

These directions come together in the intermediate stage 
of the investigation of the localized (soliton) solutions of 
the finite energy to the classical wave equations. 

Thus, the investigation of the general properties of the 
classical solitons (CS) may be carried out, to some extent, 
forgetting their physical interpretation. As it was shown 
in' 1', there are possible stable solitons to exist in four-
dimensional (x,y,E,t) one-field models with a so-called 

* 
The so-called non-perturbative approach in quantum field 

theory. 
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saturable non-linearity. Undoubtedly, being of interest 
within the first class, they might be rejected for the second 
class theories because of renormalizability conditions. 

We consider below non-linear phenomena in the systems 
allowing stochastization, i.e., in non-integrable systems. 
The behaviour of such systems may be governed by the degree 
of their proximity to some complete integrable analogs. In 
this sense the integrable models can be considered as a zero 
order (non-linear!) approximation to the description of the 
real physical systems, and further study can be performed 
with all discretion as a perturbation series in this small 
deviation. 

Note, that at present only complete integrable models may 
be strictly analytically investigated by various methods. But 
analytical methods are, as a rule, practically helpless (at 
least, at present) in studying the evolution of non-
integrable systems. Therefore, with rare exceptions, all the 
results on the evolution of ergodic (even one-dimensional) 
systems were obtained by computer experiments. 

2. What should primarily stress, is that it was a computer 
which created the Fermi-Pasta-Ulam (FPU) problem (about 
24 years ago) and then discovered solitons. As a result of 
numerical experiments on the dynamics of KdV nonlinear waves, 
a concept of the solitons (Zabusky) appeared to be solitary 
waves which emerged from the collision without changing their 
shapes and velocities. Somewhat earlier Perring and Skyrme 
have found via a computer the analogous effects in the 
framework of the sine-Gordon equation, but for rather dif
ferent objects. 

It is interesting to note, that "two-soliton" solutions 
(bions) have been obtained a decade earlier (Seeger, Donth 
and Kochend5rfer). Then Ooyama and Saito (1970) have found 
solitons on "Toda lattice" nearing the FPU problem. Finally, 
solitons in the framework of the Schr6dinger equation with 
cubic nonlinearity (S3) were discovered by Yajima and Outi in 
1971. All references may be found in the review by Scott, Chu 
and McLaughlin / 8 / . 

Thus, the computer creating a new branch in the theory of 
nonlinear partial differential equations fell behind. A boom 
time began of discovering and studying the completely 
integrable Hamiltonian systems and the related methods of the 
inverse scattering problem, Hirota and Backlund trans
formations. Developing and formalising these techniques being 
of an international competition character displayed, that 
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integrable equations may be generated in the unlimited amount. 
All this gave rise to the view, that the majority (if not 
all) of the Lagrangian systems are completely integrable. 

The first impact on this outlook was done again by a com
puter. The inelastic interaction of Langmuir solitons in 
plasma was discovered at Dubna in 1974 3 ; analogously, for 
solitons of the "improved" versions of Boussinesq and KdV 
equations, of the Higgs and Klein-Gordon (KG3) equations / 4 / . 
It turned out, that even a "small" alteration of the equation 
may render it non-integrable. Moreover, as it was shown, 
certain particular properties of the integrability 
disappeared under transformation from the plane (x,t) geo
metry to the spherically (or cyllindrically) symmetric (r,t) 
on e / 5 / . 

The conception of near integrable systems, for which, as 
has been pointed out, integrable equations may serve as 
somewhat original zero order approximation, appeared. The 
role of the interaction parameter in an investigation can 
play the deviation from an appropriate integrable equation / 6 , 7' 

It should be emphasized that the numerical experiments are 
now one of the roost powerful tools to investigate Hamiltcnian 
systems, especially to answer if a given system is the 
complete integrable. The elastic collision of solitons can 
imply the positive answer (recall KdV). The inelastic inter
action of solitons would make searching for the integrability 
consequences, in particular, many-soliton formulas to be 
fruitless / 8 /. 

Nevertheless, the concept of a nearness between a given 
system and some integrable one somewhat helps to discover 
pulsating (bound states) solitons, bions, both in the plane 
(x,t) / 9 / geometry and in a spherically symmetric (r,t) 
o n e / 1 0 / , for the KG3 and Higgs equations. If in the plane 
case one can still find an approximate analytical solution 
for the pulsons (pulsating solitons), then, on the contrary, 
in the (r,t) geometry, the discovery of the pulsons 
as well as the investigation of their properties are only due 
to a computer (the conventional analytical methods turned out 
to be powerless because of the actual nonlinearity and the 
absence of a small parameter). 

3. As a result of a great deal of work all over the world, 
the properties of solitons in the plane (x.t) world have 
been learned quite well. It was time to proceed to more real 
and intricate many-dimensional worlds. This transition as 
should be expected, was non-trivial. Here the stability prob
lem went ahead, when we proceed from one to many space 
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dimensions (unstable solitons were found, in the plane (x,t) 
world, only in the framework of the KG3 equation). 

The Derrick theorem states that the constant energy 
surface in the functional space can not be a valley. At best 
it is a saddle, i.e., the surface not possessing an absolute 
minimum. There are no absolutely stable solutions in such 
models. One of the ways to stabilize them is including an 
isotopic symmetry group into Lagrangian and the related con
servation laws. 

We discuss the properties of models / n / with the most 
simple U(l) group that gives rise to the "isocharge" conser
vation law 

Q=j-f^*<j> -ф*ф )d Dx , -^-=6, 

with Ф and D being the field function and the space dimen
sions, accordingly. 

The isocharge conservation implies the possible pertur
bations have to be restricted, namely SQ [ ф] =0, that 
leads to the stability condition for SLS 4 / (i.e., solutions 
with a good behaviour at the origin and infinity) 

d Q - < 0 . Q do (1) 

Real stationary field configurations can apparently not 
satisfy this condition and are therefore unstable. All these 
statements have been confirmed in a series of numerical 
expe-iments performed by different groups. 

Here we should underline the great importance of inves
tigating many-space-dimensional SLS, since up to now the only 
couple of two-space-dimensional evolution integrable 
equations (the Kadomtsev-Petviashvili equation and cylindric 
KdV) is known for which soliton solutions however behave 
badly at infinities in the direction perpendicular to the 
soliton motion (weak power law decreasing). Moreover, the 
decay c c an initial state is not so perfect as it was in the 
one-dimensional case. Therefore, of especial interest is 
studying via computer the dynamical properties of two- then 
three-spacedimensional well localized solutions for various 
field theories. Such an investigation of the qualitative 
properties of SLS may prompt a way for further studying them 
with analytical (probably approximate) methods. 
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3. Consider two classical field theory models with the 
following interaction potential in Lagrangian* 

and 
U-ln(l + |<£l2)<£2 

U .2 

(2) 

(3) 1п(|<А|2)<£; 

These models can be easily seen to be different in the fol
lowing sense: the first one has as the 0-0 limit a free 
theory since </>2ln(l + | <t>\ s) » <f>4 , the second contains 
constituents with infinite rest mass for ln(|<£|s) •* -~ as 
ф-> О . This means that under certain conditions in the 
first case a nonlinear solution may decay into constituents 
thereby radiating linear plane waves. In the second model 
such a decay is impossible (forbidden by the conservation 
law) and all admissible field configurations are only non
linear solutions, therefore such models are sometimes called 
"confining" models. As a result the instability of SLS gives 
rise to decay in the first case and to collapse in the 
second. 

The confining model is interesting also because its SLS 
may be derived in explicit form for the space of any dimen
sions D . Finally, it follows from the Ci -theorem that stable 
U(l) symmetrical SLS Ф = Ф(г) e 

exist at ш 

Wii t 

„-1/2 

Figure 1. The function </">) 
at D=2 and D = 3 for 
models having free field 
theory as the <£->0 limit. 

regard
less of D . The ln((<£)s) model 
is in this sense scale 
invariant and qualitatively 
unlike the model (2), where 

a>aT depends essentially on D . 
Approximate dependences Q(w) 
are depicted in Figure 1 for 
D-2 and D = 3 . 
Assumption: The character of 
soliton interaction at col
lisions is governed by "dis
persion" dependence G(<<>) 
rather than by the model type 
(abstracting from the 
instability form, decay or col
lapse) . 

"There exist no stable SLS at П 1 in the case of 
simple ф theory even including isogroup. 
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This assumption has been verified in a series of com
puter experiments /18,13/ ш ^wo parameters were alterated 
during computations: the velocity of relative motion of 
quasi-solitons v and their isocharge Q . In both cases the 
following types of interactions have been observed: 
1) elastic and quasi-elastic interaction of SLS; 
2) creating a stable (long-living) bound state of two SLS, 

i.e., bion (breather and so on); 
3) creating an unstable (short-living) bound state; 
4) instability (of the decay or collapse type) of interacted 

quasi-solitons. 
This implies in fact the model independent character of 

quasi-soliton interaction (at any rate for the models con
sidered) .The last two types of interactions are possible only 
in the vicinity of dQ/dco- 0 . All this makes us to suppose 
that the above four types of interaction will be manifested 
in models with higher symmetry groups, if the dependence of 
corresponding isocharge (isospin projection) Q(w) resembles 
that in Figure 1. 

More careful study of quasi-soliton interaction processes 
displays their dependence on the impact parameter p (or 
angular momentum t =prav ) and initial phase difference Л0. 
The numerical experiments show: 
a) There is a resonance region in angular momentum f where 

inelasticity of quasi-soliton interaction increases 
sharply (see / 1 4 / ) ; 

b) purely antisymmetrical initial field configuration leads 
to elastic quasi-soliton repulsion. 

5. As it has been pointed 
out the stationary configura
tions of the real fields can
not be stable, i.e., the real 
quasi-solitons do not exist. 
Moreover, the stable quasi-
solitons exist neither in 
every system with internal 
isosymmetry, nor always. Such 
solutions can appear in the 
systems having conditional (or 
local) minima of the constant 

Figure 2. Initial field energy surface in the 
configuration of two real functional space. Naturally, 
unstable quasi-solitons. a question arises: are there 

any nonstationary stable con
figurations of real fields in 

such systems? Thereat, the non-stationarity works as a 
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stabilizing factor analogous to exp (-i«ut ) f o r the U(l) 
group * 

This assumption has been verified In a series of computer 
experiments for the model (2) carried out by G. Kummer and 
the authors in Dubna' 1 8' . The results of those experiments 
looked at first glance paradoxical. Placing the unstable 
soliton-like objects with sufficiently small opposite 
velocities closely enough (Figure 2), so that the kinematic 
time of their interaction was less than their decay time, we 
observed the production of a quasi-soliton bound statu - two-
dimensional bion. The field amplitude at the bion centre was 
regularly oscillating and slightly decreasing during cal
culation (for some oscillation periods). Further studies 
showed that sufficiently heavy one-soliton initial state can 
also produce analogous objects. The time behaviour and type 
of the discovered bions qualitatively coincide with those of 
the pulsons considered recently in the paper of I.L.Bogolub-
sky and one of the authors . Thereby, it is shown that the 
existence of pulsons is not the priviledge of the systems 
with degenerate vacuum, such as the Higgs and sine-Gordon 
field equations where the field function oscillates between 
two adjacent vacua. Note that analogous pulsons should, 
naturally, also appear for the system (3). The possible ex
planation of pulson stability (using certain adiabatic in
variant) has been proposed in refs. ' 1>17' _ 

Ultimately, we note that in nuclear physics stable bound 
states emerging from unstable constitutients have long been 
known (deuteron). This state, as in our case, bears no resem
blance to the bound state of two classical objects, like 
Earth-Moon, double starts, etc. Constitutients in our case 
loose their individuality during the formation of the bound 
state. Therefore, it is suitable to refer to the proverb, 
recalled by Wheeler D.A.'18'' and widespread in the middle of 
our century "both the nature and nonlinear equations are 
complicated, so the nature should be described ty nonlinear 
equations" (double retranslation). In fact, as it was shown 
above, the dynamics of sufficiently simple nonlinear systems 
is quite rich, various and sometimes unexpected. 

Remember the P.L.Kapitsa problem concerning the pendulum 
with oscillating basis. 
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